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Climacteric and non-climacteric fruits are differentiated by the ripening process, in
particular by the involvement of ethylene, high respiration rates and the nature of the
process, being autocatalytic or not, respectively. Here, we focus on the biosynthesis,
metabolism and function of three compounds (auxin, salicylic acid and melatonin)
sharing not only a common precursor (chorismate), but also regulatory functions in
plants, and therefore in fruits. Aside from describing their biosynthesis in plants, with
a particular emphasis on common precursors and points of metabolic diversion, we will
discuss recent advances on their role in fruit ripening and the regulation of bioactive
compounds accumulation, both in climacteric and non-climacteric fruits.
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INTRODUCTION

Correct progression of fruit ripening is essential to achieve both optimal fruit quality and long shelf
life, important traits that determine price markets and final profits. However, ripening is a complex
process where many factors are involved, including hormonal control, which regulates biochemical
and physiological changes that give final organoleptic and nutritional fruit properties. Traditionally,
fleshy fruits have been classified according to there ripening process into climacteric and non-
climacteric fruits. Climacteric fruits such as tomatoes or bananas require an upsurge in respiration
rate and ethylene production to unleash the ripening process in an autocatalytic response (Barry
and Giovannoni, 2007; Liu et al., 2015). Antagonistically, non-climacteric fruits like citrus fruits or
grapes do not exhibit a burst neither in ethylene nor respiration prior to ripening onset, and in these
fruits, ripening is mainly controlled by progressive accumulation of the phytohormone abscisic acid
(ABA; Rodrigo et al., 2006; Castellarin et al., 2011). Nevertheless, new studies are reinforcing the
idea that the ripening process is not only governed by the production of one phytohormone but
rather seeming to be the result of a controlled hormonal balance (Symons et al., 2012; Teribia et al.,
2016; Li et al., 2019).

Auxins, salicylic acid (SA), and melatonin are phytohormones involved in the signaling and
regulation of many crucial processes in plants. Auxins have been widely described as growth and
development regulators with multiple functions in plants (see Taylor-Teeples et al., 2016); SA
triggers the defense response against biotrophic and hemi-biotrophic pathogens (Loake and Grant,
2007) as well as having an important role under abiotic stress (Dong et al., 2014; Wani et al.,
2017), flowering and cell cycle control (Carswell et al., 1989; Eberhard et al., 1989, respectively);
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and melatoninhas not only been found to have auxin-like
functions (Chen et al., 2009; Zuo et al., 2014; Wen et al.,
2016) but it also has been suggested to act as a potential
antioxidant in some plants (Arnao and Hernández-Ruiz, 2015)
and a regulator of plant responses to pathogens (Chen et al.,
2018). Interestingly, these three hormones share a common
precursor – chorismate -, thus a metabolic cross-talk occurs
between them, and a number of genes must be finely regulated
to divert chorismate metabolism toward these compounds.
During the past few years, several reviews have addressed
the biosynthesis and role of auxin (Paul et al., 2012), SA
(Asghari and Aghdam, 2010) and melatonin (Feng et al.,
2014; Arnao and Hernández-Ruiz, 2018) in fruits. However,
their biosynthesis and functions have mostly been described
separately. Here, we will discuss the common and differential
aspects of the biosynthesis, metabolism and function of auxin,
SA and melatonin in the growth and ripening of climacteric and
non-climacteric fruits. An emphasis will be put on metabolic
diversion key points in their biosynthesis from chorismate, the
regulatory role during the ripening of climacteric and non-
climacteric fruits, and their role in the modulation of the
biosynthesis of bioactive compounds, which largely determines
fruit quality.

