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Roles of the major polyamines (mPA), putrescine, spermidine, and spermine (Spm),
in various developmental and physiological processes in plants have been well
documented. Recently, there has been increasing focus on the link between mPA
metabolism and defense response during plant-stress interactions. Empirical evidence
is available for a unique role of Spm, distinct from the other mPA, in eliciting an effective
defense response to (a)biotic stresses. Our understanding of the precise molecular
mechanism(s) by which Spm modulates these defense mechanisms is limited. Further
analysis of recent studies indicates that plant Spm functions differently during biotic
and abiotic interactions in the regulation of oxidative homeostasis and phytohormone
signaling. Here, we summarize and integrate current knowledge about Spm-mediated
modulation of plant defense responses to (a)biotic stresses, highlighting the importance
of Spm as a potent plant defense activator with broad-spectrum protective effects.
A model is proposed to explain how Spm refines defense mechanisms to tailor an
optimal resistance response.
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INTRODUCTION

Polyamines are ubiquitous, small aliphatic polycations found in eukaryotic organisms. The major
polyamines (mPA) in plants are the diamine putrescine (Put), the triamine spermidine (Spd) and
the tetraamine spermine (Spm). They function in key developmental and physiological events
such as embryogenesis, cell division, floral initiation, senescence and responses to stress (Evans
and Malmberg, 1989; Galston and Sawhney, 1990). The biosynthesis and degradation of mPA
are highly responsive to environmental stimuli (Liu et al., 2007). Several studies have reported
that the three mPA mold plant responses to (a)biotic stresses (Bouchereau et al., 1999; Walters,
2000, 2003a,b; Urano et al., 2003; Alcázar et al., 2010; Minocha et al., 2014; Romero et al., 2018).
However, there is evidence for the differential regulation of Spm/Spd and Put by stresses (see
Shelp et al., 2018), and for a unique role of Spm, distinct from the other mPA, in the induction
and formation of resistance responses to various types of (a)biotic stresses. For instance, Mitsuya
et al. (2009) reported that Spm is the only mPA that effectively suppresses the multiplication of
cucumber mosaic virus in Arabidopsis. Other research indicates that Spm strongly induces different
defense-related genes in Arabidopsis seedlings, whereas similar doses of Put and Spd do not, and
elevated levels of endogenous Spm are causally linked to higher tolerance to the bacterial pathogen
Pseudomonas syringae and the oomycete Hyaloperonospora arabidopsidis (Marco et al., 2014).
Similarly, among the mPA, only Spm strongly induces the two key defense-associated signaling
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molecules, nitric oxide and hydrogen peroxide (H2O2), in
Nicotiana benthamiana, ultimately leading to resistance to the
bacterial pathogen Xanthomonas campestris (Kim et al., 2013).
An Arabidopsis mutant deficient in Spm biosynthesis exhibits
hypersensitivity to salt and drought stresses, and the phenotype
is mitigated by exogenous Spm, but not Put or Spd (Yamaguchi
et al., 2006; Kusano et al., 2007). Together, these findings suggest
that Spm is a stress-associated signaling molecule (Yamakawa
et al., 1998) due to its unique role in inducing several components
of the plant defense response, including: (i) genes coding for
pathogenesis related (PR) and resistance (R) proteins (Yamakawa
et al., 1998; Gonzalez et al., 2011); (ii) mitogen-activated protein
kinases (MAPK) (Takahashi et al., 2003; Gonzalez et al., 2011);
(iii) several defense-associated transcription factors (Mitsuya
et al., 2009; Gonzalez et al., 2011); (iv) phytoalexin biosynthesis
(Marco et al., 2014; Mo et al., 2015); and, (v) the hypersensitive
response (HR) (Takahashi et al., 2004; Sagor et al., 2009). In this
review, we summarize and integrate current knowledge on Spm-
mediated refinement of plant defense responses to both biotic
and abiotic stresses, and highlight the importance of Spm as a
potent plant defense activator with broad-spectrum effects. In
addition, a model is proposed to explain how Spm regulates
various oxidative and hormone signaling pathways, which tailor
an optimal defense response to various external stresses.

