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Waterlogging remains a significant constraint to cereal production across the globe
in areas with high rainfall and/or poor drainage. Improving tolerance of plants to
waterlogging is the most economical way of tackling the problem. However, under
severe waterlogging combined agronomic, engineering and genetic solutions will be
more effective. A wide range of agronomic and engineering solutions are currently
being used by grain growers to reduce losses from waterlogging. In this scoping
study, we reviewed the effects of waterlogging on plant growth, and advantages and
disadvantages of various agronomic and engineering solutions which are used to
mitigate waterlogging damage. Further research should be focused on: cost/benefit
analyses of different drainage strategies; understanding the mechanisms of nutrient
loss during waterlogging and quantifying the benefits of nutrient application; increasing
soil profile de-watering through soil improvement and agronomic strategies; revealing
specificity of the interaction between different management practices and environment
as well as among management practices; and more importantly, combined genetic,
agronomic and engineering strategies for varying environments.

Keywords: agronomic practices, soil engineering, drainage, genetic solutions, waterlogging tolerance

INTRODUCTION

Waterlogging is one of the focal abiotic stresses, which affects crop growth (Linkemer et al., 1998;
Setter and Waters, 2003; Lone et al., 2018). It has become the key constraint to crop production
in the temperate high rainfall zone (HRZ) of Australia (Acuña et al., 2011), particularly in regions
with duplex soils (Yaduvanshi et al., 2012). Global climate change causes waterlogging events to
be more frequent, severe, and unpredictable (Jackson and Colmer, 2005; Intergovernmental Panel
on Climate Change [IPCC], 2014). Some currently wet areas will become wetter and prolonged
waterlogging will also become more prevalent (Dore, 2005; Intergovernmental Panel on Climate
Change [IPCC], 2014). The value of this loss is also signficiant to the Australian grains industry
where waterlogging causes an estimated annual production loss of AU$180 M (Pang et al., 2004)
with a greater proportion of this being incurred in Western Australia (Zhang et al., 2006).
Waterlogging caused 40–50% wheat yield reduction in a wet year (Zhou, 2010) resulting in AU$100
M in crop losses (Zhang et al., 2004).

Waterlogging is also a matter of worldwide concern affecting 16% of the soils in the
United States, 10% of the agricultural lands of Russia and irrigated crop production areas of India,
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Pakistan, Bangladesh, and China (Yaduvanshi et al., 2014; Food
and Agriculture Organization [FAO], 2015). Globally, between 10
and 15 million ha of wheat are affected by waterlogging annually
causing yield losses of between 20 and 50% (Hossain and Uddin,
2011). Waterlogging also causes yield losses in other grain crops
such as barley, canola, lupins, field peas (Bakker et al., 2007;
Romina et al., 2018), lentils and chickpeas (Solaiman et al., 2007).

Appropriate soil and crop management practices improve
soil quality and crop productivity, through improved ecological
and economical flexibility by reducing the need for additional
agricultural land (Setter and Belford, 1990; Tilman et al., 2002;
Shaxson and Barber, 2003). Improved soil management can
increase infiltration, reduce surface runoff, and additionally
improve availability of water and nutrients to plants (Amare
et al., 2013; Negusse et al., 2013; Schmidt and Zemadim,
2015; Masunaga and Marques Fong, 2018). Crop management
can contribute to higher yields (Soomro et al., 2009; Amare
et al., 2013). This review focuses on the impact of waterlogging
on soil properties, plant growth and agricultural management
practices to mitigate waterlogging. The gaps in current
knowledge, technology and farm practices are identified,
and recommendations are made for future opportunities
to ensure sustainable soil and crop management under
waterlogged conditions.

WATERLOGGING EFFECT ON SOIL AND
PLANT GROWTH

Waterlogging impedes the ability of soil to provide an optimum
medium for plant growth and alters its physical, chemical,
electro-chemical and biological characteristics as summarized in
Figure 1 (Pulford and Tabatabai, 1988; Glinski, 2018; Ferronato
et al., 2019). This has a significant impact on the development of
the root biomass and subsequently on plant overall development
(Figure 2) (Ernst, 1990; Pierret et al., 2007; de San Celedonio
et al., 2016). Fundamentally, the soil should have optimal water
and air content for the proper physiological performance of the
all phases of plant growth (Crawford, 1982).

Waterlogging hinders the growth of plants by reducing the
dispersal of oxygen through the pore spaces in the soil around
the root zone (Drew and Sisworo, 1977; Lee T.G. et al., 2007;
Christianson et al., 2010) with the dispersal of oxygen being
320K times lower than that in non-submerged soils (Armstrong,
1980; Barrett-Lennard, 2003; Lee T. et al., 2007; Colmer and
Greenway, 2011). The plant root needs an adequate supply of
oxygen so as to fulfill the water and nutrient requirements
of the shoots, and the soil oxygen concentration should be
above 10% where atmospheric molecular oxygen concentration
is 21% (Sojka and Scott, 2002; Brady and Weil, 2008; Colmer
and Greenway, 2011; Morales-Olmedo et al., 2015; da Ponte
et al., 2019). Under waterlogging conditions, oxygen demand
to the root tip and to the rhizosphere is supplied by forming
aerenchyma through removal of some cells of the cortex and
these remove excess gases from the root and soil (Armstrong,
1980; Colmer and Greenway, 2011). The gas exchange between
soil and atmosphere in a well aerated soil is amply rapid to

decelerate O2 deficiency and toxicity caused by excess CO2 or
other gases such as ethylene and methane (Sojka and Scott,
2002). A number of hydroponic or inert substrate experiments
assessed the effect of hypoxia and anoxia on plants in waterlogged
conditions, and determined the soil is a vital factor (Morard and
Silvestre, 1996; Striker, 2008; Arbona et al., 2009; Bai et al., 2013;
Morales-Olmedo et al., 2015). Excessive water content in the soil
upon waterlogging decreases O2 diffusion capacity, leading to
hypoxic or even anoxic environments that inhibit the activity of
nitrifying communities, resulting in depleted soil N availability
that will negatively affect N-dependent crop productivity (Jaiswal
and Srivastava, 2018; Nguyen L.T. et al., 2018). Thus, the rate of
nitrification is estimated to decrease in response to waterlogging
conditions (Reddy and Patrick, 1975; Laanbroek, 1990).

Moreover, decreasing molecular oxygen prompts a sequence
of changes in the physico-chemical properties of the soil
(Ponnamperuma, 1984). Many of these also change soil chemical
and electro chemicals by decreasing redox potential and excess
electron changes, such as Fe3+ and Mn4+ to Fe2+ and Mn2+,
correspondingly (Ponnamperuma, 1984; Jackson and Colmer,
2005; Singh and Setter, 2017). Thus, solubility of iron and
manganese rises to toxic levels, which are potentially damaging
to plant roots (Jones and Etherington, 1970; Aldana et al., 2014;
Marashi, 2018; Sharma et al., 2018). Apart from the elemental
toxicities to the sensitive root tips, increased concentration of
secondary metabolites such as phenolics and volatile fatty acids
may become injurious in the low-pH rhizosphere (Pang et al.,
2007a; Shabala, 2011; Coutinho et al., 2018). pH values of
waterlogged soil can be further reduced by the accumulation of
volatile organic acids as well as the high concentration of CO2
(Greenway et al., 2006) which reduces root growth (Boru et al.,
2003). As mentioned, another potential toxic metabolite found
in waterlogged soil is ethylene, which suppresses root expansion
growth (Drew and Lynch, 1980; Shabala, 2011). In addition,
with the re-introduction of oxygen at the recovery phase, the
remaining ethanol in anoxic cells will be transformed into
acetaldehyde which may cause cell injuries (Bailey-Serres and
Voesenek, 2008). Under abiotic stress conditions, reactive oxygen
species (ROS) levels are always elevated compared to pre-stress
levels (Miller et al., 2008). Excessive production of various
ROS such as superoxide radicals, hydroxyl radicals, hydrogen
peroxide, and singlet oxygen found in hypoxia-stressed leaf and
root tissues (Blokhina et al., 2003; Sairam et al., 2009; Petrov
et al., 2015; Shabala et al., 2016) can also cause severe damage
to plants. All of these lead to restricted root growth, reduced
tiller number, premature leaf senescence and production of sterile
florets thus affecting the grain yield (Collaku and Harrison, 2005;
Hossain and Uddin, 2011; Cannarozzi et al., 2018).

Even though the accumulation of phytotoxic compounds
requires time, the absence of oxygen alone is enough to change
the plant metabolic activities to critical levels (Geigenberger,
2003; Perata et al., 2011). O2 deficiency during waterlogging
leads to reduced availability of energy in the roots (Armstrong
et al., 1991) and, as a result, energy-dependent processes
such as nutrient uptake are inhibited (Setter and Belford,
1990). N deficiency is believed to be the other cause of the
suppression of growth under waterlogging (Cannell et al., 1980;
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FIGURE 1 | Effects of waterlogging on soil properties.

FIGURE 2 | Effects of waterlogging on plant growth.

Robertson et al., 2009; Wollmer et al., 2018). Carbohydrate
(the energy reserve) production reduced dramatically during
complete submergence or subsequent de-submergence due to
reduced photosynthetic rate (Sarkar et al., 2006; Pérez-Jiménez
et al., 2018), reduced stomatal conductance, declined root
hydraulic conductivity and reduced translocation of photo
assimilates (Parent et al., 2008). One of the first plant responses
to waterlogging is the reduction in stomata conductance (Folzer
et al., 2006), for example, fast stomata closure in barley
(Yordanova et al., 2005) and pea (Zhang and Zhang, 1994).

The stomata closure was attributed to abscisic acid (ABA)
transport from older to younger leaves or de novo synthesis
of this hormone (Zhang and Zhang, 1994). Waterlogging also
decreases the leaf chlorophyll content (Malik et al., 2001; Ashraf
et al., 2011; Li et al., 2018; Ma et al., 2018). This decrease
in chlorophyll directly or indirectly affects the photosynthetic
capacity of plants (Azhar et al., 2018; Rasheed et al., 2018; Yu
et al., 2019). This decrease in transpiration and photosynthesis is
attributed to stomata closure (Ashraf and Arfan, 2005; Tian et al.,
2018) which restricts CO2 movement (Jackson and Hall, 1987;
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Malik et al., 2001; Chu et al., 2018). To summarize, waterlogging
affects overall plant growth, which leads to a substantial yield loss
(Kumar, 2018; Romina et al., 2018; Wollmer et al., 2018).

SOIL MANAGEMENT

Soil management practices such as drainage, tillage and traffic
control can alter soil structure directly or indirectly (Pagliai et al.,
2004; Unger et al., 2018). Many of these changes are relatively
short term and reversible. Management-induced changes in the
quantity and characteristics of soil can also lead to changes
in soil structure that are much more persistent. Management
practices which are sustainable must maintain the structure of
soil, over the long term, in a state that is optimum for a range of
processes related to crop production and environmental quality
(Bogunovic et al., 2017; Belmonte et al., 2018).

Soil surface biological communities provide critical functions
in many ecosystems by controlling infiltration and thus ensure
suitable water availability for crop, soil biota, nutrient cycles
and vascular vegetation (Chamizo et al., 2016). They increase
biodiversity, accelerate soil formation rates, and contribute to
the biogeochemical cycling of nutrients by fixing atmospheric
carbon (C) and nitrogen (N) (Elbert et al., 2012; Weber and Hill,
2016). Therefore, a key consideration in designing management
practices must be targeting the soil surface.