CHORISMATE-DERIVED
PHYTOHORMONES

Chorismate is the final product of the shikimate pathway
and plays a key role in the biosynthesis of phytohormones
(Figure 1). Chorismate gives rise to aromatic amino acids,
including tryptophan, and through several reactions, including
the conversion of tryptophan to indole-3-pyruvic acid by the
tryptophan aminotransferase (TA); it can generate the auxin
indole-3-acetic acid (IAA). TA has been proposed as a universal
key enzyme to IAA biosynthesis not only in vegetative organs
(Enríquez-Valencia et al., 2018) but also in the development of
reproductive organs (Reyes-Olalde et al., 2017), including fruit
growth and ripening (Estrada-Johnson et al., 2017). By contrast,
when isochorismate synthase (ICS) is activated, chorismate
can be converted into isochorismate and the latter can be
transformed into SA. Despite the fact that this pathway was
first identified in bacteria, it is also currently well established in
plants (Wildermuth et al., 2001; Uppalapati et al., 2007; Catinot
et al., 2008; Garcion et al., 2008; Abreu and Munné-Bosch, 2009).
Finally, tryptophan can turn into tryptamine by the enzyme
tryptophan decarboxylase (TDC). Although this is another of
the multiple routes of IAA biosynthesis (tryptamine turns into
indole-3-acetaldehyde and later into IAA), TDC has also been
proposed to be the first rate-limiting enzyme in the melatonin
pathway (Kang et al., 2007). TDC was first identified in the
Apocynaceae family (De Luca et al., 1989) to be later described
in a number of plant systems (Byeon et al., 2012, 2014; Zhao
et al., 2013; Wei et al., 2018). After decarboxylation, tryptamine
is converted into serotonin by the tryptamine-5-hydroxylase, and
then serotonin transforms into N-acetyl-serotonin to finally yield
melatonin in the cytosol (Figure 1).

Key-diverting enzymes that lead to the synthesis of the
chorismate-pathway hormones have been recently identified in
fleshy fruits (Figure 1). ICS, which expression has been shown to
be crucial for biotic stress tolerance (Garcion et al., 2008; Zeng
and He, 2010), has been identified in tomatoes and apples. Zhu
et al. (2016) reported the overexpression of ICS1 (isochorismate
synthase 1) under cold storage conditions in tomato, while Zhang
et al. (2017) found activation of a transcription factor involved
in the pathogen-related SA signaling pathway inducing ICS
expression in apples. Enhanced TDC activity has been reported
to occur in unripe pepper fruit upon infection by pathogens –
through increased TDC1 and TDC2 expression (Park et al.,
2013) – and in the growth stage in mulberry fruit (Wang et al.,
2016). Finally, TA has been identified in grapevine, both at pre-
and véraison (Böttcher et al., 2013; Gouthu and Deluc, 2015,
respectively) as well as during strawberry ripening (Estrada-
Johnson et al., 2017). It is noteworthy, however, that the genes and
enzymes described in climacteric fruits (i.e., ICS) have not been
identified in non-climacteric fruits (i.e., TDC and TA) and vice
versa; hence, further studies are imperative to fill these knowledge
gaps and better understand how these diversion points are jointly
regulated during fruit ripening.

ROLE OF CHORISMATE-DERIVED
PHYTOHORMONES IN CLIMACTERIC
AND NON-CLIMACTERIC FRUITS

Unraveling the mechanisms of fruit development has been one
of the major challenges in recent agronomy research for its
economic implications. In this context, phytohormones have
been pointed out as accountable drivers of fruit ripening, specially
ethylene and ABA in climacteric and non-climacteric fruits,
respectively. However, that these phytohormones could regulate
fruit development alone was soon proven to be far too simple.
After extensive research and with the improvement in analytical
chemistry and molecular techniques, several other hormones
have been confirmed as potential regulators of fruit development
and ripening, including chorismate-derived phytohormones.

Auxins Cross-Talk With Other Hormones
During Fruit Set, Growth and Ripening
Auxins are a group of plant hormones that play an essential
role in fruit development, both exerting their own influence and
modulating expression of other phytohormones. Endogenous
contents of IAA are particularly high at fruit set and during initial
growth developmental stages, after which IAA amounts tend to
decline before ripening onset, both in climacteric (Zaharah et al.,
2012) and non-climacteric fruits (Symons et al., 2012; Teribia
et al., 2016), with apparently some exceptions, like peaches
(Tatsuki et al., 2013) and some plum varieties (El-Sharkawy et al.,
2014; Figure 2A). It has been demonstrated that IAA is involved
in fruit set initiation in combination with gibberellins (Mezzetti
et al., 2004; Serrani et al., 2010; Bermejo et al., 2018; Hu et al.,
2018). Impairment of IAA biosynthesis or signaling generally
leads to fruit parthenocarpy, although it may also result in
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FIGURE 1 | Biosynthesis of indole-3-acetic acid (IAA), salicylic acid (SA), and melatonin (Mel) from chorismate. All three compounds share a common final precursor
(chorismate, squared in orange) from the shikimate pathway. Major diversion points are indicated with red arrows and the corresponding enzymes are numbered in a
descent divergence order from shikimate. Bold dashed arrows indicate more than one step between compounds. Thin dashed arrows indicate pathways that are still
not well defined.

abnormal ripening in some fruits (Wang et al., 2005; Liu J. et al.,
2018; Reig et al., 2018). High contents of IAA at initial stages of
fruit development promote fruit growth due to auxin implication
in cell division in combination with cytokinins and in the control
of cell expansion in combination with gibberellins (Liao et al.,
2018). During this period, hormonal crosstalk between auxins
and gibberellins additionally allows normal fruit shaping in
a fine-tuned regulation mediated by Auxin Response Factors
(ARFs; Liao et al., 2018; Liu S. et al., 2018).

