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This perspective paper explores the utilization of abiotic stress-responsive transcription
factors (TFs) from crassulacean acid metabolism (CAM) plants to improve abiotic stress
tolerance in crop plants. CAM is a specialized type of photosynthetic adaptation that
enhances water-use efficiency (WUE) by shifting CO2 uptake to all or part of the
nighttime when evaporative water losses are minimal. Recent studies have shown
that TF-based genetic engineering could be a useful approach for improving plant
abiotic stress tolerance because of the role of TFs as master regulators of clusters
of stress-responsive genes. Here, we explore the use of abiotic stress-responsive TFs
from CAM plants to improve abiotic stress tolerance and WUE in crops by controlling
the expression of gene cohorts that mediate drought-responsive adaptations. Recent
research has revealed several TF families including AP2/ERF, MYB, WRKY, NAC, NF-Y,
and bZIP that might regulate water-deficit stress responses and CAM in the inducible
CAM plant Mesembryanthemum crystallinum under water-deficit stress-induced CAM
and in the obligate CAM plant Kalanchoe fedtschenkoi. Overexpression of genes from
these families in Arabidopsis thaliana can improve abiotic stress tolerance in A. thaliana
in some instances. Therefore, we propose that TF-based genetic engineering with a
small number of CAM abiotic stress-responsive TFs will be a promising strategy for
improving abiotic stress tolerance and WUE in crop plants in a projected hotter and
drier landscape in the 21st-century and beyond.

Keywords: abiotic stress response, crassulacean acid metabolism, drought tolerance, extremophytes, genetic
engineering, transcription factor

INTRODUCTION

Formidable challenges facing humankind include a burgeoning global human population (Godfray
et al., 2010; Gerland et al., 2014) and the increasing frequency and intensity of droughts related to
global warming (Cook et al., 2014; Singh et al., 2015). In addition, abiotic stresses including high
salinity, temperature extremes, increased UV radiation, heavy metals, and high light intensities
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are and will continue to be major constraints for global crop
production and food security (Lesk et al., 2016). Among these
abiotic stresses, drought is of major concern as it has dire effects
on crop productivity (Fahad et al., 2017), plant growth, and
development (Yordanov et al., 2000). By the end of the 21st
century, rapid changes in the global climate will likely increase the
frequencies of drought by more than 20% compared to current
rates (Lobell et al., 2011; Cook et al., 2014). Indeed, Daryanto
et al. (2016) showed that an approximately 40% decrease in water
availability can decrease wheat (Triticum aestivum L.) and maize
(Zea mays L.) yields by 20.6% and 39.3%, respectively. High
salinity, another abiotic stress that is harmful to crop production,
affects 20% of total cultivated and 33% of irrigated agricultural
lands worldwide (Shrivastava and Kumar, 2015). Similarly, low
temperatures and heatwaves cause significant reduction in crop
yields across the world (Sanghera et al., 2011; Challinor et al.,
2014; Hatfield and Prueger, 2015). Thus, novel approaches
to mitigate the negative impacts of abiotic stresses on crop
yields must be explored and developed to avoid socio-economic
collapse due to climate change.

Approaches to enhance sustainable bioenergy production
by engineering the CAM pathway into C3 crops to enhance
their water-use efficiency (WUE) on marginal lands are already
underway (Borland et al., 2014, 2015; Yang et al., 2015; Liu
et al., 2018). Another approach to enhance abiotic stress tolerance
is to modulate the expression of transcription factors (TFs)
or the functions of abiotic stress-adaptive genes that might
already be present, but that are not normally expressed in
unstressed or C3 plants (Hussain et al., 2011; Rabara et al.,
2014; Joshi et al., 2016; Wang et al., 2016; Bechtold, 2018).
This approach would involve bioengineering a small number of
regulatory genes with potentially global effects made possible
by the role of TFs in gene regulation (Rabara et al., 2014;
Joshi et al., 2016).