Spm Metabolism in Plants
Spm anabolism in plants involves two main routes (Shelp
et al., 2012). The first is catalyzed by ornithine decarboxylase,
which converts ornithine into Put, the main precursor for
Spm biosynthesis. The second is a three-step pathway in which
arginine is converted to agmatine by arginine decarboxylase, and
then agmatine is converted to Put by agmatine imidohydrolase
and carbamoylputrescine amidohydrolase. Put is then
successively converted to Spd by Spd synthase, and then
to Spm by Spm synthase. The latter reactions require the
addition of aminopropyl groups, supplied from decarboxylated
S-adenosylmethionine (SAM), which is a product of SAM
decarboxylase (SAMDC). Spm catabolism involves flavin-
containing PA oxidases (PAO), which catalyze two types
of reactions, terminal oxidation and back-conversion. The
terminal oxidation of Spm generates 4-N-(3-aminopropyl)-4-
aminobutanal, 1,3-diaminopropane and H2O2. Alternatively, the
back-conversion reaction converts Spm to Spd, and Spd to Put,
resulting in the production of 3-aminopropanal and H2O2.

SPM METABOLISM AND BIOTIC
STRESSES

Spm Induces Oxidative Response
The HR reaction is defined as a type of rapid programmed cell
death, which is induced by the generation of reactive oxygen
species (ROS, such as H2O2) at the site of pathogen entry,
leading to activation of several defense mechanisms that result
in cessation of growth of the pathogen, typically biotrophic,
and in protection of remaining plant tissue (Govrin and Levine,
2000; Jones and Dangl, 2006). It is generally believed that the

HR reaction is effective against biotrophic pathogens only, but
effectiveness of HR against necrotrophic pathogens such as
Botrytis cinerea has also been reported (Asselbergh et al., 2007;
Azami-Sardooei et al., 2010, 2013; Seifi et al., 2013). HR induction
involves two major pathways: the host HR is mediated through
specific recognition of certain microbes by the surveillance
system of the host, namely R proteins (Keen, 1990); and, the
non-host HR is non-specific, typically induced in response to
a broad spectrum of pathogens in many plants (Heath, 2000).
Interestingly, Yoda et al. (2003, 2009) demonstrated that PAO-
mediated Spm oxidation strongly contributes to the onset of both
host and non-host HRs triggered in tobacco plants by different
pathogens, highlighting the importance of Spm catabolism in the
regulation of the HR-dependent defense response.

Exogenous Spm induces the expression of several H2O2-
dependent signaling components and transcription factors in
Arabidopsis leaves, and results in HR-mediated resistance to
cucumber mosaic virus (Mitsuya et al., 2009). The addition
of a PAO inhibitor represses the activation of defense genes
and alleviates ROS generation and HR, confirming that PAO
is involved in the resistance response. Infiltration of tobacco
leaf disks with Spm strongly decreases the growth of the
biotrophic bacterial pathogen Pseudomonas viridiflava, but not
the necrotrophic fungal pathogen, Sclerotinia sclerotiorum, and
co-infiltration of Spm and a PAO inhibitor reverses this
protective effect (Marina et al., 2008). Exogenous application
of thermospermine, a structural isomer of Spm, induces
resistance to P. viridiflava in Arabidopsis through PAO-mediated
thermospermine oxidation (Marina et al., 2013). Apoplastic
Spm accumulates in tobacco plants in response to infection by
the (hemi)biotrophic bacterial pathogen P. syringae pv. tabaci,
and PAO overexpression upregulates defense-related marker
genes and cell wall-based defense responses, resulting in disease
tolerance (Moschou et al., 2009). Similarly, overexpression of
a cotton-derived PAO in Arabidopsis results in elevated levels
of ROS and resistance to the necrotrophic vascular wilt fungus
Verticillium dahlia (Mo et al., 2015). The resistance response is
mainly mediated by the induction of MAPK and cytochrome
P450, culminating in the accumulation of the Arabidopsis-
specific phytoalexin camalexin (Mo et al., 2015). Exogenous
Spm increases the disease resistance of Arabidopsis against
P. viridiflava, which is compromised by the PAO inhibitor SL-
11061 (Gonzalez et al., 2011). Together, these findings suggest
that PAO is a key defense regulator, particularly in response to
apoplastically-localized plant pathogens.