Various soil management practices can mitigate adverse
effects of waterlogging stresses. Here, we review some soil
management practices emphasizing the system used for
waterlogging-prone areas.

Controlled Traffic Farming (CTF)
Controlled traffic farming (CTF) is a management
system to control extensive unsystematic trafficking by
farm machinery/vehicles and protect soil structure from
indiscriminate change (Hamza and Anderson, 2005). CTF
(Figure 3) is a crop production system where the crop region
and traffic-lanes are markedly divided (Taylor, 1983; Raper, 2005;
Bochtis and Vougioukas, 2008). It creates two distinct zones,
the crop region which is non-trafficked and traffic region or
non-cropped. Consequently, CTF systems always maintain the
crop region unaffected by wheel tracks, whereas the traffic zone
develops into a compacted zone for machinery draught efficacy
(Taylor, 1992). CTF is differentiated from conventional traffic
practices, known as random traffic farming (RTF) by reducing
the trafficked area.

Random traffic farming or disorganized traffic causes increases
in the soil bulk density resulting in increases in strength limiting
soil porosity further leading to soil compaction (Tullberg, 2000;
Chen et al., 2010; Rasaily et al., 2012). RTF has an adverse
effect on a wide range of soil physical characteristics, including
the infiltration and drainage of water, amenability for crop
sowing, establishment and nurture, and soil gaseous exchange
medium and soil-living organism (Gasso et al., 2013; Gasso
et al., 2014). Due to random traffic a large amount of soil is
adversely affected resulting in soil degradation issues in Australia
(4 million ha), Europe (33 million ha), Asia (10 million ha), Africa

(18 million ha) (Flowers and Lal, 1998; Hamza and Anderson,
2003; Shahrayini et al., 2018).

The advantages of CTF have been well documented. These
include reduced incidence of waterlogging, soil compaction,
erosion, tillage, water and nutrient losses and thus increased crop
yield (Morling, 1982; Raper, 2005; Tullberg et al., 2007; Chamen,
2015). Adoption of CTF by Australian grain growers was 3% in
2003 (Price, 2004), 15% in 2006 and 36% in 2008 (Robertson,
2008). In Australia a minimum of 10% yield improvement in
barley, wheat, and canola across diverse soil types has been
noted along with decreases in fuel consumption of machinery
due to improved draught on the traffic area (Webb et al., 2004;
Li et al., 2007; Robertson et al., 2007; Lorimer, 2008; Davies
et al., 2012). In Europe yield of cereal crops (i.e., wheat and
barley) increased from 9 to 21% with CTF compared with
RTF (Gasso et al., 2013). Similarly, wheat yield with CTF
increased by 6.9% compared to traditional tillage in China
(Qingjie et al., 2009).

Strategic Deep Tillage and Subsoil
Manuring
Strategic deep tillage (SDT) is a single or occasional practice
with a deep ripper, rotary, spader, mouldboard plow or disk
plow to help sustain the long-standing productivity of the no-till
system (Renton and Flower, 2015; Roper et al., 2015; Rincon-
Florez et al., 2016; Kuhwald et al., 2017; Scanlan and Davies,
2019). Deep tillage or soil cultivation to loosen compact soil
layers, particularly the clay subsoil, has been suggested to improve
drainage in the subsoil, thus reducing waterlogging (Gardner
et al., 1992). The technique may also incorporate slotting of
gypsum to reduce sodicity and improve soil structure, which also
reduces waterlogging (Crabtree, 1989; McFarlane and Cox, 1992).

Deep ripping loosens hard layers of soil by using sturdy
tines to 35–50 cm depth. It is not suitable for all soils and
crops, therefore season, timing, soil type, tine spacing, shallow
leading tines, soil moisture content, and working depth are
all factors that need to be taken into consideration. The
benefit of combined CTF and SDT may last for three seasons
but can be as long as ten seasons with average wheat yield
increase in Western Australia being 0.6 t/ha and 0.5 t/ha
at 12 sites and 16 sites, respectively (Davies et al., 2012;
Roper et al., 2015). Schneider et al. (2017) conducted a
meta-analysis of 1530 yield comparison at 67 experimental
sites across Germany, United States, Canada, and India and
showed increased yield of greater than 6% between deep and
ordinary tillage systems.

There are, however, several disadvantages of deep ripping
including its short-term nature (especially if traffic is not
managed to reduce re-compaction), effectiveness in hostile
sub-soils, such as acidity, sodicity or subsoil salinity, and its
implementation on a large scale (Bakker et al., 2007). In this case,
amelioration with gypsum or lime may be helpful to stabilize
the soil (Henry et al., 2018; Matosic et al., 2018). Although
yield benefit from SDT has been demonstrated, organic matter,
texture and soil nutrients distribution within the root zone need
appropriate long term agronomic management to maximize the
benefit (Roper et al., 2015).
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FIGURE 3 | Controlled traffic farming.

Another way of reducing waterlogging is through a similar
practice where large volume of organic matter with high N
levels are placed within and above the heavy clay layers. This
practice is referred to as sub-soil manuring (Gill et al., 2009;
Peries, 2013; Celestina et al., 2018). In south eastern Australia
approximately 80% of the cropping zone of medium annual
rainfall (375–500 mm) and high rainfall (>500 mm) are affected
by subsoil constraints (Grains Research, and Development
Corporation [GRDC], 2016). Amelioration of subsoil constraints
may be possible by slotting large quantities (>10 t/ha) of
organic matter and other amendments (Sale, 2014; Armstrong
et al., 2015). Experiments carried out in Victoria, Australia
demonstrated that lucerne pellets and commercial poultry
manure can significantly improve soil properties and crop growth
as well as yield by improving subsoil structure and supplying N
(Gill et al., 2009, 2012).

The increase in water extraction by roots also provides a
greater buffer for subsequent waterlogging events. However,
adoption on a commercial scale has remained low due to
a combination of high upfront costs (up to $1200/ha) to
implement, variable yield responses and logistical constraints
such as the limited availability of suitable organic matter
sources and access to appropriate machinery (Nicholson, 2016;
Armstrong et al., 2017).

Drainage Systems
Land drainage is one of the main approaches to improve yields
per unit of accessible agricultural area (Bos and Boers, 1994;
Malano and van Hofwegen, 2006; Singh, 2018b). Reducing

soil submergence, salinity control, and making new land
accessible for agriculture are the three main objectives of
agricultural drainage (Singh and Panda, 2012; Singh, 2018b).
However, drainage, an efficient agriculture engineering system
to combat waterlogging, has not been given equal importance
when compared to irrigation by individual farmers and
governmental agencies.

Drainage is used to alleviate waterlogging not only in some
parts of Australia (Cox et al., 1994; Milroy et al., 2009), but also
world-wide. Various studies, conducted in England, Europe, and
North America indicate that drainage can effectively lower the
water table and improve crop yields (Cannell and Jackson, 1981;
Evans and Fausey, 1999; Bullock and Acreman, 2003; Blann et al.,
2009; Smedema et al., 2014; Gramlich et al., 2018). It was also
reported to greatly reduce wheat yield losses due to waterlogging
in south-western Victoria (Gardner and Flood, 1993; Christy
et al., 2015; Feng et al., 2018). Despite the yield losses associated
with waterlogging on prone Australian texture-contrast soils,
large scale adoption of drainage is still limited in the HRZ (Cox
et al., 2005; Rengasamy, 2006; Christy et al., 2015). Various
methods have been recommended to mitigate the waterlogging
problems, such as surface drainage, subsurface drainage, and
mole drains (Muirhead et al., 1996; Misak et al., 1997; Konukcu
et al., 2006; Ram et al., 2007; Ritzema et al., 2008; Kazmi et al.,
2012; Singh, 2012, 2016; Singh and Panda, 2012).

Surface Drainage
Surface drainage is defined as the safe removal of excess
water through constructed channels from the land surface
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(Ritzema et al., 2008; Ayars and Evans, 2015). Surface drains such
as ‘spoon-drains,’ ‘W-drains’ and reverse seepage interceptor
banks and interceptor drains have been used to alleviate the
conditions of waterlogging in south-western Australia (Cox et al.,
1994). Surface drainage systems have been shown to be cost
effective with cost-benefit ratios being in the range from 1.2 to 3.2,
internal return rates from 20 to 58%, and payback periods from 3
to 9 years (Ritzema et al., 2008). The simplest and cheapest option
is to maintain existing surface drains and install extra drains
along fence lines or through depressions considering adequate
size and proper position. Preventing water flow from upper to
lower paddocks with cut-off drains should also be implemented
(Palla et al., 2018). However, the success of surface drainage
is often limited due to the poor lateral water movement or
internal soil drainage properties, which results in poor drainage
in the vicinity of the drains (McFarlane and Cox, 1992; Cox and
McFarlane, 1995; Saadat et al., 2018). Both surface and subsurface
drainage may thus be required to solve these problems.

Raised Bed System
The use of raised beds (Figure 4) is an important soil
management option to improve crop yield, soil structure, and
productivity under waterlogged conditions (Hamilton et al.,
2000; Bakker et al., 2005b; Hussain et al., 2018). The beds reduce
waterlogging and improve the overall soil structure through
installing shallow drains or furrows approximately 15–20 cm
wide at regular intervals. These are then used for tractors, and
sprayers to control traffic movement over the paddock (control
traffic farming) (Collis, 2015). The 2–3 m wide and 10–30 cm
height bed is formed using soil creating a raised bed allowing
water to drain away from the plant root zone and reducing the
likelihood of waterlogging damage (Riffkin et al., 2003; Bakker
et al., 2007; Gibson, 2014; Ghazouani et al., 2015). Planting on
beds also diminishes pesticide applications due to a reduction in
fungal and other diseases with improved radiation interception,
acquisitive temperature and reduced humidity in the canopy
(Alwang et al., 2018).

When seasonal conditions are appropriate, raised beds can
significantly increase grain yield under waterlogged conditions

compared with crops grown conventionally on flat ground
(Bakker et al., 2007; Acuña et al., 2011). In Australia, raised
beds are used in irrigated agriculture in New South Wales
and north-west Victoria, as well as in cotton growing areas
in New South Wales to minimize the impacts of waterlogging
(Bakker et al., 2005a; Bakker et al., 2007). The use of raised
beds is also prominent in high rainfall areas across Victoria and
experiments demonstrated that wheat and barley yield increased
by 50% and 30%, respectively (Collis, 2015), and were proposed
for the waterlogged duplex soils of Western Australia (Bakker
et al., 2005a; Bakker et al., 2005b), and for the frequently
waterlogged arable land across the south-eastern wheat belt
of Western Australia (Bakker et al., 2007). Permanent raised
beds and furrow systems are also used to manage waterlogging
in Mexico (Roth et al., 2005) and coastal lowlands in humid
tropical regions in some South Asian countries (Velmurugan
et al., 2016), consistently delivering higher returns based on
cost–benefit analyses.

While raised beds have had a positive impact on alleviating the
effects of waterlogging they also have a number of disadvantages.
These include the cost of adapting and modifying machinery,
greater difficulty in controlling sowing depth and seed placement
on beds, management of drainage water, limited use where the
water table is too high, stubble handling and fodder conservation,
firefighting and mustering livestock, the possibility of pesticide
contamination into waterways and leaching into the water table
and inefficiencies of machinery and weed control in furrows
(Bakker et al., 2005b; Gibson, 2014). When raised beds were
compared with hump and hollow surface drainage in waterlogged
pastures at Derrinallum, Victoria it was concluded that the use
of raised beds for the growing of pastures for grazing had little
to offer the sheep industry (Ward et al., 2007). This poses a
significant research question around suitability of raised beds
in the many mixed farming systems that operate across the
HRZ of Australia.