Transcription factor-based genetic engineering could direct
such regulatory TFs to modulate a large number of downstream
abiotic stress-responsive genes (Rabara et al., 2014). Stress
tolerance in plants is generally under polygenic control (Tran
et al., 2010) and some of the genes regulating stress-tolerance
responses happen to code for TFs (Villalobos et al., 2004; Qiu
and Yu, 2009; Zhang et al., 2011; Yang et al., 2012; Cai et al.,
2014; Chen et al., 2014; Swain et al., 2017). Therefore, TFs
might be ideal candidate regulators for improving abiotic stress
tolerance in crop plants. To date, TF-based genetic engineering
has mainly repurposed TFs from Arabidopsis thaliana, Glycine
max, Oryza sativa, and T. aestivum (Rabara et al., 2014; Joshi
et al., 2016; Wang et al., 2016). As far as we know, no reports
have analyzed the effects of overexpressing TFs from crassulacean
acid metabolism (CAM) plants which have greater abiotic stress
tolerances than mesophytes. Most CAM plants are naturally
adapted to low-water environments and many other abiotic
stresses compared to the agronomically important C3 plants
(Borland et al., 2009). Here, we consider using a “next-generation
TF-based” approach to exploit abiotic stress-responsive TFs from
CAM plants to improve abiotic stress tolerance in crop plants.
The current technologies for TF-based approaches to improve
plant abiotic stress tolerance have been extensively discussed

and reviewed by Rabara et al. (2014), Joshi et al. (2016), and
Wang et al. (2016), and those details are therefore only briefly
summarized below.

TRANSCRIPTION FACTOR-BASED
APPROACH

Plants are sessile organisms that exhibit various biochemical,
physiological, and molecular adaptations to extreme
environments (Joshi et al., 2016). For instance, water-deficit
stress activates the expression of stress-responsive genes
encoding enzymes that synthesize compatible protective sugars,
antioxidants, and proteins, including heat shock proteins and
some classes of late embryogenesis abundant (LEA) proteins
(Tran et al., 2010; Joshi et al., 2016; Wang et al., 2016). In
addition to the stress-induced upregulation of the above
proteins, the expression of various regulatory proteins including
TFs, protein kinases, and protein phosphatases is also activated
(Wang et al., 2016).

Transcription factors are master regulators of many cellular
processes and can also interact with other transcriptional
regulators (Joshi et al., 2016). Importantly, they play a pivotal
role in different abiotic stress responses by binding to the
upstream cis-regions of promoters in many stress-responsive
genes (Yamaguchi-Shinozaki and Shinozaki, 2006). Many studies
have been conducted to identify and characterize families of
TFs including AP2/ERFBP, MYB, WRKY, NAC, NF-Y, and
bZIP that are involved in abiotic stress responses (Umezawa
et al., 2006; Golldack et al., 2011; Leyva-González et al.,
2012; Wang et al., 2016; Swain et al., 2017; Zanetti et al.,
2017). Several TFs have already been overexpressed in crop
plants and A. thaliana to improve abiotic stress tolerance
(Qiu and Yu, 2009; Zhang et al., 2011; Yang et al., 2012;
Cai et al., 2014; Chen et al., 2014). For example, the NAC
family is one of the largest TF families in plants and is
involved not only in plant growth and development, but also
in transcriptional reprogramming associated with plant stress
responses (Tran et al., 2010; Nakashima et al., 2012). Mao
et al. (2012) reported that overexpression of the TaNAC2 gene
from wheat can enhance tolerance to drought, salt, and freezing
stresses in A. thaliana. In addition, functional characterization
of the NAC045 (Zheng et al., 2009) and SNAC1 genes from
O. sativa enhanced drought and salt tolerance in rice (Hu
et al., 2006). Furthermore, overexpression of either GmMYB76
or GmMYB177 from soybean significantly enhanced salt and
freezing tolerance in A. thaliana (Liao et al., 2008).