Mitochondrion Membrane Dysfunction
Spm induces apoptosis, a type of programmed cell death, in
animal cells through the activation of a group of cell-death-
inducing pathways, known as the caspase cascade, which entails
the loss of mitochondrial membrane potential and leakage of
electron-transfer-chain intermediates, such as cytochrome c,
into the cytosol (Moffatt et al., 2000; Stefanelli et al., 2000).
Similarly, plant mitochondria are known to play an important
role in ROS generation and induction of HR during plant-
pathogen interactions (Lam et al., 2001; Hatsugai et al., 2004;
Van Breusegem and Dat, 2006). Notably, exogenous Spm induces
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TABLE 1 | Defense mechanisms associated with Spm-induced resistance against biotic and abiotic stresses.

Plant species Pathogen/environmental
treatment

Spm sources Induction of biochemical,
transcriptional or molecular
response

Reference

Biotic Stresses

Tobacco (Nicotiana
tabaccum L.)

Tobacco mosaic virus Exogenous MMD; ROS generation; MAPK
& HR-related genes such as
HSR203J

Takahashi et al.,
2003, 2004

Tomato (Solanum
lycopersicum L.)

Tobacco mosaic virus Endogenous, exogenous SA-independent PR proteins
such as PR1 & PR5

Yamakawa
et al., 1998

(Arabidopsis thaliana
[L.] Heynh.)

Pseudomonas viridiflava Endogenous, exogenous R proteins; MAPK;
JA-dependent TFs such as
Myb & ERF

Gonzalez et al.,
2011

Arabidopisis Pseudomonas syringae &
Hyaloperonosposa arabidopsis

Endogenous, exogenous PR proteins such as PR1, PR2
& PR5; R proteins (FLS2);
JA-biosynthesis proteins such
as LOX & AOS; cytochrome
P450

Marco et al.,
2014

Arabidopsis Verticillium dahlia Endogenous, exogenous PAO; ROS generation; MAPK;
cytochrome P450; phytoalexin
generation (camalexin)

Mo et al., 2015

Nicotiana benthamiana
L.

Xanthomonas campestris pv.
vesicatoria

Exogenous ROS/NO generation; HR Kim et al., 2013

Arabidopsis Cucumber mosaic virus Exogenous PAO; ROS generation; HR;
defense-associated TFs such
as WRKY40

Mitsuya et al.,
2009

Abiotic Stresses

Tomato Drought Endogenous ROS scavenging; enzymatic
antioxidant activity such as CAT
& SOD

Sánchez-
Rodríguez
et al., 2016

Mung bean (Vigna
radiata [L.] Wilczek)

Cadmium toxicity, heat, drought Exogenous Antioxidant accumulation such
as ASA & GSH; ROS
scavenging; antioxidant
activities such as CAT, SOD,
GST & GR; inhibition of
chlorophyll degradation

Nahar et al.,
2016a,b

trifoliate orange
(Poncirus trifoliata [L.]
Raf.)

Combined heat & drought Exogenous Enzymatic antioxidant activity
such as CAT, SOD &
peroxidases; heat shock
proteins;
ABA-responsive-element
binding factors

Fu et al., 2014

Pea (Pisum sativum L.) High temperature Exogenous Enzymatic antioxidant activity
such as CAT & SOD; inhibition
of chlorophyll degradation

Todorova et al.,
2016

Wheat (Triticum
aestivum L.)

Cd2+ and Cu2+ Exogenous ROS scavenging; activities of
antioxidants & antioxidant
enzymes such as ASA, GSH &
GR; detoxification pathways
(degradation of thiobarbituric
acid)

Groppa et al.,
2007

Soybean (Glycine max
[L.] Merr.)