Subsurface Drainage
Poor subsurface water movement occurs due to the inability
of water to move through soil as a result of heavy soil

FIGURE 4 | Raised bed cropping system.
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texture, compacted layers and naturally created or induced
hard pans as well as water moving downhill from upper
slopes or from springs, raising the water table (Ward et al.,
2018). Subsurface drainage lowers the water table or perched
water and ensures a suitable environment in the root region
where waterlogging occurs (Christen et al., 2001; Xian et al.,
2017). About 50% of waterlogged areas in western Europe,
20–35% of total cultivated land in Europe and North America,
5–10% in Asia, Australia, and South America, and 0–3% in
Africa have used subsurface drainage measures (Food and
Agriculture Organization [FAO], 2002). Subsurface drainage
systems consist of open and pipe drains with variable drain
depth and spacing (Ritzema et al., 2008). The systems are
more effective in areas where the subsoils are sufficiently stable
(Gardner et al., 1992) and not exhibiting characteristics of hostile
sub-soils such as sodicity.

Subsurface pipe drains are the main forms of subsurface
drainage found in the HRZ of Australia (Christen et al., 2001).
Usually, the type of drain to be installed depends on topography,
soil characteristics and rate of drainage required. There has been
successful use of sub-surface drainage in areas of Tasmania,
Australia and grain growers are willing to invest in drainage
as a long-term solution to waterlogging (Gibson, 2014). This is
also supported by a study into the economics of drainage, which
indicated that subsurface drainage provided crop growers with
the confidence to target high potential yields where the cost
benefit was positive (Bastick and Walker, 2000).

Although, subsurface deep drains (depth > 1.75 m) are
recommended in India (Gupta, 2002), these deep drains can
be economically installed only by mechanical construction
practices, and the deeper the drain the higher the installation
cost (Gupta, 1997). In some parts of Australia, several types of
subsurface drainage were found to be unsuccessful because they
were expensive and failed to control surface water (McFarlane
and Cox, 1992). Managing waterlogging with horizontal tile
drainage systems (using a combined drainage system with
tube wells plus horizontal drainage systems) is more beneficial
in maintaining the water table within the desirable depths
(Chandio et al., 2013). In Australia, subsurface drainage such
as tile and mole drainage are shown to be particularly useful
for irrigated high-value crops such as perennial horticulture,
cotton, pasture, sugarcane and perennial pastures for dairying
(MacEwan et al., 1992; Christen et al., 2001).

Subsurface Pipe Drains
Horizontal subsurface (Figure 5) drainage removes excess water
from the crop root zone (Tanji, 1990; Teixeira et al., 2018).
Below the ground surface, the drainage structure comprises a
grid of perforated pipes connected to control the water table. Tile
drainage is a form of horizontal subsurface drainage consisting of
small pipes of concrete or burnt clay installed at a certain depth
below the ground surface (King et al., 2014). Tile drainage is
used widely in agricultural areas where subsoil surplus water is a
common problem (Williams et al., 2015). To improve the system
gravel is usually used above the tile drains as a backfill material
in the areas where there is shallow groundwater and heavy soil
conditions (Filipović et al., 2014).

Besides water table control, horizontal drainage controls
soil salinity in the root zone of the soil by leaching out the
concentrated and harmful salt solutions (Christen and Skehan,
2001). This is an established and significantly relevant system for
saline land reclamation in Australia and India in irrigation areas
where excess soil salinity is the prime limitation in agricultural
production (Christen and Skehan, 2001; Prathapar et al., 2018).
However, this method may not be suitable for agricultural lands
where the top soils are prone to seasonal waterlogging due to
poor hydraulic conductivity and the need to find appropriate
outfall for drained water (Christen and Skehan, 2001; Food
and Agriculture Organization [FAO], 2002; Prathapar et al.,
2018; Singh, 2018a).

Vertical Subsurface Drainage
Vertical drainage (VD) (Figure 6) is used for controlling rising
groundwater levels in some parts of Australia such as Burdekin,
Kerang, and Shepparton (Christen et al., 2001; Kijne, 2006).
Recent results showed that installing VD can reduce the duration
of seasonal waterlogging in Bihar, India (Prathapar et al., 2018).
Various types of vertical drains have been used to consolidate
the soil, such as prefabricated vertical drains (PVDs), sand
compaction piles, sand drains, gravel piles and stone columns
(Indraratna et al., 2005; Indraratna, 2017). Recently, PVDs have
been installed in Brisbane and Ballina in Australia (Indraratna,
2017). The VD system has some advantages over other subsurface
drainage systems. For example, VDs are often preferred because
of relative low capital cost and the length of open surface drains
is less with VD when compared with other types of drainage
(Christen et al., 2001). VDs also allow the groundwater level
to be lowered to a greater depth than other drainage systems
(Kruseman and Ridder, 1990). However, the maintenance and
operational costs are higher than horizontal drainage systems
as it involves high energy to operate a network of tube wells
(Christen et al., 2001; Food and Agriculture Organization [FAO],
2002; Prathapar et al., 2018). The effectiveness of the VD system
is demonstrated by the drop in the groundwater level, therefore,
the system is more suitable for an area with fluctuating high
levels of groundwater.

Mole Drains
Mole drainage (Figure 7) is another form of subsurface drainage.
Its effects on reducing waterlogging have been shown in Victoria,
Australia (Frank, 2010; Gibson, 2014). Mole drain systems were
found to improve performance in terms of growth parameters,
yield attributes and economic parameters of soybean (Glycine
max) and wheat (Triticum aestivum) in Madhya Pradesh, India
(Dhakad et al., 2018).

Mole drains are a semi-permanent system from a layout
and operational point of view and are similar to tile drainage.
Although costing less than tile drainage, they do require more
maintenance (Tuohy et al., 2016, 2018; Dhakad et al., 2018).
This drainage system is generally installed to manage rising
groundwater levels and land salinization problems (Robinson
et al., 1987; Castanheira and Serralheiro, 2010; Kolekar et al.,
2014). Mole drainage relies on closely spaced channels and
subsoil cracks to quickly send surplus soil water to the tile or
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FIGURE 5 | Horizontal drainage system.

agricultural (ag) pipe drainage system throughout the season
(Childs, 1943; Hallard and Armstrong, 1992; Tuohy et al., 2015,
2016). Mole drains are installed in close proximity to tile drains
and are most suitable for low-permeability heavy soils such as
clay (Monaghan et al., 2002; Monaghan and Smith, 2004). These
drains should be installed at less than 600 mm from the ground
surface and form 40–50 mm diameter circle of drainage (Gibson,
2014). A mole drain can be formed by dragging a metal object
(viz. a blade like bullet with cylindrical foot, or mole plow)
through the soil which creates an open channel. The installation
cost of mole drainage is low but the moles should be re-formed
at approximately 2- to 5-year intervals to uphold the channel
integrity and optimize overall performance of the system (Tuohy
et al., 2016, 2018). Combined drainage systems (mole and tile
drainage) can be used efficiently to simulate water balance and
drainage network system over a watershed, and to aid drainage
management in a floodplain landscape (Tuohy et al., 2018).

CROP MANAGEMENT

There are a large and diverse number of crop management
practices used by grain growers to alleviate the effects
of waterlogging. These include: crop choice, waterlogging

tolerant crop varieties, bio-drainage, and different agronomic
practices such as sowing time, nutrient application and plant
growth regulators (PGRs).

Early Sowing and Vigorous Crops
Crop management options to increase crop water use and
decrease the incidence of waterlogging include early sowing
and higher sowing rates (Gardner et al., 1992). Early sowing of
wheat varieties showed better performance (Setter and Waters,
2003; Bassu et al., 2009; Ali et al., 2018) due to reduced risk of
waterlogging damage through de-watering of the soil profile and
avoiding waterlogging at vulnerable early growth stages (Gardner
and Flood, 1993). Wheat, barley and rapeseed plants were
less affected by early waterlogging (vegetative stages) than late
(reproductive stages) (Ploschuk et al., 2018; Wollmer et al., 2018).
Early sowing can also avoid late season terminal waterlogging
events (Stapper and Harris, 1989). In addition, higher sowing
rates can compensate for reduced tiller numbers and fertile heads
(Watson et al., 1976; Belford et al., 1992).

Early crop vigor can be another important trait for
waterlogging tolerance in the field (Sundgren et al., 2018).
Tillering and reproductive stages are crucial for waterlogging
tolerance in crops such as wheat and barley (Setter and Waters,
2003). Reduced nitrogen uptake is one of the main effects of
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FIGURE 6 | Vertical drainage system.

FIGURE 7 | Mole drainage system.
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waterlogging stress in crops (Jaiswal and Srivastava, 2018; Nguyen
L.T. et al., 2018). Early vigor may be linked with increased uptake
of nitrogen (Liao et al., 2004; Sundgren et al., 2018). However,
under normal conditions seedling growth rates can also vary with
genotypic differences (Rebetzke et al., 2004). Further research
may provide more insight into the interactions and possible use
of early vigor to mitigate the effects of waterlogging.

Bio-Drainage
The incorporation of herbaceous perennial legumes such as
lucerne, clovers and Messina (Melilotus siculus) adapted to
waterlogging and inundation into cropping systems has been
suggested to reduce waterlogging (Cocks, 2001; Nichols, 2018).
Usually these deep rooted pasture plants can extract water
and dry the soil to greater depths than most annual crops
(McCaskill and Kearney, 2016). However, there is significant
variation in tolerance to waterlogging between different pasture
species (Cocks, 2001), and their suitability for grain production
systems and how they would be integrated to provide maximum
benefit has been identified as a gap in knowledge and warrants
further investigation.

Bio-drainage or bio-pumping is the VD of soil water
using specific types of fast growing tree vegetation with high
evapotranspiration demand and is considered an economically
viable option in dealing with the drainage congestion and
environment hazards (Kapoor, 2000; Heuperman and Kapoor,
2003; Dash et al., 2005; Sarkar et al., 2018; Singh and Lal, 2018).
Bio-drainage vegetation has been demonstrated to lower the
rising water table around the root zone of adjacent cultivated
crops in waterlogged areas through drainage (Roy Chowdhury
et al., 2011; Sarkar et al., 2018; Singh and Lal, 2018).

Lowering of the rising water table is apparent within 5–10
years of growing vegetation and trees (Silberstein et al., 1999;
Singh and Lal, 2018). If trees tolerant to waterlogging are
introduced into the prone areas, these can easily assist in
controlling water stagnation and rising water table (Banik et al.,
2018; Sarkar et al., 2018). The right choice of plant species with
optimum plant population and suitable plant geometry will help
to control the elevated groundwater table in waterlogged areas
and thus maintain the desired soil moisture regime for timely
cultivation (Sarkar et al., 2018; Singh and Lal, 2018).

Prevention and remediation are the two stages of bio-drainage
where the trees planted could provide a benefit to agriculture
as well as resolving other issues such as waterlogging, salinity
and shelter. Therefore, incorporation of a bio-drainage system
with a conventional agriculture farming system could improve
land and water productivity as well as the environment (Roy
Chowdhury et al., 2011). Integration of bio-drainage with
conventional drainage measures is an option to consider with
the possibility of integration of silviculture and aquaculture with
conventional agriculture to improve land and water productivity
(Roy Chowdhury et al., 2011).