A relatively less explored yet high-potential approach is
to discover novel abiotic stress-adaptive regulatory genes
in extremophytes (i.e., CAM xerophytes and halophytes,
desiccation-tolerant plants, or resurrection plants) to use for
bioengineering abiotic stress tolerance in crop plants (Inan
et al., 2004; Shi et al., 2013; Joshi et al., 2016; Bechtold,
2018). For example, the overexpression of the TF CpMYB10
from the resurrection plant Craterostigma plantagineum in
A. thaliana led to desiccation and salt tolerance in transgenic lines
(Villalobos et al., 2004).
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CRASSULACEAN ACID METABOLISM
AND ABIOTIC STRESS TOLERANCE

CAM plants have evolved a specialized type of photosynthetic
adaptation that allows them to live under conditions of severe
water deficit and in semi-arid and arid regions of the world
including deserts. These plants have shifted all or part of
their primary CO2 uptake and fixation to the nighttime,
when evaporative water losses are minimal, and perform C3
carboxylation reactions when stomata are closed during the
daytime. This temporal separation of carbon fixation leads to the
formation of the four-carbon organic acid malate, which is stored
in the vacuole during the night and subsequently undergoes
decarboxylation to release CO2 for re-fixation during the day
to produce carbohydrates (Borland et al., 2009). Because of this
temporal separation of carbon fixation and inverted stomatal
behavior, CAM plants can reduce water loss due to transpiration.
These characteristics also allow CAM plants to fix net CO2
15% more efficiently than C3 plants (Nobel, 1991) resulting in
increased biomass of CAM plants while using less water than C3
plants. Additionally, CAM plants can produce similar amounts of
biomass using 80% less water in comparison to C3 plants (Nobel,
1996; Borland et al., 2009). Thus, CAM plants have between
3- and 6-fold higher WUE than C4 and C3 plants, respectively
(Garcia et al., 2014; Yang et al., 2015).

In addition to their higher WUE and associated drought
tolerance (Yang et al., 2017), CAM plants can tolerate high
temperature up to 70◦C, whereas C3 plants can tolerate only
50–55◦C (Borland et al., 2009). CAM halophytes can also adapt
to high salinity, as during the induction of CAM by salt
stress in Mesembryanthemum crystallinum (Winter and Holtum,
2014). Moreover, CAM plants can better tolerate higher light
intensities (>1000 µmol m−2 s−1) and UV-B irradiation levels
than can agronomically important C3 plants (Borland et al.,
2009). Furthermore, CAM plants can increase daily net CO2
uptake under increased atmospheric CO2 concentrations, which
might be advantageous in global climate change scenarios (Nobel,
1996). Some CAM plants such as Agave salmiana, Opuntia
ficus-indica, and Stenocereus queretaroensis can also survive in
subzero temperatures, and Agave utahensis Engelm. can tolerate
temperatures as low as −18◦C (Nobel, 1996).

The abiotic stress-adaptive characteristics of CAM plants will
be particularly beneficial for adapting to the consequences of
anthropogenic climate change, such as droughts and heatwaves,
high soil salinity, temperature extremes, and high light or UV-
B irradiation. Many of the stress-adaptive responses involve
abscisic acid (ABA)-dependent and -independent response
pathways (Song et al., 2016). ABA-dependent and independent
signaling events likely participate in the stress-activation of CAM
in M. crystallinum (Chu et al., 1990; Taybi and Cushman, 1999,
2002; Abdin et al., 2002; Cushman and Borland, 2002), suggesting
that the CAM pathway likely has evolved in response to abiotic
stress (Reyes-García and Andrade, 2009; Heyduk et al., 2018;
Yin et al., 2018).

Crassulacean acid metabolism is thought to have evolved
independently multiple times from ancestral C3 plants (Silvera
et al., 2010) because no unique metabolic pathways are required,

although some CAM-specific variant enzymes apparently evolved
in some instances (Ermolova et al., 2003; Gehrig et al., 2005;
Vaasen et al., 2006). However, temporal changes in gene
expression of the CAM enzyme variants likely occurred because
of alterations in their regulation compared to their orthologs in
C3 plants (Hermans and Westhoff, 1990; Lepiniec et al., 1993;
Cushman et al., 2008; Heyduk et al., 2018; Yin et al., 2018).
Furthermore, the ABA-dependent stress response pathway is
involved in CAM activation not only in M. crystallinum (Taybi
and Cushman, 2002), but also in other CAM species (Taybi et al.,
1995; Rodrigues et al., 2016; Yin et al., 2018). Although CAM is
found in over 36 families of vascular plants (Silvera et al., 2010),
we rely on only a few major CAM species such as pineapple
(Ananas comosus), Agave, and Opuntia as agricultural crops to
provide food, forage, fiber, and biofuels (Cushman et al., 2015).
Well characterized CAM model species also provide abundant
resources for the identification and selection of candidate TFs
involved in abiotic stress adaptations (Hartwell et al., 2016).
Hence, identification of candidate CAM pathway regulators (i.e.,
TFs) that are expressed or activated under water-deficit stress
or CAM should be prioritized to exploit the molecular and
regulatory machinery of abiotic stress adaptation in CAM plants
as a vital resource for applications in C3 crop species (Yang et al.,
2015; Fernie, 2016; Yin et al., 2018).