Osmotic Exogenous Inhibition of lipid peroxidation
(i.e., less oxidative stress);
enzymatic antioxidant activity
such as CAT & SOD

Radhakrishnan
and Lee, 2013

Red tangerine (Citrus
reticulata Blanco)

Dehydration Exogenous ROS scavenging; enzymatic
antioxidant activity such as
SOD & peroxidase

Shi et al., 2010

Abbreviations: ABA, abscisic acid; AOS, allene oxide synthase; ASA, ascorbic acid; CAT, catalase; ERF, ethylene responsive factors; HR, hypersensitive response;
GR, glutathione reductase; GSH, glutathione; GST, glutathione S-transferase; JA, jasmonic acid; LOX, lipoxigenase; MAPK, mitogen-activated protein kinase; MMD,
mitochondrion membrane dysfunction; PAO, polyamine oxidase; PR, pathogenesis related; R, resistance; ROS, reactive oxygen species; SA, salicylic acid, SOD,
superoxide dismutase; TF, transcription factor.
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mitochondrial membrane dysfunction (Takahashi et al., 2003)
and the expression of two important defense-associated MAPK,
which in turn induce a subset of HR-related genes such as
HSR203J (Takahashi et al., 2004). Pre-treatment with bongkrekic
acid, an inhibitor of the mitochondrial permeability transition
pore, suppresses the induction of HR-related genes, confirming
that mitochondrial dysfunction is involved in Spm-induced HR
in tobacco leaves (Takahashi et al., 2004).

Hormonal Regulation
Several HR marker genes, such as HSR203J, are responsive to
Spm, suggesting that it is involved in HR induction (Takahashi
et al., 2004). These HR markers are also induced in NahG plants,
which are highly deficient in the plant hormone salicylic acid
(SA), suggesting that Spm-induced HR reaction is independent
of the SA signaling pathway (Takahashi et al., 2004). This result
is consistent with SA-independent, Spm-induced expression of
PR proteins in tobacco (Yamakawa et al., 1998). However, several
reports propose a link between JA-associated defense responses
and Spm metabolism. For instance, exogenous Spm promotes JA
biosynthesis in lima bean (Ozawa et al., 2009), and Spm synthase-
overexpressing plants of Arabidopsis have elevated levels of
endogenous Spm (two to threefold), resistance to the bacterial
pathogen P. viridiflava, and expression of components of the
JA-dependent defense signaling pathway such as ERF and Myb
transcription factors (Gonzalez et al., 2011). Similarly, elevated
levels of endogenous Spm in SAMDC-overexpression lines of
Arabidopsis are associated with resistance to Hyaloperonospora
arabidopidis and P. syringae and the induction of several defense-
associated genes, such as PR and R proteins, as well as genes
involved in JA biosynthesis, such as chloroplastic lipoxygenase
and allene oxide synthase (Marco et al., 2014). Collectively,
these findings suggest that JA signaling positively regulates Spm-
mediated defense response to biotic stresses.

SPM METABOLISM AND ABIOTIC
STRESSES

Spm Activates Antioxidant Response
Elevated levels of endogenous Spm, as well as the exogenous
application of Spm, induce tolerance to various abiotic stresses
(Capell et al., 2004; Yamaguchi et al., 2006; Kusano et al.,
2007). Fruits of the drought-tolerant tomato cultivar Zarina
have elevated levels of endogenous Spm and activities of
the antioxidant enzymes superoxide dismutase (SOD) and
catalase (CAT), culminating in better tolerance to dehydration-
induced oxidative stress (Sánchez-Rodríguez et al., 2016).
Similarly, Spm application is associated with higher activities
of SOD and CAT in pea plants, mitigating high-temperature-
induced chlorophyll degradation (Todorova et al., 2016). Also,
Spm induces the tolerance of mung bean seedlings to high
temperature, drought or cadmium toxicity, and this is typically
associated with elevated activities of SOD, CAT, glutathione
S-transferase (GST) and glutathione reductase (GR), and levels
of non-enzymatic antioxidants such as ascorbic acid and
glutathione (GSH), culminating in reduced ROS accumulation