Bio-drainage systems may be established under both rainfed
and irrigated conditions (Heuperman, 2000). When established
under rainfed conditions, the plant roots reduce the soil bulk
density and enhance groundwater recharge capacity. The roots
also draw subsurface flow to reduce the water load. It is

particularly useful when there is a perched water table and the
water cannot easily move down the soil profile due to the presence
of an impermeable layer. Recharge planting and slope break
planting (Figure 8) may be adopted in the above situations. In
irrigated and low lands, which are prone to waterlogging, the
discharge planting method (Figures 8, 9) is useful (Donnan,
1947; Dash et al., 2005). In HRZs, application of vegetative
buffer strips is also effective for controlling runoff quantity and
quality (Borin et al., 2010; Kavian et al., 2018; Saleh et al., 2018).
Vegetative buffer strips have also been proposed as one of the best
management or conservation practices to protect water bodies
from nutrients, antibiotics, bacteria and pesticides applied on
adjacent agricultural fields (Muñoz-Carpena et al., 2010; Lin et al.,
2011; Lerch et al., 2017; Muñoz-Carpena et al., 2018). Tree species
with high transpiration rates are selected to mitigate waterlogging
from canal seepage in irrigated areas. Water quality in supply
canals is suitable and can be effectively intercepted and used by
the trees planted along the canals (Dash et al., 2005; Singh and
Lal, 2018). However, the efficiency of bio-drainage plantations
needs to be verified in HRZs where permanent stagnant water is
a real problem. Lack of proper knowledge, plantation techniques,
expertise, motivation as well as maintenance are issues that need
to be addressed to derive the real benefit of this system. In
addition, the land under bio-drainage cannot be utilized for
growing other crops, as in the case of conventional drainage
(Dash et al., 2005; Sarkar et al., 2018; Singh and Lal, 2018).
Therefore, an economic analysis of the bio-drainage endeavor is
required on a case by case basis.

Nutrient Application
Nutrient deficiency is one of the major effects of waterlogging
on plants, resulting in reduced photosynthesis and net carbon
fixation ultimately leading to a reduction in growth and therefore
yield (Bange et al., 2004). Application of essential nutrients
will assist in mitigating the negative effects of abiotic stresses
like waterlogging leading to increased productivity (Noreen
et al., 2018). The use of enhanced-efficiency N fertilizers such
as slow-release or controlled-release (SR/CR) fertilizers (Shaviv,
2001; Varadachari and Goertz, 2010) play an important role in
improving plant growth and development under waterlogged
conditions (Dinnes et al., 2002). Slow-release fertilizer can
release nitrogen over a prolonged period during crop growth,
thus maximize nitrogen-use efficiency (NUE) by synchronizing
nitrogen release according to the crop demand (Lubkowski and
Grzmil, 2007; Trenkel, 2010). Several studies (Ashraf et al.,
2011; Habibzadeh et al., 2012; Najeeb et al., 2015) suggested
that exogenously applied fertilizers could be effective if the
nutrient ions enter into the root architecture, consequently,
plants are able to recover from the injury caused by waterlogging.
Application of fertilizer diminishes the effects of waterlogging
of barley (Pang et al., 2007b), wheat (Kaur et al., 2017; Pereira
et al., 2017; Zheng et al., 2017), maize (Rao et al., 2002),
corn (Kaur et al., 2018), cotton (Guo et al., 2010; Wu et al.,
2012; Li et al., 2013) and canola (Habibzadeh et al., 2012).
In Australia, studies under both controlled-environments and
field conditions have shown that additional CR urea application
can mitigate waterlogging effects (Allen et al., 2010; Najeeb
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FIGURE 8 | Bio-drainage system.

FIGURE 9 | Bio-drainage planting system (modified from Donnan, 1947).
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et al., 2015) of wheat and increase growth (Kisaakye et al.,
2017) and grain yield by approximately 20% (Robertson et al.,
2009). Similar findings reported by Mondal et al. (2018) and
Swarup and Sharma (1993) showed that increased rates of
top-dressed urea significantly increased wheat grain yield on
flooded sodic soils in India. Likewise, the use of polyolefin-
coated urea (a controlled-release fertilizer) resulted in a total
N recovery of 66% in flood irrigated barley grown in north
eastern Colorado, United States (Shoji et al., 2001). Fertilizer
application also increases canopy duration and accelerates
the production of photo-assimilates translocated to the grain
compared with the straw thus increasing the harvest index
(Kisaakye et al., 2015, 2017).

Potassium fertilizer has also been reported to ameliorate the
detrimental effects of waterlogging in several crops including
sugarcane (Sudama et al., 1998), rapeseed (Cong et al., 2009) and
cotton (Ashraf et al., 2011). Exogenous application of various
phosphorus (P) sources such as dairy cow manure (DCM) and
meat and bone meal (MBM) is effective for producing optimum
yields in P-deficient conditions during a wet growing season
(Ylivainio et al., 2008, 2018). Application of farmyard manure
also significantly increased grain Fe, Zn, Cu concentration of
paddy under flooded conditions (Masunaga and Marques Fong,
2018). Similarly, foliar application of boron has been reported to
increase overall plant growth and alleviate deleterious effect of
waterlogging of maize (Sayed, 1998).

The use of fertilizers to alleviate waterlogging damage in
broadacre cropping, even with high value crops, has been
limited by lack of research and availability of information
on their potential use in improving crop performance under
waterlogged conditions (Lubkowski and Grzmil, 2007; Trenkel,
2010). Appropriate application methods, nutrient types, timing
and rate should be considered to avoid the negative effect of
tissue toxicities (e.g., manganese) (Silva et al., 2017; Huang
et al., 2018) and nutrient imbalance on soil ecology (Rochester
et al., 2001; Jackson and Ricard, 2003). The ability to predict
waterlogging events (variable seasons) and therefore the crops’
nitrogen demand also limits the effectiveness of SR/CR fertilizers
and therefore raises the question of whether highly available
N applications would be preferable when waterlogging limits
growth (Lubkowski and Grzmil, 2007; Trenkel, 2010). Robertson
et al. (2007) suggested that pre-waterlogging application of
N fertilizer might not be effective on wheat at the tillering
stage. Application of nitrogen fertilizer during or immediately
following waterlogging was less effective than pre-waterlogging
due to inefficient nutrient ion absorption capacity of impaired
roots, high leaching risks in the wet soils and at the late
growth phase additional fertilizer applied could cause excessive
vegetative growth and harvesting problems of cotton plant
(Najeeb et al., 2015). Therefore, this strategy has limitations on
a large-scale as the damaging effects of waterlogging can only
be partially alleviated by the addition of fertilizers because of
the reduced capability of roots to absorb nutrients (Trought
and Drew, 1980; Kisaakye et al., 2015, 2017). For example, a
drop in root membrane potential by 60 mV, often observed
under hypoxic conditions (Gill et al., 2018) will require a
10-fold increase in cation (e.g., K+ or NH4

+) concentration

in the rhizosphere, to enable thermodynamically passive uptake
(Gill et al., 2018). This approach is difficult to justify based
on cost efficiency.

Plant Growth Regulators
Plant growth regulators may mitigate waterlogging damage of
plants by applying at the appropriate growth stage (Nguyen
H.C. et al., 2018; Ren et al., 2018; Wu H. et al., 2018).
The application of PGRs such as auxins and cytokinins has
been reported to improve plant growth under waterlogged
conditions (Pang et al., 2007b; Ren et al., 2016). The two
hormones act in concert to promote stomatal conductance and
photosynthetic capacity of waterlogged plants (Drew et al., 1979).
Synthetic auxin 1-naphthaleneacetic acid (1-NAA), was reported
to promote the growth of adventitious roots in waterlogged
barley plants (Pang et al., 2007b) and; exogenous application of
a cytokinin, 6-benzyladenine (6-BA) can alleviate waterlogging
injuries and increase yield of maize (Ren et al., 2016, 2018).
Pre-waterlogging foliar application of ABA increased tolerance
to successive waterlogging-induced injury in cotton plant by
improving photosynthesis of leaf (Pandey et al., 2002; Kim
et al., 2018). Triazoles are known as fungitoxic and also
have plant-growth regulatory effects and protect plants against
various stresses (Leul and Zhou, 1998; Rademacher, 2015). For
example, paclobutrazol mitigates waterlogging induced damage
in canola and sweet potato plants (Lin et al., 2006). Uniconazole
can also increase the chlorophyll content and the activity
of antioxidant enzymes in canola (Leul and Zhou, 1999).
Under waterlogging condition, the application of tricyclazole
[5-methyl-1,2,4-triazole(3,4-b) benzothiazole] also mitigates the
damage in plants (Habibzadeh et al., 2013). However, due to
inconsistent results there has been little commercial use of PGRs
to alleviate waterlogging damage.

Combined Application of Fertilizer and
Growth Regulators
Combined application of fertilizers and growth regulators can
provide another option for ameliorating detrimental effects of
waterlogging in crops, with the fertilizers acting as a nutrient
supplier, while the PGRs assist with recovery from physiological
injury (Li et al., 2013). 1% urea + 0.5% potassium chloride and
growth regulators [brassin (0.02 mg/L) + diethyl aminoethyl
hexanoate (10 mg/L)] improved growth and yield of waterlogged
cotton (Li et al., 2013). Both foliar nutrient and PGRs application
provide opportunities for future research.

Use of Anti-ethylene Agents
Plant hypoxia-induced growth and yield losses could be the
consequence of increased accumulation of ethylene (Shabala,
2011; Najeeb et al., 2018). Use of anti-ethylene agents such
as 1-methylcyclopropene (1-MCP), amino ethoxyvinyl glycine
(AVG), 1-aminocyclopropane-1-carboxylic acid (ACC), amino
ethoxyacetic acid (AOA), silver and cobalt ions have been
reported to inhibit the synthesis or accumulation of ethylene
through blocking the biosynthetic pathway (Najeeb et al., 2017;
Vwioko et al., 2017) of ethylene (McDaniel and Binder, 2012).
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TABLE 1 | Summary of advantages and disadvantages of different soil and crop management practices.