CAM ABIOTIC STRESS-RESPONSIVE
TF-BASED APPROACH

Bioengineering a TF that can confer desirable traits such as
increased drought tolerance (Villalobos et al., 2004) or increased
biomass (Lim et al., 2018) into C3 A. thaliana will be crucial as
a proof of concept for the CAM abiotic stress-responsive TF-
based approach to increase abiotic stress tolerance in C3 plants.
Fortunately, genetic resources (i.e., genome and transcriptome
sequences) for CAM plants are now available for Agave (Abraham
et al., 2016), Kalanchoe spp. (Yang et al., 2017), pineapple
(Ming et al., 2015, 2016; Wai et al., 2017), and M. crystallinum
(Chiang et al., 2016). Although genetic resources for CAM
plants are becoming readily available, the underlying regulatory
basis of CAM is still not completely understood. Many TFs of
unknown function have been identified during recent genome
and transcriptome sequencing efforts; thus, there are now many
opportunities to analyze the functions of TFs involved in water-
deficit-stress response or CAM function and to exploit the
potential of bioengineering using CAM plant TFs to improve
abiotic stress tolerance in crop plants. Indeed, candidate CAM
TFs involved in C3 to CAM transition in obligate CAM species of
Agave (Heyduk et al., 2018; Huang et al., 2018; Yin et al., 2018),
Kanlanchoe (Moseley et al., 2018), and Manfreda (Heyduk et al.,
2018), and weak CAM species of Polianthes and Beschorneria
(Heyduk et al., 2018), or the induction of CAM in Tralinum
triangulare (Brilhaus et al., 2016) have been identified. Not
surprisingly, a number of these candidate TFs are involved in
the ABA stress responsive pathway (Heyduk et al., 2018; Yin
et al., 2018). More importantly though, many of these candidate
TFs are involved in the rewiring of the phase shift from C3
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to CAM transition in the evolution of CAM photosynthesis
(Heyduk et al., 2018; Moseley et al., 2018; Yin et al., 2018).
Although it would be interesting to attempt to reprogram a
C3 plant such that it becomes CAM performing, we are not
suggesting to shift gene expression patterns of CAM pathway
genes that might be present in extant C3 plants, or to regulate
the engineered CAM pathway in C3 plants (Yang et al., 2015;
Fernie, 2016; Heyduk et al., 2018; Yin et al., 2018), but rather
identify and exploit the TFs involved in abiotic stress responses

from obligate and inducible CAM plants to modulate the
expression of appropriate genes in C3 plants to improve their
abiotic stress tolerance.

Eight most abundant candidate TFs under water-
deficit stress diel and zeitgeber time have been
identified that might regulate the CAM state, water-
deficit stress response, or both in M. crystallinum
(Garcia et al., 2014; Cushman, unpubl. data; Table 1).
Mesembryanthemum crystallinum switches from C3 to CAM

TABLE 1 | List of the top eight candidate transcription factors (TFs) from the inducible CAM plant Mesembryanthemum crystallinum and top eight candidate TFs from
the obligate CAM plant Kalanchoe fedtschenkoi hypothesized to regulate the CAM state or water-deficit stress responses in CAM plants and their corresponding
orthologs in Arabidopsis thaliana.