Reductions of endogenous IAA contents have been reported
to occur before the onset of ripening in several fruits. These
reductions have been related to IAA conjugation with aspartic
acid (IAA-Asp) by IAA-amido synthetases, GH3−1 and GH3−2
(Figure 2C). Indeed, GH3−1 and GH3−2 showed higher
expression during early fruit development and most particularly
during ripening initiation both in climacteric fruits, such as
tomatoes (Sravankumar et al., 2018) and apples (Onik et al.,
2018), as well as in non-climacteric fruits, like grape berries
(Böttcher et al., 2010, 2011) and raspberries (Bernales et al., 2019).
Interestingly, grape berries showed enhanced GH3−1 expression
after ABA and ethephon application, which could explain the
involvement of ethylene in the control of IAA contents after
the onset of ripening, even in non-climacteric fruits (Böttcher
et al., 2010). In fact, several studies highlight the tight interaction

between auxins and ethylene in fruit ripening, with a reciprocal
influence between them (Tadiello et al., 2016a; Busatto et al.,
2017). For climacteric fruits, increased contents of IAA are
necessary to activate expression of ACC synthase genes (ACS),
encoding ACC synthase, which, in turn, will lead to ethylene
production triggering the ripening process (Figure 2C; Tatsuki
et al., 2013). Fruits like tomatoes (Li et al., 2016) or bananas
(Choudhury et al., 2008), which usually experience reduced
IAA contents prior to the onset of ripening, show a ripening
delay when IAA or analogs are exogenously applied, while
fruits like peaches, whose IAA contents increase progressively
until fully ripen, show accelerated ripening when auxins are
applied (Tadiello et al., 2016b). Therefore, a tight, complex and
differential regulation of auxin-ethylene interactions must exist
in various fruits during preharvest ripening. Furthermore, IAA
contents decrease before ripening onset in some non-climacteric
fruits to de-repress 9-cis-epoxycarotenoid dioxygenase (NCED)
and start ABA synthesis (Figure 2C; Jia et al., 2016). Interestingly,
this process is also mediated by IAA conjugation through
enhanced GH3−1 activity (Böttcher et al., 2010). Nevertheless,
Estrada-Johnson et al. (2017) showed that, although IAA contents
decrease during strawberry ripening, expression of FaAux/IAA
and FaARF gene families are induced in red receptacles,
suggesting the involvement of auxin signaling in fully ripen fruits.
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FIGURE 2 | Role of IAA, SA, and Mel during the development of climacteric and non-climacteric fruits. Model summarizing the interactions of IAA, SA, and Mel
during the ripening of climacteric and non-climacteric fruits during (A) pre- and (B) post-harvest. Dashed lines indicate alternative dynamics of phytohormone
contents in some fruits (see text for discussion). (C) Overview of the interaction of IAA, SA, and Mel with ethylene and abscisic acid (ABA) biosynthesis in climacteric
and non-climacteric fruits. Auxin is a positive regulator of ethylene biosynthesis by the activation of ACC synthase genes (ACS) and inducing the expression of
Ethylene Responsive Factors (ERFs). Auxin also represses ABA production by 9-cis-epoxycarotenoid dioxygenase (NCED) repression and inhibiting ABA-responsive
stress genes (ARS) by the ARF2 protein. Endogenous IAA contents can be reduced by GH3 proteins, the synthesis of which is promoted by ethylene, ABA and
sugars. Discontinuous line indicates the possible role of IAA by IAA-Asp as a ripening factor enhancing ethylene in some fruits. Melatonin enhances ABA and
ethylene production, although ACS can be inhibited depending on melatonin contents. SA acts as an inhibitor of ethylene repressing ACC oxidase (ACO) genes,
although it can promote the expression of ACS. MTA, 50-methylthioadenosine; S-AdoMet, S-adenosyl-methionine; SAM synthase, S-adenosyl-methionine synthase;
ACC, 1-aminocyclopropane-1-carboxylic acid; IPP, isopentenyl diphosphate.