Soil and crop management
practices

Advantages (in addition to reducing
waterlogging)

Disadvantages Reference

Surface drainage Both installation and maintenance are
simplest and cheapest

Open drains with less cropping area;
needs periodic maintenance

Food and Agriculture Organization
[FAO], 2002; Ritzema et al., 2008;
Ayars and Evans, 2015; Palla et al.,
2018

Raised bed system Improvements in soil structure Efficiency depends on height of water
table; poorer weed control in furrows;
cost of modifying machinery; less
cropping area

Bakker et al., 2005b, 2007; Roth et al.,
2005; Zhang, 2005; Acuña et al., 2011;
Gibson, 2014

Pipe drains Well tested method for severe
waterlogging

Needs outfall and periodic
maintenance; cost of installation is high

Tanji, 1990; Food and Agriculture
Organization [FAO], 2002; Filipović
et al., 2014; Teixeira et al., 2018

Vertical drainage Well tested method for severe
waterlogging

Maintenance and operational costs are
higher than for horizontal pipe drainage
systems

Christen et al., 2001; Food and
Agriculture Organization [FAO], 2002;
Kijne, 2006; Prathapar et al., 2018

Mole drains Well tested method; cheaper than other
underground drainage

Needs periodic maintenance; will not
maintain integrity in dispersive soils

Tuohy et al., 2016, 2018; Dhakad et al.,
2018

Controlled traffic farming (CTF) Reduced soil compaction, erosion,
tillage costs, water and nutrient losses

Variable results with different
conditions, such as different crops, soil
types and tillage

Zhang, 2005; Chamen et al., 2006;
Guenette and Hernandez-Ramirez,
2018; Thomsen et al., 2018; Bennett
et al., 2019

Strategic deep tillage and
subsoil manuring

Decreases soil strength resulting in
deeper and denser rooting

SDT with no added amendment is
often short-term nature, less effective in
hostile sub-soils, such as acidity,
sodicity or subsoil salinity

Gajri et al., 1994; Bakker et al., 2007;
Roper et al., 2015

Early sowing and vigorous crop Use of existing soil water provides a
buffer; avoids terminal waterlogging
events

Minor benefit with severe waterlogging Stapper and Harris, 1989; Setter and
Waters, 2003; Bassu et al., 2009;
Ploschuk et al., 2018; Sundgren et al.,
2018; Wollmer et al., 2018

Bio-drainage Tried and tested at many locations with
success

Needs proper plantation techniques,
expertise, thinning, pruning, and
harvesting

Kapoor, 2000; Food and Agriculture
Organization [FAO], 2002; Heuperman
and Kapoor, 2003; Dash et al., 2005;
Lin et al., 2011; Lerch et al., 2017;
Muñoz-Carpena et al., 2018; Sarkar
et al., 2018; Singh and Lal, 2018;

Nutrient application, in
particular, N

Improving plant growth and
development

Appropriate methods, nutrient types,
timing and rate should be considered
for large-scale application

Rao et al., 2002; Pang et al., 2007b;
Guo et al., 2010; Ashraf et al., 2011;
Habibzadeh et al., 2012; Wu et al.,
2012; Li et al., 2013; Najeeb et al.,
2015; Kaur et al., 2017, 2018; Pereira
et al., 2017; Zheng et al., 2017

Plant growth regulators Promote stomatal conductance and
photosynthetic capacity of waterlogged
plants

Appropriate methods, timing and rate
should be considered for large-scale
application; unproven in broad scale
agriculture

Drew et al., 1979; Lin et al., 2006;
Habibzadeh et al., 2013; Ren et al.,
2016, 2018

Use of anti-ethylene agents Increase both photosynthesis and fruit
retention; diminish crop loss induced by
ethylene accumulation

Untested in broad scale agriculture Kawakami et al., 2010; Shabala, 2011;
Najeeb et al., 2018

Pretreatment with hydrogen
peroxide

Protect crops from oxidative damage
caused by waterlogging

Untested in broad scale agriculture Gechev et al., 2002; Ishibashi et al.,
2011; Rajaeian and Ehsanpour, 2015;
Savvides et al., 2016; Andrade et al.,
2018

Tolerant species and varieties Cost effective for farmers The introduction of waterlogging
tolerance into existing plant varieties is
time consuming and complex

Davies and Hillman, 1988; Gardner and
Flood, 1993; Zhou et al., 2007; Gill
et al., 2018; Huang et al., 2018

Application of 1-MCP and AVG has been shown to diminish crop
loss induced by ethylene accumulation (Kawakami et al., 2010;
Najeeb et al., 2018). Brito et al. (2013) reported a positive
effect of 1-MCP and AVG on cotton seed and lint yield.

They determined that the initial reproductive phase is the
best time for AVG application for improving cotton yield
under waterlogging condition. In cotton, waterlogging prompts
ethylene accumulation leading to young fruit abscission (Najeeb
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FIGURE 10 | Recommendation of soil and crop management based on
different waterlogging severity.

et al., 2017, 2018). During waterlogging conditions, an inverse
link between ethylene production and cotton yield has also
been found, therefore the application of AVG can regulate
ethylene production and increase both photosynthesis and fruit
retention of cotton (Bange et al., 2010; Najeeb et al., 2017).
Likewise, the positive effect of 1-MCP has been studied on
hypoxia cotton plants, where it also blocked ethylene action and
enhanced physiological processes, such as antioxidant enzyme
activity and stomatal resistance (Kawakami et al., 2010). Utilizing
an ethylene-insensitive cotton mutant (eliminating ethylene
sensitivity) may be another option for waterlogged areas, where
the mutant plant showed a remarkably improved yield of
cotton (Najeeb et al., 2017). There is further research required
to fully understand the ethylene mediated pathways in other
crops such as grains.

Pretreatment With Hydrogen Peroxide
Pretreatment of crops with an agent may be an effective
way to increase tolerance to different stresses (Jisha et al.,
2013). For example, pretreatment with H2O2 can protect
crops from oxidative damage caused by waterlogging, high
light intensity, low temperature, salt stress, drought and
exposure to heavy metals (Gechev et al., 2002; Ishibashi
et al., 2011; Rajaeian and Ehsanpour, 2015; Savvides
et al., 2016; Andrade et al., 2018). Priming seeds with
H2O2 generated seedlings exhibiting elevated activity of
antioxidant enzymes, low H2O2 and O2

−. content, and
low cell membrane damage under waterlogged conditions
(Andrade et al., 2018). H2O2 pre-treatment also resulted
in increases in net photosynthetic rate and photosynthetic
pigments, root volume, high biomass accumulation, and stem
diameter (Andrade et al., 2018). Despite much research being
conducted on priming with agents against biotic and abiotic
stresses (Mustafa et al., 2017; Ashraf et al., 2018; Lal et al.,

2018), pre-treatment with H2O2 tolerant to waterlogging
still in its infancy.

Use of Tolerant Species and Varieties
One of the key economical approaches for reducing the loss
caused by waterlogging is to introduce waterlogging tolerance
into existing plant varieties (Zhou, 2010; Tewari and Mishra,
2018; Wani et al., 2018). Genetic differences exist for tolerance
to waterlogging in different crops (Setter and Waters, 2003)
which include barley (Takeda and Fukuyama, 1986; Qiu, 1991;
Pang et al., 2004; Xiao et al., 2007; Zhou et al., 2007; Huang
et al., 2015; Zhang et al., 2015; Romina et al., 2018) and wheat
(Davies and Hillman, 1988; Gardner and Flood, 1993; Huang
et al., 1994; Herzog et al., 2016; Nguyen T.N. et al., 2018; Wu
X. et al., 2018). However, waterlogging tolerance is a complex
trait which is controlled by many different mechanisms, such
as aerenchyma formation in roots (Zhang et al., 2015; Luan
et al., 2018; Pujol and Wissuwa, 2018) under waterlogging
stress, tolerance to secondary metabolites (Pang et al., 2006), ion
toxicities (Huang et al., 2018), the maintenance of membrane
potential (Gill et al., 2018) and control of ROS production
under stress, with many QTL being reported to control these
traits (Li et al., 2008; Zhou, 2011; Zhang et al., 2017; Huang
et al., 2018; Gill et al., 2018). The success of a breeding
program relies on the discovery of genes and linked markers
to various tolerance mechanisms, which enable breeders to
pyramid tolerance genes.

SUMMARY AND RECOMMENDATIONS

Many soil and crop management practices have been
employed to alleviate waterlogging in crop production
systems as summarized in Table 1. For severe waterlogging,
combinations of drainage and crop management will be the
foremost step (Figure 10). For minor waterlogging, choosing
tolerant varieties or applying appropriate agronomic practices
can be effective.

There are still significant knowledge gaps in our
understanding of the advantages or disadvantages of relevant
management measures under different soil types or different
crops, management of other macro- and micronutrients;
and the genetic basis of plants’ adaptation to hypoxia and
elemental toxicities in waterlogged soils. While many tolerance
mechanisms and related quantitative trait loci (QTL) have
been reported, most of them are focused around oxygen
availability and largely ignore other constraints imposed
by waterlogged soils.

For improved mitigation strategies, further research should be
focused on the following aspects:

- Comparison of the cost/benefit analyses of different
drainage strategies;

- Understanding the mechanisms of nutrient loss during
waterlogging and quantifying the benefits of nutrient
application;

- Increasing soil profile de-watering through soil
improvement and agronomic strategies;
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- Increased specificity of the interaction between different
management practices and environment (soil types,
severity of waterlogging, etc.) as well as among
management practices.

- Discovering new (non-oxygen-associated) QTLs; the
effectiveness of these mechanisms/QTL (and combined)
on improving waterlogging tolerance in paddocks with
soils with multiple constraints; the effect of these QTL
on other agronomic, yield and quality traits, as well
as management packages for varieties with diverse
waterlogging tolerance genes.

AUTHOR CONTRIBUTIONS

SM and GP prepared the draft. GD supervised the project. GP,
GD, BF, SS, and MZ reviewed and revised the manuscript.

FUNDING

This project was supported by the Grains Research and
Development Corporation (GRDC) grant to GD, MZ,
GP, and BF.

REFERENCES
Acuña, T. B., Dean, G., and Riffkin, P. (2011). Constraints to achieving high

potential yield of wheat in a temperate, high-rainfall environment in south-
eastern Australia. Crop Pasture Sci. 62, 125–136. doi: 10.1071/CP10271

Aldana, F., García, P. N., and Fischer, G. (2014). Effect of waterlogging stress on
the growth, development and symptomatology of cape gooseberry (Physalis
peruviana L.) plants. Rev. Acad. Colomb. Cienc. Exactas Fís. Nat. 38, 393–400.
doi: 10.18257/raccefyn.114

Ali, N., Dayal, A., Thomas, N., Lal, G., and Gupta, J. (2018). Effect of different
sowing time on seed vigour parameters of wheat (Triticum aestivum L.)
varieties. Int. J. Pure Appl. Biosci. 6, 1532–1538. doi: 10.18782/2320-7051.6627

Allen, D. E., Kingston, G., Rennenberg, H., Dalal, R. C., and Schmidt, S.
(2010). Effect of nitrogen fertilizer management and waterlogging on nitrous
oxide emission from subtropical sugarcane soils. Agric. Ecosyst. Environ. 136,
209–217. doi: 10.1016/j.agee.2009.11.002

Alwang, J., Sabry, S., Shideed, K., Swelam, A., and Halila, H. (2018). Economic and
food security benefits associated with raised-bed wheat production in Egypt.
Food Sec. 10, 589–601. doi: 10.1007/s12571-018-0794-3

Amare, T., Terefe, A., Selassie, Y. G., Yitaferu, B., Wolfgramm, B., and Hurni, H.
(2013). Soil properties and crop yields along the terraces and toposequece of
Anjeni Watershed, Central Highlands of Ethiopia. J. Agric. Sci. 5:134.

Andrade, C. A., de Souza, K. R. D., de Oliveira Santos, M., da Silva, D. M., and
Alves, J. D. (2018). Hydrogen peroxide promotes the tolerance of soybeans to
waterlogging. Sci. Hortic. 232, 40–45. doi: 10.1016/j.scienta.2017.12.048

Arbona, V., López-Climent, M. F., Pérez-Clemente, R. M., and Gómez-Cadenas, A.
(2009). Maintenance of a high photosynthetic performance is linked to flooding
tolerance in citrus. Environ. Exp. Bot. 66, 135–142. doi: 10.1016/j.envexpbot.
2008.12.011

Armstrong, R., Eagle, C., and Flood, R. (2015). Improving grain yields on a sodic
clay soil in a temperate, medium-rainfall cropping environment. Crop Pasture
Sci. 66, 492–505. doi: 10.1071/CP14210

Armstrong, R., Sale, P., Tavakkoli, E., Wilhelm, N., Davenport, D., Dean, G., et al.
(2017). “Can subsoil amelioration improve the productivity of grain production
in medium-high rainfall environments?,” in Proceedings of the 18th Australian
Agronomy Conference 2017, (Ballarat: Australian Society of Agronomy Inc),
24–28.