(Nahar et al., 2016a,b). The application of Spm to wheat
leaves alleviates oxidative damage caused by cadmium and
copper excess, reduces the metal-induced ROS accumulation,
and restores GR activity (Groppa et al., 2007). Likewise,
Spm application to soybean leaves reduces osmotic-stress-
induced losses in chlorophyll, carotenoid and protein levels,
and increases the activities of CAT and SOD (Radhakrishnan
and Lee, 2013). Stress tolerance, elevated activities of CAT,
SOD and peroxidases, and elevated expression of heat shock
proteins are found in Spm-treated seedlings of trifoliate orange
exposed to combined drought and heat stresses (Fu et al.,
2014). Together, this body of evidence suggests that Spm
induces tolerance to oxidative stress caused by abiotic stresses
through the activation of both non-enzymatic and enzymatic
antioxidant pathways.

Hormonal Regulation
It has previously been shown that exogenous abscisic acid
(ABA) upregulates expression of the mPA biosynthesis genes
SAMDC and arginine decarboxylase (Urano et al., 2003), and

FIGURE 1 | Model for interaction of Spm with plant responses to (a)biotic
stresses. Lines ending in arrowheads and closed circles, respectively, indicate
positive and negative impacts. Biotic Stress: OR, oxidative response; HR,
hypersensitive response; MMD, mitochondrion membrane dysfunction; PAO,
polyamine oxidase; JA, jasmonic acid; LOX, lipoxygenase; AOS, allene oxide
synthase; MAPK, mitogen activated protein kinase; ERF, ethylene responsive
factor; PR, pathogenesis related; R: resistance. Abiotic Stress: = AR,
antioxidant response; ASA, ascorbic acid; GSH, glutathione; ABA, abscisic
acid; ABF, abscisic acid-binding factor; SOD, superoxide dismutase; GR,
glutathione reductase; CAT, catalase; GST, glutathione S-transferase; HSP,
heat shock protein.
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the induction of these genes is significantly compromised in
ABA-deficient mutants of Arabidopsis grown under drought
stress (Alcázar et al., 2006a), suggesting a positive correlation
between mPA biosynthesis and ABA-mediated response to cold,
salt and drought stresses (Alcázar et al., 2010). Such a premise
is supported by the existence of several abiotic stress-responsive
elements (motifs), as well as, ABA-responsive elements in
the promoters of mPA biosynthesis genes (Alcázar et al.,
2006b). Notably, Spm treatment induces the expression of ABA-
responsive element binding factors in trifoliate orange seedlings
challenged by drought and heat stresses (Fu et al., 2014). Hence,
crosstalk between Spm-mediated defense response to abiotic
stresses and ABA-dependent signaling pathway is suggested.

CONTRASTING ROLES OF SPM DURING
OXIDATIVE/ANTIOXIDANT RESPONSES

Many of the key reports on Spm-induced resistance discussed
above are summarized in Table 1. Examination of the
biochemical, transcriptional and molecular responses to (a)biotic
stresses leads us to hypothesize dual roles for Spm in modulating
the oxidative status of the plant cell. Spm seems to accumulate
in response to both biotic and abiotic stresses, but this is
followed by two different scenarios: (i) upon perception of biotic
challenges, Spm “enhances” the oxidative response through the
induction of ROS generation and HR: and (ii) upon perception
of abiotic challenges, Spm “alleviates” oxidative damage through
the stimulation of ROS-scavenging enzymes, leading to an
antioxidant response. Figure 1 depicts the different players
involved in the two scenarios. How a plant adopts such
contrasting mechanisms in order to tailor an appropriate defense
response merits further consideration.