During post-harvest, auxin contents usually remain
invariant or tend to decrease due to oxidative processes
that may give rise to small, but progressive reductions
in the endogenous contents of IAA (Figure 2B). Auxin

treatments after harvest delay over-ripening in some
fruits (Chen et al., 2016; Moro et al., 2017) and increase
the contents of some organic acids, maintaining fruit
acidity (Li et al., 2017), thus suggesting auxin also
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plays a significant role in the control of fruit ripening
during post-harvest.

Multiple Roles of Salicylic Acid During
Fruit Development and Ripening
Salicylic acid is another chorismate-derived phytohormone that
has been mostly related to its protective effect under biotic
stress to control preharvest and post-harvest losses derived from
pathogen fruit infection (Babalar et al., 2007; Cao et al., 2013).
In general, endogenous contents of free SA are higher at the
beginning of fruit development and then decrease progressively
(Oikawa et al., 2015). Lu et al. (2015) reported a secondary
increase in SA during the second growth phase of peach fruits.
Exogenous application of SA in bananas delayed the ripening
process reducing the respiratory burst and the pulp to peel ratio,
as well as decreasing activity of enzymes related to cell wall
degradation and antioxidant system (Srivastava and Dwivedi,
2000). Moreover, treatment of sweet cherry trees with salicylic
and acetylsalicylic acid (ASA) enhanced weight, firmness and
color of cherries at commercial stage (Giménez et al., 2014).
Exogenous application of SA or metyl salicylate (MeSA) during
post-harvest, delayed over-ripening in fruits like kiwis (Zhang
et al., 2003), and sweet cherries (Valero et al., 2011). Furthermore,
treatments with salicylic or ASA alleviated chilling injury of
pomegranates (Sayyari et al., 2011), tomatoes (Aghdam et al.,
2014), and avocados (Glowacz et al., 2017). SA also interacts with
ethylene through inhibition of ACC oxidase (ACO) expression
(Shi and Zhang, 2012). Surprisingly, increased contents of ACS
expression in pears are also found after SA application in a
dose-regulated manner (Shi et al., 2013; Shi and Zhang, 2014).
Therefore, regulation of ethylene production dependent on SA is
finely regulated (Figure 2C).

Melatonin: An Emerging Regulator for
the Control of Fruit Development
Melatonin is also a plant hormone from the chorismate-derived
pathway that has gained much attention in the recent years
(Hernández-Ruiz et al., 2005; Arnao and Hernández-Ruiz, 2018;
Sharif et al., 2018). Recently, melatonin has been pointed out as
an important factor for fruit set, in a similar way to IAA effects
(Figure 2A; Liu S. et al., 2018). Besides, circadian production
of this phytohormone has been observed (Kolář et al., 1997).
During on-tree ripening, grapes treated with melatonin showed
higher synchronicity and increased weight when fully ripens
(Meng et al., 2015). Moreover, another recent study by Xu
et al. (2018) described that melatonin could promote grape
berry ripening through its interaction with ABA and ethylene,
as well as hydrogen peroxide. It has been demonstrated that
melatonin confers chilling tolerance during fruit cold storage,
which appears to be mostly related to its antioxidant activity
(Cao et al., 2018; Aghdam et al., 2019). During post-harvest,
tomatoes showed increased ethylene emission after application
of melatonin at 50 µM (Sun et al., 2015), contrary to pears,
where exogenous application of melatonin at 100 µM inhibited
ethylene production (Zhai et al., 2018), or banana fruits, where
melatonin at 50–200 µM inhibited the expression of ACS and

ACO (Figure 2C; Hu et al., 2017). Although different effects of
melatonin application may be related to a dosage effect, further
research is needed to better understand the role of melatonin in
the control of fruit development.

Cross-Talk of Chorismate-Derived
Phytohormones in the Control of Fruit
Development
Hormonal crosstalk between chorismate-derived
phytohormones has been shown to occur during fruit
development and ripening. Breitel et al. (2016) found that
auxins can interact with SA through ARF2 (Figure 2C) and that
overexpression of ARF2 in tomato resulted in lower contents of
SA and a significant ripening delay. This indicates that auxins
might be limiting SA production during fruit development,
which might explain a trade-off between fruit growth (mediated
by auxin) and activation of biotic defenses (mediated by SA).
Moreover, exogenous application of SA on papaya fruits resulted
in an altered expression of several IAA genes, some of them
being down-regulated while others up-regulated (Liu et al.,
2017). In this case, results were inconclusive of what really occurs
endogenously in the putative cross-talk between auxin and SA
during fruit ripening and further research is required in this and
other climacteric fruits. In any case, it is clear that IAA and SA
are closely related, not only metabolically but also functionally.
Finally, several studies have reported the influence of melatonin
on IAA and SA biosynthesis and/or signaling (reviewed in Arnao
and Hernández-Ruiz, 2018), although to our knowledge, none
of these studies was performed neither in climacteric nor in
non-climacteric fruits.