TF Name TF Family A. thaliana Locus ID Functional annotation of A. thaliana ortholog at TAIR

McERF74 AP2/ERF/CRF AT1G53910 Detection of hypoxia, ethylene-activated signaling pathway, regulation
of root development, response to hypoxia

McNAC29 NAC AT1G69490 Embryo development ending in seed dormancy, flower development,
fruit ripening, leaf senescence, multicellular organism development,
multidimensional cell growth, regulation of transcription

McBLH1 HB/Homeodomain AT2G35940 Polar nuclei fusion, response to abscisic acid, response to continuous
far red-light stimulus by the high-irradiance response system, response
to symbiotic fungus

McbZIP2 bZIP AT2G18160 Positive regulation of transcription

McAGL8 MADS/AGAMOUS
-LIKE 8

AT5G60910 Cell differentiation, developmental growth involved in morphogenesis,
positive regulation of flower development, fruit development,
maintenance of inflorescence meristem identity

McAP2-12 AP2/ERF AT1G53910 Detection of hypoxia, ethylene-activated signaling pathway, regulation
of root development, response to hypoxia

McbZIP44 bZIP AT1G75390 Positive regulation of transcription, seed germination

McHB7 HB/Homeobox AT2G46680 Abscisic acid-activated signaling pathway, positive regulation of
transcription, response to water deprivation

KfMYB59 MYB AT5G59780 Cell differentiation, response to cadmium ions, response to ethylene,
response to gibberellin, response to NaCl

KfLHY1 Homeodomain AT1G01060 Circadian rhythm, long-day photoperiodism, flowering, response to
abscisic acid, response to auxin, response to NaCl

KfBZIP29 bZIP AT4G38900 Regulation of transcription, reproductive shoot system and
development

KfNF-YB3 NF-Ys AT4G14540 Regulation of transcription, protein heterodimerization

KfNAC83 NAC AT5G13180 Lignin biosynthetic process, plant-type secondary cell wall biogenesis,
fruit dehiscence

KfAP2 AP2/ERF/CRF AT4G11140 Cotyledon development cytokinin-activated signaling pathway,
ethylene-activated signaling pathway, leaf development

KfCOL3 (010148t1) Zinc Finger
CONSTANS-like 4

AT5G24930 Red light signaling pathway, regulator of flower development, regulation
of photomorphogenesis

KfCOL5 (00914t1) Zinc Finger
CONSTANS-like 5

AT5G57660 Regulation of flower development, regulation of transcription, response
to light stimulus

We are only reporting functions related to transcriptional activation and abiotic stress for the A. thaliana ortholog from the Arabidopsis Information Resource (TAIR)
databases (https://www.arabidopsis.org/) in the table.

TABLE 2 | Results from T3 transgenic A. thaliana lines overexpressing candidate CAM TFs from the obligate CAM plant K. fedtschenkoi hypothesized to regulate
water-deficit stress response or CAM activation.

CAM-related
transcription factor

Integrated
WUE

Drought
tolerance

NaCl
tolerance

Heavy metal
tolerance

Biomass Timing of
bolting

Lateral
roots

Root
hairs

KfMYB59 Enhanced NC 100 mM NaCl 50 µM
Na2SeO4

Increased Delayed NC Increased

KfNAC83 Enhanced Enhanced 150 mM TBD Increased NC Increased Increased

NC − No change, same as WT; TBD − To be determined.
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when salt or water-deficit stressed (Cushman, 2001; Cushman
and Borland, 2002; Taybi and Cushman, 2002). Kalanchoe
fedtschenkoi orthologs of these top candidate TFs were also
highly expressed during CAM induction in older leaf pairs of
K. fedtschenkoi plants (Garcia et al., 2014; Cushman, unpubl.
data). It is known that young leaves are C3 performing, whereas
mature leaves are CAM performing in K. fedtschenkoi (Cushman,
2001). These TFs share a base mean expression level of >100
FPKM and at least two-fold induction during a transition from
C3 to CAM or imposition of water-deficit stress in K. fedtschenkoi
and M. crystallinum, respectively (Garcia et al., 2014; Cushman,
unpubl. data). These candidate CAM TFs also belong to the
families of TFs reported to be involved in abiotic stress responses
(Rabara et al., 2014; Joshi et al., 2016; Roy, 2016; Wang et al.,
2016). Orthologs of these candidate CAM TFs in A. thaliana
also have several reported functions in plant development and
abiotic stress tolerance (Zheng et al., 2009; Zhang et al., 2011;
Yang et al., 2012; Chen et al., 2014; Swain et al., 2017; Zanetti
et al., 2017). Intriguingly, recent functional characterization of
two putative CAM regulators of water-deficit stress response
or CAM activation via overexpression in A. thaliana strongly
suggest that CAM TFs have high potential to increase tolerance
to drought and other abiotic stresses in C3 plants.