The oxidative response occurs immediately after successful
recognition of the pathogen by the plant’s surveillance system,
following a biphasic pattern (Wojtaszek, 1997). Phase-I
consists of a rapid, transient, and low-amplitude burst of
ROS generation, occurs within minutes after pathogen
recognition, and is known to function as an upstream
trigger of several defense-related signaling cascades. Phase-
II occurs after few to several hours post recognition, consists
of a sustained wave of ROS generation/accumulation of
much higher amplitude, and plays a key role in inducing
defense-associated genes and HR (Van Camp et al., 1998; De
Gara et al., 2003; Torres et al., 2006). While the oxidative
response to avirulent pathogens, successfully recognized by
the plant’s immune system, generally exhibits a biphasic
pattern of ROS accumulation, only phase-I is elicited in
response to virulent pathogens that are able to avoid host
recognition (Torres et al., 2006). With this in mind, it seems
that PAO-mediated ROS generation (i.e., Spm oxidation)
during incompatible plant-pathogen interactions exhibits
the characteristics of a phase-II oxidative response, as
previously proposed (Takahashi et al., 2004). Therefore, it
can be posited that Spm oxidation under such conditions is
not merely a metabolic feedback mechanism to maintain PA
homeostasis, but beyond that, it functions as an important

part of the plant immune system to provide the ROS
necessary to fuel successful activation of defense genes and
formation of HR.

The role of mPA as protective molecular chaperones (Jiménez-
Bremont et al., 2014) might explain how Spm induces an
antioxidative state in the plant tissue in response to abiotic
stresses. The spatial separation of positive charges in PA
at physiological pH could enable PA to bind negatively-
charged molecules such as nucleic acids, phospholipids and
proteins, thereby protecting the structure and function of
these macromolecules from degradation and modification
(Ruiz-Herrera et al., 1995; Martin-Tanguy, 2001; D’Agostino
et al., 2005). This property would also enable the scavenging
of free radicals and stabilization of intracellular membranes
under stress conditions (Popovic et al., 1979; Groppa and
Benavides, 2008; Alcázar et al., 2010; Radhakrishnan and
Lee, 2013). This might also explain why mPA are abundant
in green, young and actively growing tissues, whereas their
titers dramatically decline in senescing organs (Galston and
Sawhney, 1990; Del Duca et al., 2000). Considering that Spm
contains four nitrogen groups, it could provide greater buffering
capacity than Spd and Put (Shi et al., 2010). This is in
agreement with previous studies that report exogenous Spm,
unlike Spd and Put, has a potent anti-senescence effect on
oat and lettuce leaves, as well as Jerusalem artichoketuber
(Galston and Sawhney, 1990; Dondini et al., 2003; Serafini-
Fracassini et al., 2010). Notably, elevated levels of Spm in
an Arabidopsis mutant that lacks the PA back-conversion
pathway, are associated with delayed dark-induced senescence,
suggesting that Spm is a metabolic defense mechanism
against senescence-induced oxidative stress and cell death
(Sequera-Mutiozabal et al., 2016).

CONCLUDING REMARKS

Many natural and synthetic compounds are known to activate
defense responses against a certain type of stress only, either
biotic or abiotic. Those that confer protection against a wide
range of both biotic and abiotic stresses are very rare, with
silicon being an important exception (Van Bockhaven et al.,
2013). In light of the empirical evidence reviewed above, it
seems that Spm can be considered as another exceptional
molecule with broad spectrum prophylactic effects against both
types of stresses. Such effects are exerted through different
passive (attributed to the physical and biochemical properties
of Spm) and active (attributed to molecular functions of
Spm) mechanisms. Given that Spm refines the defense
response according to the biotic or abiotic nature of the
stress by (i) promoting appropriate hormone-mediated
signaling pathways, (ii) modulating oxidative/antioxidant
responses, and (iii) inducing several defense-related genes
(Figure 1), the notion that Spm functions as a plant defense
activator becomes more plausible. Nevertheless, several
important questions remain regarding these mechanisms.
What are the nodes of convergence between Spm-induced
signaling pathway and ABA/JA-mediated defense response
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during (a)biotic challenges? Which specific transcription factors
or other transcription-regulating mechanisms control the Spm-
induced defense gene activation? What are the regulatory
mechanisms that control Spm-mediated oxidative homeostasis
during biotic and abiotic stress responses? Considering the
immense value of environmentally-friendly methods for plant
stress management in sustainable crop production systems,
the application of a multidisciplinary approach benefiting
from molecular, biotechnological, and breeding strategies
seems to be necessary to fully unlock the potential of Spm
as a natural plant defense activator with broad-spectrum
protective effects.
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