MODULATION OF BIOACTIVE
COMPOUNDS BIOSYNTHESIS BY
CHORISMATE-DERIVED
PHYTOHORMONES

Bioactive compounds (including phenolic compounds,
isoprenoids, and antioxidant vitamins) have not only been
widely investigated as responsible for specific organoleptic
properties of foods, but also for their protective effects in
human cells against oxidative processes in the development of
neurodegenerative and cardiovascular diseases and certain type
of cancer (Liu et al., 1999; Mueller et al., 2010; Sturgeon and
Ronnenberg, 2010; Björkman et al., 2011). Phenolic compounds
contribute significantly to imparting specific flavors, such as
tannins – responsible for the bitterness or astringency taste
of certain fruits, and colors, such as anthocyanin pigments –
responsible for red, blue and purple fruit colors (Croteau
et al., 2000). The relevance of phenolic compounds for human
consumption has been associated with a protective effect against
oxidative processes in relation to cardiovascular and central
nervous system health as well as a reduced risk for cancers of
the gastrointestinal tract (Björkman et al., 2011). Carotenoids,
tetraterpenes belonging to isoprenoids, play a role in the
protection against photo-oxidative processes and as organic
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pigments; they are responsible for the orange-yellow color of
fruits (Tapiero et al., 2004). Dietary carotenoids are thought
to provide health benefits in decreasing the risk of eye disease
and certain types of cancers due to their role as antioxidants
(Johnson, 2002). Vitamins C and E, including ascorbic acid
and tocopherols, respectively, are essential nutritional quality
factors in fruits with many biological activities in humans
(Miret and Müller, 2017). Considering the relevant role of all
these bioactive compounds as health promoting compounds in
fruits, the modulation of their accumulation is of paramount
importance in both climacteric and non-climacteric fruits
(Vasconsuelo and Boland, 2007). Most of these bioactive
compounds are accumulated at high levels during fruit ripening,
when less palatable green fruits converse into a nutritionally
rich, colored, and tasty fruit (Daood et al., 1996; Ranalli et al.,
1998; Dumas et al., 2003; Singh et al., 2011). However, once
commenced, ripening cannot be stalled and generally leads to
over-ripening that negatively affects the fruit quality (Kumar
et al., 2014). Therefore, minimizing post-harvest fruit spoilage
while obtaining high contents of bioactive compounds remains
one of the biggest challenges to resolve.

Auxin has been identified as an important regulator of
carotenoid biosynthesis during ripening of climacteric tomato
fruits. Ripening in tomato is associated with the degradation of
chlorophyll and the shift of xanthophylls to carotenes (β-carotene
and lycopene) (Fraser et al., 1994). IAA appears to delay tomato
ripening by repressing ethylene and several upstream carotenoid
transcripts including Psy, Ziso, Pds, Critiso as well as Chlases
1–3 and, on the other hand, promoting the accumulation of
β-Lyc1 and Crtr-β1 transcripts, resulting in higher contents of
xanthophylls and chlorophyll a (Su et al., 2015). In addition,
in some non-climacteric fruits such as cherry and grape berries
auxin also seems to modulate anthocyanin biosynthesis and
thereby control fruit ripening processes. Teribia et al. (2016)
reported a negative correlation between IAA and anthocyanin
contents indicating that anthocyanin accumulation starts when
IAA contents decrease. Moreover, the application of the synthetic
auxin-like compound benzothiazole-2-oxyacetic acid (BTOA)
delayed the up-regulation of genes that promote enzymes of
the anthocyanin biosynthesis such as chalcone synthase and
UDP-glucose:flavonoid 3-O-glucosyltransferase in grape berries
(Davies et al., 1997).