Armstrong, W. (1980). Aeration in Higher Plants Advances in Botanical Research.
New York, NY: Elsevier, 225–332.

Armstrong, W., Justin, S., Beckett, P., and Lythe, S. (1991). Root adaptation to soil
waterlogging. Aquat. Bot. 39, 57–73. doi: 10.1016/0304-3770(91)90022-W

Ashraf, M., and Arfan, M. (2005). Gas exchange characteristics and water relations
in two cultivars of Hibiscus esculentus under waterlogging. Biol. Plant. 49,
459–462. doi: 10.1007/s10535-005-0029-2

Ashraf, M. A., Ahmad, M. S. A., Ashraf, M., Al-Qurainy, F., and Ashraf, M. Y.
(2011). Alleviation of waterlogging stress in upland cotton (Gossypium hirsutum
L.) by exogenous application of potassium in soil and as a foliar spray. Crop
Pasture Sci. 62, 25–38. doi: 10.1071/CP09225

Ashraf, M. A., Akbar, A., Askari, S. H., Iqbal, M., Rasheed, R., and Hussain, I.
(2018). “Recent advances in abiotic stress tolerance of plants through chemical
priming: An overview,” in Advances in Seed Priming, eds A. Rakshit and
H. Bahadur Singh (Singapore: Springer), 51–79. doi: 10.1007/978-981-13-
0032-5_4

Ayars, J. E., and Evans, R. G. (2015). Subsurface drainage—What’s next? Irrigation
Drainage 64, 378–392. doi: 10.1002/ird.1893

Azhar, A., Makihara, D., Naito, H., and Ehara, H. (2018). Evaluating sago
palm (Metroxylon sagu Rottb.) photosynthetic performance in waterlogged
conditions: utilizing pulse-amplitude-modulated (PAM) fluorometry as a
waterlogging stress indicator. J. Saudi Soc. Agric. Sci. (in press). doi: 10.1016/
j.jssas.2018.05.004

Bai, T., Li, C., Li, C., Liang, D., and Ma, F. (2013). Contrasting hypoxia tolerance
and adaptation in Malus species is linked to differences in stomatal behavior and
photosynthesis. Physiol. Plant. 147, 514–523. doi: 10.1111/j.1399-3054.2012.
01683.x

Bailey-Serres, J., and Voesenek, L. (2008). Flooding stress: acclimations and genetic
diversity. Annu. Rev. Plant Biol. 59, 313–339. doi: 10.1146/annurev.arplant.59.
032607.092752

Bakker, D., Hamilton, G., Houlbrooke, D., and Spann, C. (2005a). The effect of
raised beds on soil structure, waterlogging, and productivity on duplex soils in
Western Australia. Soil Res. 43, 575–585. doi: 10.1071/SR03118

Bakker, D., Houlbrooke, D., Hamilton, G., and Spann, C. (2005b). A Manual for
Raised Bed Farming in Western Australia. Perth: Department of Agriculture and
Food.

Bakker, D., Hamilton, G., Houlbrooke, D., Spann, C., and Van Burgel, A.
(2007). Productivity of crops grown on raised beds on duplex soils prone
to waterlogging in Western Australia. Aust. J. Exp. Agric. 47, 1368–1376.
doi: 10.1071/EA06273

Bange, M., Milroy, S., Ellis, M., and Thongbai, P. (2010). “Opportunities to reduce
the impact of water-logging on cotton,” in Proceedings of the 15 Agronomy
Conference, Lincoln.

Bange, M., Milroy, S., and Thongbai, P. (2004). Growth and yield of cotton
in response to waterlogging. Field Crops Res. 88, 129–142. doi: 10.1093/pcp/
pcp163

Banik, M., Sarkar, A., Ghatak, P., Ray, R., and Patra, S. (2018). Reclamation of
waterlogged lowland in indo-gangetic alluvial plains using some biodrainage
species. Int. J. Curr. Microbiol. Appl. Sci. 7, 1028–1038. doi: 10.20546/ijcmas.
2018.702.127

Barrett-Lennard, E. (2003). The interaction between waterlogging and salinity in
higher plants: causes, consequences and implications. Plant Soil 253, 35–54.
doi: 10.1023/A:1024574622669

Bassu, S., Asseng, S., Motzo, R., and Giunta, F. (2009). Optimising sowing date of
durum wheat in a variable mediterranean environment. Field Crops Res. 111,
109–118. doi: 10.1016/j.fcr.2008.11.002

Bastick, C., and Walker, M. (2000). Extent and Impacts of Dryland Salinity
in Tasmania. Canberra: National Land and Water Resources Audit Dryland
Salinity Project Report.

Belford, R., Dracup, M., and Tennant, D. (1992). Limitations to growth and yield
of cereal and lupin crops on duplex soils. Aust. J. Exp. Agric. 32, 929–945.
doi: 10.1071/EA9920929

Belmonte, S. A., Luisella, C., Stahel, R. J., Bonifacio, E., Novello, V., Zanini, E., et al.
(2018). Effect of long-term soil management on the mutual interaction among
soil organic matter, microbial activity and aggregate stability in a vineyard.
Pedosphere 28, 288–298. doi: 10.1016/S1002-0160(18)60015-3

Bennett, J. M., Roberton, S. D., Marchuk, S., Woodhouse, N. P., Antille, D. L.,
Jensen, T. A., et al. (2019). The soil structural cost of traffic from heavy
machinery in Vertisols. Soil Till. Res. 185, 85-93. doi: 10.1016/j.still.2018.09.007

Frontiers in Plant Science | www.frontiersin.org 15 February 2019 | Volume 10 | Article 140

https://doi.org/10.1071/CP10271
https://doi.org/10.18257/raccefyn.114
https://doi.org/10.18782/2320-7051.6627
https://doi.org/10.1016/j.agee.2009.11.002
https://doi.org/10.1007/s12571-018-0794-3
https://doi.org/10.1016/j.scienta.2017.12.048
https://doi.org/10.1016/j.envexpbot.2008.12.011
https://doi.org/10.1016/j.envexpbot.2008.12.011
https://doi.org/10.1071/CP14210
https://doi.org/10.1016/0304-3770(91)90022-W
https://doi.org/10.1007/s10535-005-0029-2
https://doi.org/10.1071/CP09225
https://doi.org/10.1007/978-981-13-0032-5_4
https://doi.org/10.1007/978-981-13-0032-5_4
https://doi.org/10.1002/ird.1893
https://doi.org/10.1016/j.jssas.2018.05.004
https://doi.org/10.1016/j.jssas.2018.05.004
https://doi.org/10.1111/j.1399-3054.2012.01683.x
https://doi.org/10.1111/j.1399-3054.2012.01683.x
https://doi.org/10.1146/annurev.arplant.59.032607.092752
https://doi.org/10.1146/annurev.arplant.59.032607.092752
https://doi.org/10.1071/SR03118
https://doi.org/10.1071/EA06273
https://doi.org/10.1093/pcp/pcp163
https://doi.org/10.1093/pcp/pcp163
https://doi.org/10.20546/ijcmas.2018.702.127
https://doi.org/10.20546/ijcmas.2018.702.127
https://doi.org/10.1023/A:1024574622669
https://doi.org/10.1016/j.fcr.2008.11.002
https://doi.org/10.1071/EA9920929
https://doi.org/10.1016/S1002-0160(18)60015-3
https://doi.org/10.1016/j.still.2018.09.007
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00140 February 8, 2019 Time: 19:38 # 16

Manik et al. Management Practices to Minimize the Impact of Waterlogging

Blann, K. L., Anderson, J. L., Sands, G. R., and Vondracek, B. (2009). Effects of
agricultural drainage on aquatic ecosystems: a review. Crit. Rev. Environ. Sci.
Technol. 39, 909–1001. doi: 10.1080/10643380801977966

Blokhina, O., Virolainen, E., and Fagerstedt, K. V. (2003). Antioxidants, oxidative
damage and oxygen deprivation stress: a review. Ann. Bot. 91, 179–194.
doi: 10.1093/aob/mcf118

Bochtis, D., and Vougioukas, S. (2008). Minimising the non-working distance
travelled by machines operating in a headland field pattern. Biosyst. Eng. 101,
1–12. doi: 10.1016/j.biosystemseng.2008.06.008

Bogunovic, I., Bilandzija, D., Andabaka, Z., Stupic, D., Comino, J. R., Cacic, M.,
et al. (2017). Soil compaction under different management practices in a
Croatian vineyard. Arab. J. Geosci. 10:340. doi: 10.1007/s12517-017-3105-y

Borin, M., Passoni, M., Thiene, M., and Tempesta, T. (2010). Multiple functions of
buffer strips in farming areas. Eur. J. Agron. 32, 103–111. doi: 10.1007/s00267-
011-9696-2

Boru, G., Vantoai, T., Alves, J., Hua, D., and Knee, M. (2003). Responses of soybean
to oxygen deficiency and elevated root-zone carbon dioxide concentration.
Ann. Bot. 91, 447–453. doi: 10.1093/aob/mcg040

Bos, M. G. and Boers, T. M. (1994). “Land drainage: why and how?” In Drainage
Principles and Applications, ed. H.P. Ritzema (Wageningen: International
Institute for Land Reclamation & Improvement), 23–32.

Brady, N., and Weil, R. (2008). Soil Colloids: Seat of Soil Chemical And Physical
Acidity. Upper Saddle River, NJ: Pearson Education Inc.

Brito, G. G. D., Ferreira, A. C. D. B., Borin, A. L. D. C., and Morello, C. D. L.
(2013). 1-Methylcyclopropene and Aminoethoxyvinylglycine effects on yield
components of field-grown cotton. Ciênc. Agrotecnol. 37, 9–16. doi: 10.1590/
S1413-70542013000100001

Bullock, A., and Acreman, M. (2003). The role of wetlands in the hydrological cycle.
Hydrol. Earth Syst. Sci. Discuss. 7, 358–389. doi: 10.5194/hess-7-358-2003

Cannarozzi, G., Weichert, A., Schnell, M., Ruiz, C., Bossard, S., Blösch, R., et al.
(2018). Waterlogging affects plant morphology and the expression of key genes
in tef (Eragrostis tef). Plant Direct 2:e00056. doi: 10.1002/pld3.56

Cannell, R., and Jackson, M. B. (1981). Alleviating Aeration Stresses [Soil, Plant
Growth and Crop Production]. Modifying the Root Environment to Reduce Crop
Stress, eds G. F. Arkin and H. M. Taylor (St. Joseph, MI: American Society of
Agricultural Engineers).

Cannell, R. Q., Belford, R. K., Gales, K., Dennis, C. W., and Prew, R. D. (1980).
Effects of waterlogging at different stages of development on the growth
and yield of winter wheat. J. Sci. Food Agric. 31, 117–132. doi: 10.1002/jsfa.
2740310203

Castanheira, P. J., and Serralheiro, R. P. (2010). Impact of mole drains on
salinity of a vertisoil under irrigation. Biosyst. Eng. 105, 25–33. doi: 10.1016/j.
biosystemseng.2009.08.010

Celestina, C., Midwood, J., Sherriff, S., Trengove, S., Hunt, J., Tang, C., et al. (2018).
Crop yield responses to surface and subsoil applications of poultry litter and
inorganic fertiliser in south-eastern Australia. Crop Pasture Sci. 69, 303–316.
doi: 10.1071/CP17439

Chamen, T. (2015). Controlled traffic farming–from worldwide research to
adoption in Europe and its future prospects. Acta Technol. Agric. 18, 64–73.
doi: 10.1515/ata-2015-0014

Chamen, T., Cottage, C. C., and Maulden, B. (2006). ‘Controlled Traffic’ Farming:
Literature Review and Appraisal of Potential Use in the UK, HGCA Research
Review No. 59. Maulden: The Home-Grown Cereals Authority.