One of these candidate CAM TFs is a myeloblastosis (MYB59,
closest ortholog in Arabidopsis) TF whose transcripts are 20-
fold more abundant in CAM-performing older leaf pairs relative
to C3-performing younger leaves in K. fedtschenkoi (Hartwell
et al. unpubl. data). Results from four, third-generation (T3)
transgenic lines carrying the KlMYB59 indicate increased rosette
size and biomass at 4-week-old juvenile stage, and increased
shoot length at 8-week-old mature stage in transgenic plants
compared to WT (Table 2; Wone et al., unpubl. data; full
results being presented in a separate publication). However,
transgenic lines show delayed flowering in long-day photoperiod
compared to WT plants (16 h light/8 h dark). In addition, these
transgenic lines exhibit increased integrated WUE compared to
WT plants. Furthermore, transgenic lines have longer primary
roots despite exposure to 50 µM selenium compared to WT
plants. In addition to MYB59, transcripts of the NAC83 TF
(closest ortholog in Arabidopsis) were also more highly expressed
in CAM-performing leaves of K. laxiflora and K. fedtschenkoi
relative to C3-performing leaves (Cushman et al., unpubl. data).
The function of this K. fedtschenkoi NAC83 TF (KfNAC83) is
not known in CAM- or C3-performing CAM plants, but its
A. thaliana ortholog suggests roles in abiotic stress responses and
development (Table 1). Functional characterization of KfNAC83
shows enhanced water-deficit stress tolerance and increased
integrated WUE in four independent transgenic T3-generation
A. thaliana lines compared to WT plants (Table 2; Wone
et al., unpubl. data; full results being presented in a separate
publication). Furthermore, KfNAC83-overexpressing lines show
significantly increased rosette size, leaves in the mature rosette,
shoot biomass, number of siliques, and lateral roots compared to
WT. Interestingly, these transgenic lines also showed tolerance to
150 mM NaCl. Collectively, our characterization results strongly
suggest that at least two of these candidate CAM TFs have
functions in abiotic stress responses and CAM photosynthesis.

CONCLUSION

The abiotic stress-adaptive features of CAM plants provide
a wealth of genetic resources, specifically TFs, that are now
available for functional testing and possible improvement of
WUE and abiotic stress responses in C3 photosynthesis plants.
Our recent findings strongly suggest that a bioengineering
approach using CAM abiotic stress-responsive TFs has the
potential to increase abiotic stress tolerance in A. thaliana
and possibly in C3 crop plants. Our results indicate that
CAM abiotic stress-responsive gene expression can be
modulated by the appropriate CAM TFs to generate stress-
adaptive phenotypes in A. thaliana and likely other C3
plants because these CAM abiotic stress-responsive genes
are apparently conserved and present in C3 plants (Heyduk
et al., 2018). Furthermore, although K. fedtschenkoi is
distantly related to A. thaliana, transgenic A. thaliana lines
carrying the obligate CAM plants’ TFs showed favorable
features for translational applications. We are optimistic
that overexpressing TFs from the inducible CAM halophyte,
M. crystallinum will have similar favorable responses in
A. thaliana lines. Co-overexpression of only a small number
of obligate and/or inducible CAM plant abiotic stress-
responsive TFs with demonstrated abiotic stress-adaptive
or -responsive functions would provide a facile approach
for bioengineering desirable responses to abiotic stress
(Song et al., 2016). Such an approach could open the door
to potentially transformative applications to ensure long-
term sustainable food, fiber, feed, and fuel production in
a projected hotter and drier landscape in the 21st century
and beyond.
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