Pre- and post-harvest treatments with salicylates, including
SA and its derivatives ASA and MeSA, have been reported to
regulate bioactive compounds accumulation leading to improved
antioxidant activity in both climacteric and non-climacteric
fruits. Several fruits such as plum, cherry and apricots are known
to have a short life with a rapid deterioration in quality after
harvest. Therefore, there is a constant search of treatments that
improve and maintain fruit quality, and especially the content of
bioactive compounds with beneficial health effects. Treatments
of plums with SA, ASA, and MeSA resulted in significant higher
contents of ascorbic acid, anthocyanins and phenolic compounds
both at harvest and after prolonged cold storage (40 days at 4◦C;
Martínez-Esplá et al., 2017). Similar results could be observed for
preharvest treatments with SA, ASA, and MeSA in sweet cherries
(Giménez et al., 2014, 2015, 2017). Furthermore, post-harvest

treatment with SA, ASA, or MeSA maintained total phenolic
contents as well as anthocyanin contents during cold storage in
pomegranate (Sayyari et al., 2011), sweet cherry (Valero et al.,
2011), cornelian cherry (Dokhanieh et al., 2013), and apricot
(Wang et al., 2015). These results suggest that salicylates may
be involved in the activation of phenylalanine ammonia lyase,
which is the main enzyme involved in the biosynthesic pathway
of phenolic compounds (Martínez-Esplá et al., 2017).

Recently, melatonin has been shown to regulate fruit ripening
and modulate bioactive compounds. Post-harvest treatments
with melatonin in peach fruits increased chilling tolerance
by activating antioxidant systems. Chilling injury occurs in
peach fruits during low temperature storage (between 2 and
7.6◦C) characterized by flesh browning, abnormal ripening and
higher sensitivity to decay (Lurie and Crisosto, 2005). Cao et al.
(2018) reported that peaches treated with melatonin showed
higher transcript abundance of ascorbic acid biosynthesis genes
PpGME, PpGPP, and PpGLDH at seventh and PpGMPH at the
21st and 28th day of storage compared to control resulting in
increased ascorbic acid contents. Moreover, melatonin induced
increases in activities of G6PDH, SKDH and PAL, which are
the essential enzymes for phenolic compounds biosynthesis.
The authors suggest that melatonin treatment protects peach
fruit to a certain degree from chilling injury by specifically
activating the biosynthesis of phenolic compounds (Gao et al.,
2018). Additionally, a label-free differential proteomics analysis
revealed the effect of melatonin on promoting fruit ripening
and anthocyanin accumulation upon post-harvest in tomato
fruits (Sun et al., 2016). The authors reported that exogenous
melatonin increased eight enzymes related to the anthocyanin
pathway including inter alia flavonol-3-hydroxylase, flavanone
3 beta-hydroxylase, anthocyanidin synthase/leucoanthocyanidin
dioxygenase, and anthocyanidin 3-O-glucosyltransferase.
Moreover, post-harvest treatment with melatonin increased total
phenols and anthocyanins in strawberry fruits (Aghdam and
Fard, 2016), and delayed loss of total phenols, flavonoids and
anthocyanins in litchi fruits (Zhang et al., 2018). Treatments
with melatonin increased the contents of phenols, anthocyanins
and flavonoids in grape berries (Xu et al., 2017). Additionally,
melatonin has been reported to enhance lycopene accumulation
and ethylene production in tomatoes, suggesting that melatonin
may increase the content of lycopene by impacting ethylene
biosynthesis and signaling (Sun et al., 2015). The participation
of ethylene in the melatonin-induced regulation of bioactive
compounds has also been observed in grape berries, where
double block treatment of ethylene showed reduced effects of
melatonin on polyphenol contents (Xu et al., 2017).

CONCLUSION

It is concluded that chorismate-derived phytohormones,
including auxin, SA and melatonin, not only share a common
precursor but play essential roles in the regulation of fruit growth
and ripening. A metabolic and functional cross-talk between
them and with other phytohormones occurs in a spatiotemporal
manner to finely regulate the development of climacteric and
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non-climacteric fruits. The differences in the dynamics within
climacteric and non-climacteric fruits evidence that the response
of chorismate-derived hormones is not universal but rather
strongly species-specific. Furthermore, chorismate-derived
phytohormones also modulate the accumulation of bioactive
compounds, thus influencing fruit quality. Further research is,
however, needed to better understand how (i) other hormones,
such as ethylene and ABA, modulate their biosynthesis studying
key metabolic diversion points, (ii) they interact at the functional
and molecular levels, and (iii) they jointly modulate bioactive
compounds biosynthesis and consequently influence not only
fruit growth and ripening, but also the quality of climacteric and
non-climacteric fruits.
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