Chamizo, S., Cantón, Y., Rodríguez-Caballero, E., and Domingo, F. (2016).
Biocrusts positively affect the soil water balance in semiarid ecosystems.
Ecohydrology 9, 1208–1221. doi: 10.1002/eco.1719

Chandio, A. S., Lee, T. S., and Mirjat, M. S. (2013). Simulation of horizontal and
vertical drainage systems to combat waterlogging problems along the Rohri
Canal in Khairpur District, Pakistan. J. Irrigation Drainage Eng. 139, 710–717.
doi: 10.1061/(ASCE)IR.1943-4774.0000590

Chen, H., Wu, W., Liu, X., and Li, H. (2010). Effect of wheel traffic on working
resistance of agricultural machinery in field operation. Trans. Chin. Soc. Agric.
Machinery 41, 52–98.

Childs, E. (1943). Studies in mole-draining Interim report on an experimental
drainage field. J. Agric. Sci. 33, 136–146. doi: 10.1017/S002185960000650X

Christen, E., and Skehan, D. (2001). Design and management of subsurface
horizontal drainage to reduce salt loads. J. Irrigation Drainage Eng. 127,
148–155. doi: 10.1061/(ASCE)0733-9437(2001)127:3(148)

Christen, E. W., Ayars, J. E., and Hornbuckle, J. W. (2001). Subsurface drainage
design and management in irrigated areas of Australia. Irrigation Sci. 21, 35–43.

Christianson, J. A., Llewellyn, D. J., Dennis, E. S., and Wilson, I. W. (2010).
Comparisons of early transcriptome responses to low-oxygen environments
in three dicotyledonous plant species. Plant Signal. Behav. 5, 1006–1009.
doi: 10.1093/pcp/pcp163

Christy, B., Clough, A., Riffkin, P., Norton, R., Midwood, J., and O’Leary, G. (2015).
Managing Crop Inputs in a High Yield Potential Environment-Hrz of Southern
Australia. Melbourne: Department of Economic Development, Jobs, Transport
& Resources (DEDJTR).

Chu, X., Han, G., Xing, Q., Xia, J., Sun, B., Yu, J., et al. (2018). Dual effect
of precipitation redistribution on net ecosystem CO2 exchange of a coastal
wetland in the Yellow River Delta. Agric. For. Meteorol. 249, 286–296.
doi: 10.1016/j.agrformet.2017.11.002

Cocks, P. (2001). Ecology of herbaceous perennial legumes: a review of
characteristics that may provide management options for the control of salinity
and waterlogging in dryland cropping systems. Aust. J. Agricu. Res. 52, 137–151.
doi: 10.1071/AR99170

Collaku, A., and Harrison, S. (2005). Heritability of waterlogging
tolerance in wheat. Crop Sci. 45, 722–727. doi: 10.2135/cropsci2005.
0722

Collis, C. (2015). Raised Beds Exemplify on-Farm Adaptation. GRDC
GroundCoverTM . Available at: https://grdc.com.au/resources-and-
publications/groundcover/ground-cover-issue-117-july-august-2015/raised-
beds-exemplify-on-farm-adaptation

Colmer, T. D., and Greenway, H. (2011). Ion transport in seminal and adventitious
roots of cereals during O2 deficiency. J. Exp. Bot. 62, 39–57. doi: 10.1093/jxb/
erq271

Cong, Y., Li, Y. J., Zhou, C. J., Zou, C. S., Zhang, X. K., Liao, X., et al. (2009). Effect
of application of nitrogen, phosphorus and potassium fertilizers on yield in
rapeseed (Brassica napus L.) under the waterlogging stress. Plant Nutr. Fertilizer
Sci. 15, 1122–1129.

Coutinho, I. D., Henning, L. M. M., Döpp, S. A., Nepomuceno, A., Moraes,
L. A. C., Marcolino-Gomes, J., et al. (2018). Flooded soybean metabolomic
analysis reveals important primary and secondary metabolites involved in
the hypoxia stress response and tolerance. Environ. Exp. Bot. 153, 176–187.
doi: 10.1016/j.envexpbot.2018.05.018

Cox, J., and McFarlane, D. (1995). The causes of waterlogging in shallow
soils and their drainage in southwestern Australia. J. Hydrol. 167, 175–194.
doi: 10.1016/0022-1694(94)02614-H

Cox, J., McFarlane, D., and Skaggs, R. (1994). Field-evaluation of
DRAINMOD for predicting waterlogging intensity and drain performance
in south-western Australia. Soil Res. 32, 653–671. doi: 10.1071/
SR9940653

Cox, S. A., Sutton, R. P., Stoltz, R. P., and Knobloch, T. S. (2005). “Determination
of effective drainage area for tight gas wells,” in Paper Presented at the SPE
Eastern Regional Meeting, (Houston,TX: Society of Petroleum Engineers).
doi: 10.2118/98035-MS

Crabtree, W. L. (1989). Cereal grain yield responses to deep ripping on duplex soils.
Aust. J. Exp. Agric. 29, 691–694. doi: 10.1071/EA9890691

Crawford, R. (1982). “Physiological responses to flooding,” in Physiological Plant
Ecology II, eds O. L. Lange, P. S. Nobel, C. B. Osmond, and H. Ziegler (Berlin:
Springer), 453–477.

da Ponte, N. H. T., Nunes Santos, R. I., Lima Lopes, Filho, W. R., Lisboa
Cunha, R., Murad Magalhães, M., et al. (2019). Morphological assessments
evidence that higher number of pneumatophores improves tolerance to long-
term waterlogging in oil palm (Elaeis guineensis) seedlings. Flora 250, 52–58.
doi: 10.1016/j.flora.2018.11.017

Dash, C., Sarangi, A., Singh, A., and Dahiya, S. (2005). Bio-drainage: an alternate
drainage technique to control waterlogging and salinity. J. Soil Water Conserv.
India 4, 149–155.

Davies, M., and Hillman, G. (1988). Effects of soil flooding on growth
and grain yield of populations of tetraploid and hexaploid species
of wheat. Ann. Bot. 62, 597–604. doi: 10.1093/oxfordjournals.aob.
a087699

Davies, S., Blackwell, P., Bakker, D., Scanlon, C., Roper, M., and Ward, P. (2012).
“Developing and assessing agronomic strategies for water repellent soils,” in
Crop Updates, (Perth: GRDC/DAFWA), 71–77.

Frontiers in Plant Science | www.frontiersin.org 16 February 2019 | Volume 10 | Article 140

https://doi.org/10.1080/10643380801977966
https://doi.org/10.1093/aob/mcf118
https://doi.org/10.1016/j.biosystemseng.2008.06.008
https://doi.org/10.1007/s12517-017-3105-y
https://doi.org/10.1007/s00267-011-9696-2
https://doi.org/10.1007/s00267-011-9696-2
https://doi.org/10.1093/aob/mcg040
https://doi.org/10.1590/S1413-70542013000100001
https://doi.org/10.1590/S1413-70542013000100001
https://doi.org/10.5194/hess-7-358-2003
https://doi.org/10.1002/pld3.56
https://doi.org/10.1002/jsfa.2740310203
https://doi.org/10.1002/jsfa.2740310203
https://doi.org/10.1016/j.biosystemseng.2009.08.010
https://doi.org/10.1016/j.biosystemseng.2009.08.010
https://doi.org/10.1071/CP17439
https://doi.org/10.1515/ata-2015-0014
https://doi.org/10.1002/eco.1719
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000590
https://doi.org/10.1017/S002185960000650X
https://doi.org/10.1061/(ASCE)0733-9437(2001)127:3(148)
https://doi.org/10.1093/pcp/pcp163
https://doi.org/10.1016/j.agrformet.2017.11.002
https://doi.org/10.1071/AR99170
https://doi.org/10.2135/cropsci2005.0722
https://doi.org/10.2135/cropsci2005.0722
https://grdc.com.au/resources-and-publications/groundcover/ground-cover-issue-117-july-august-2015/raised-beds-exemplify-on-farm-adaptation
https://grdc.com.au/resources-and-publications/groundcover/ground-cover-issue-117-july-august-2015/raised-beds-exemplify-on-farm-adaptation
https://grdc.com.au/resources-and-publications/groundcover/ground-cover-issue-117-july-august-2015/raised-beds-exemplify-on-farm-adaptation
https://doi.org/10.1093/jxb/erq271
https://doi.org/10.1093/jxb/erq271
https://doi.org/10.1016/j.envexpbot.2018.05.018
https://doi.org/10.1016/0022-1694(94)02614-H
https://doi.org/10.1071/SR9940653
https://doi.org/10.1071/SR9940653
https://doi.org/10.2118/98035-MS
https://doi.org/10.1071/EA9890691
https://doi.org/10.1016/j.flora.2018.11.017
https://doi.org/10.1093/oxfordjournals.aob.a087699
https://doi.org/10.1093/oxfordjournals.aob.a087699
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00140 February 8, 2019 Time: 19:38 # 17

Manik et al. Management Practices to Minimize the Impact of Waterlogging

de San Celedonio, R. P., Abeledo, L. G., Brihet, J., and Miralles, D. J. (2016).
Waterlogging affects leaf and tillering dynamics in wheat and barley. J. Agron.
Crop Sci. 202, 409–420. doi: 10.1111/jac.12151

Dhakad, S., Ambawatia, G., Verma, G., Patel, S., Rao, K. R., and Verma, S. (2018).
Performance of Mole drain system for soybean (glycine max)-wheat (Triticum
aestivum) cropping system of madhya pradesh. Int. J. Curr. Microbiol. Appl. Sci.
7, 2107–2112. doi: 10.20546/ijcmas.2018.702.251

Dinnes, D. L., Karlen, D. L., Jaynes, D. B., Kaspar, T. C., Hatfield, J. L., Colvin,
T. S., et al. (2002). Nitrogen management strategies to reduce nitrate leaching in
tile-drained Midwestern soils. Agron. J. 94, 153–171. doi: 10.2134/agronj2002.
1530

Donnan, W. W. (1947). Model tests of a tile-spacing formula 1. Soil Sci. Soc. Am. J.
11, 131–136. doi: 10.2136/sssaj1947.036159950011000C0025x

Dore, M. H. (2005). Climate change and changes in global precipitation patterns:
what do we know? Environ. Int. 31, 1167–1181. doi: 10.1016/j.envint.2005.
03.004

Drew, M., and Lynch, J. M. (1980). Soil anaerobiosis, microorganisms, and root
function. Ann. Rev. Phytopathol. 18, 37–66. doi: 10.1146/annurev.py.18.090180.
000345

Drew, M., and Sisworo, E. (1977). Early effects of flooding on nitrogen deficiency
and leaf chlorosis in barley. New Phytol. 79, 567–571. doi: 10.1111/j.1469-8137.
1977.tb02241.x

Drew, M., Sisworo, E., and Saker, L. (1979). Alleviation of waterlogging damage
to young barley plants by application of nitrate and a synthetic cytokinin,
and comparison between the effects of waterlogging, nitrogen deficiency
and root excision. New Phytol. 82, 315–329. doi: 10.1111/j.1469-8137.1979.
tb02657.x

Elbert, W., Weber, B., Burrows, S., Steinkamp, J., Büdel, B., Andreae, M. O., et al.
(2012). Contribution of cryptogamic covers to the global cycles of carbon and
nitrogen. Nat. Geosci. 5:459. doi: 10.1038/ngeo1486

Ernst, W. (1990). Ecophysiology of plants in waterlogged and flooded
environments. Aquat. Bot. 38, 73–90. doi: 10.1016/0304-3770(90)90099-7

Evans, R. O., and Fausey, N. R. (1999). Effects of inadequate drainage on crop
growth and yield. Agric. Drainage 38, 13–54.

Feng, P., Wang, B., Liu, D. L., Xing, H., Ji, F., Macadam, I., et al. (2018). Impacts
of rainfall extremes on wheat yield in semi-arid cropping systems in eastern
Australia. Clim. Change 147, 555–569. doi: 10.1007/s10584-018-2170-x

Ferronato, C., Marinari, S., Francioso, O., Bello, D., Trasar-Cepeda, C., and
Antisari, L. V. (2019). Effect of waterlogging on soil biochemical properties and
organic matter quality in different salt marsh systems. Geoderma 338, 302–312.
doi: 10.1016/j.geoderma.2018.12.019

Filipović, V., Mallmann, F. J. K., Coquet, Y., and Šimùnek, J. (2014). Numerical
simulation of water flow in tile and mole drainage systems. Agric. Water Manag.
146, 105–114. doi: 10.1016/j.agwat.2014.07.020

Flowers, M., and Lal, R. (1998). Axle load and tillage effects on soil
physical properties and soybean grain yield on a mollic ochraqualf in
northwest Ohio. Soil Tillage Res. 48, 21–35. doi: 10.1016/S0167-1987(98)
00095-6

Folzer, H., Dat, J. F., Capelli, N., Rieffel, D., and Badot, P.-M. (2006). Response
of sessile oak seedlings (Quercus petraea) to flooding: an integrated study. Tree
Physiol. 26, 759–766. doi: 10.1093/treephys/26.6.759

Food and Agriculture Organization [FAO] (2002). Food and Agriculture
Organization of the United Nations. Available at: http://www.fao.org/3/a-
bc600e.pdf

Food and Agriculture Organization [FAO] (2015). Food and Agriculture
Organization of the United Nations. Available at: http://www.fao.org/3/a-
bc600e.pdf

Frank, M. (2010). Managing wet Soils – Mole Drainage (AG0949). Orange:
Department of Primary Industries.

Gajri, P. R., Arora, V. K., and Chaudhary, M. R. (1994). Maize growth responses
to deep tillage, straw mulching and farmyard manure in coarse textured soils
of N.W. India. Soil Use Manage. 10, 15–19. doi: 10.1111/j.1475-2743.1994.
tb00451.x

Gardner, B., Nielsen, D., and Shock, C. (1992). Infrared thermometry and the crop
water stress index. I. History, theory, and baselines. J. Prod. Agric. 5, 462–466.
doi: 10.2134/jpa1992.0462

Gardner, W., and Flood, R. (1993). Less waterlogging damage with long season
wheats. Cereal Res. Commun. 21, 337–343.

Gasso, V., Oudshoorn, F. W., Sørensen, C. A., and Pedersen, H. H. (2014). An
environmental life cycle assessment of controlled traffic farming. J. Cleaner
Prod. 73, 175–182. doi: 10.1016/j.jclepro.2013.10.044

Gasso, V., Sørensen, C. A., Oudshoorn, F. W., and Green, O. (2013). Controlled
traffic farming: A review of the environmental impacts. Eur. J. Agron. 48, 66–73.
doi: 10.1111/j.1467-789X.2007.00432.x

Gechev, T., Gadjev, I., Van Breusegem, F., Inzé, D., Dukiandjiev, S., Toneva, V.,
et al. (2002). Hydrogen peroxide protects tobacco from oxidative stress by
inducing a set of antioxidant enzymes. Cell. Mol. Life Sci. 59, 708–714.
doi: 10.1007/s00018-002-8459-x

Geigenberger, P. (2003). Response of plant metabolism to too little oxygen. Curr.
Opin. Plant Biol. 6, 247–256. doi: 10.1016/S1369-5266(03)00038-4

Ghazouani, W., Molle, F., Swelam, A., Rap, E., and Abdo, A. (2015). Understanding
Farmers’ Adaptation to Water Scarcity: A Case Study from the Western Nile
Delta. Pelawatte: IWMI.

Gibson, G. (2014). Utilising Innovative Management Techniques to Reduce
Waterlogging. Moama, NSW: Nuffield Australia Farming Scholars.

Gill, J., Clark, G., Sale, P., Peries, R., and Tang, C. (2012). Deep placement of organic
amendments in dense sodic subsoil increases summer fallow efficiency and the
use of deep soil water by crops. Plant Soil 359, 57–69. doi: 10.1007/s11104-012-
1126-6

Gill, J., Sale, P., Peries, R., and Tang, C. (2009). Changes in soil physical properties
and crop root growth in dense sodic subsoil following incorporation of organic
amendments. Field Crops Res. 114, 137–146. doi: 10.1016/j.fcr.2009.07.018

Gill, M. B., Zeng, F., Shabala, L., Böhm, J., Zhang, G., Zhou, M., et al. (2018).
The ability to regulate voltage-gated K+-permeable channels in the mature
root epidermis is essential for waterlogging tolerance in barley. J. Exp. Bot. 69,
667–680. doi: 10.1093/jxb/erx429

Glinski, J. (2018). Soil Physical Conditions and Plant Roots. Boca Raton, FL: CRC
press. doi: 10.1201/9781351076708

Grains Research, and Development Corporation [GRDC] (2016). Understanding
the Amelioration Processes of the Subsoil Application of Amendments in the
Southern Region. Scoping Review for Project dav00149. Sri Lanka: GRDC.

Gramlich, A., Stoll, S., Stamm, C., Walter, T., and Prasuhn, V. (2018). Effects
of artificial land drainage on hydrology, nutrient and pesticide fluxes from
agricultural fields–A review. Agric. Ecosyst. Environ. 266, 84–99. doi: 10.1016/
j.agee.2018.04.005

Greenway, H., Armstrong, W., and Colmer, T. D. (2006). Conditions leading to
high CO2 ( > 5 kPa) in waterlogged–flooded soils and possible effects on root
growth and metabolism. Ann. Bot. 98, 9–32. doi: 10.1093/aob/mcl076

Guenette, K. G., and Hernandez-Ramirez, G. (2018). Tracking the influence of
controlled traffic regimes on field scale soil variability and geospatial modeling
techniques. Geoderma 328, 66–78. doi: 10.1016/j.geoderma.2018.04.026

Guo, W. Q., Chen, B. L., Liu, R. X., and Zhou, Z. G. (2010). Effects of nitrogen
application rate on cotton leaf antioxidant enzyme activities and endogenous
hormone contents under short-term waterlogging at flowering and boll-
forming stage. Yingyong Shengtai Xuebao 21, 53–60.

Gupta, S. (1997). Himalayan drainage patterns and the origin of fluvial megafans
in the Ganges foreland basin. Geology 25, 11–14. doi: 10.1130/0091-7613(1997)
025<0011:HDPATO>2.3.CO;2

Gupta, S. (2002). A century of subsurface drainage research in
India. Irrigation Drainage Syst. 16, 69–84. doi: 10.1023/A:10155254
05522

Habibzadeh, F., Sorooshzadeh, A., Pirdashti, H., and Modarres-Sanavy, S. A. M.
(2013). Alleviation of waterlogging damage by foliar application of nitrogen
compounds and tricyclazole in canola. Aust. J. Crop Sci. 7, 401–406.

Habibzadeh, F., Sorooshzadeh, A., Pirdashti, H., and Sanavy, S. (2012). Effect of
nitrogen compounds and tricyclazole on some biochemical and morphological
characteristics of waterlogged-canola. Int. Res. J. Appl. Basic Sci. 3,
77–84.

Hallard, M., and Armstrong, A. (1992). Observations of water movement to and
within mole drainage channels. J. Agric. Eng. Res. 52, 309–315. doi: 10.1016/
0021-8634(92)80069-5

Hamilton, G., Bakker, D., Houlebrook, D., and Spann, C. (2000). Raised beds
prevent waterlogging and increase productivity. J. Dep. Agric. West. Aust. Ser.
4, 3–9.

Hamza, M., and Anderson, W. (2003). Responses of soil properties and grain
yields to deep ripping and gypsum application in a compacted loamy sand soil

Frontiers in Plant Science | www.frontiersin.org 17 February 2019 | Volume 10 | Article 140

https://doi.org/10.1111/jac.12151
https://doi.org/10.20546/ijcmas.2018.702.251
https://doi.org/10.2134/agronj2002.1530
https://doi.org/10.2134/agronj2002.1530
https://doi.org/10.2136/sssaj1947.036159950011000C0025x
https://doi.org/10.1016/j.envint.2005.03.004
https://doi.org/10.1016/j.envint.2005.03.004
https://doi.org/10.1146/annurev.py.18.090180.000345
https://doi.org/10.1146/annurev.py.18.090180.000345
https://doi.org/10.1111/j.1469-8137.1977.tb02241.x
https://doi.org/10.1111/j.1469-8137.1977.tb02241.x
https://doi.org/10.1111/j.1469-8137.1979.tb02657.x
https://doi.org/10.1111/j.1469-8137.1979.tb02657.x
https://doi.org/10.1038/ngeo1486
https://doi.org/10.1016/0304-3770(90)90099-7
https://doi.org/10.1007/s10584-018-2170-x
https://doi.org/10.1016/j.geoderma.2018.12.019
https://doi.org/10.1016/j.agwat.2014.07.020
https://doi.org/10.1016/S0167-1987(98)00095-6
https://doi.org/10.1016/S0167-1987(98)00095-6
https://doi.org/10.1093/treephys/26.6.759
http://www.fao.org/3/a-bc600e.pdf
http://www.fao.org/3/a-bc600e.pdf
http://www.fao.org/3/a-bc600e.pdf
http://www.fao.org/3/a-bc600e.pdf
https://doi.org/10.1111/j.1475-2743.1994.tb00451.x
https://doi.org/10.1111/j.1475-2743.1994.tb00451.x
https://doi.org/10.2134/jpa1992.0462
https://doi.org/10.1016/j.jclepro.2013.10.044
https://doi.org/10.1111/j.1467-789X.2007.00432.x
https://doi.org/10.1007/s00018-002-8459-x
https://doi.org/10.1016/S1369-5266(03)00038-4
https://doi.org/10.1007/s11104-012-1126-6
https://doi.org/10.1007/s11104-012-1126-6
https://doi.org/10.1016/j.fcr.2009.07.018
https://doi.org/10.1093/jxb/erx429
https://doi.org/10.1201/9781351076708
https://doi.org/10.1016/j.agee.2018.04.005
https://doi.org/10.1016/j.agee.2018.04.005
https://doi.org/10.1093/aob/mcl076
https://doi.org/10.1016/j.geoderma.2018.04.026
https://doi.org/10.1130/0091-7613(1997)025<0011:HDPATO>2.3.CO;2
https://doi.org/10.1130/0091-7613(1997)025<0011:HDPATO>2.3.CO;2
https://doi.org/10.1023/A:1015525405522
https://doi.org/10.1023/A:1015525405522
https://doi.org/10.1016/0021-8634(92)80069-5
https://doi.org/10.1016/0021-8634(92)80069-5
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00140 February 8, 2019 Time: 19:38 # 18

Manik et al. Management Practices to Minimize the Impact of Waterlogging

contrasted with a sandy clay loam soil in Western Australia. Aust. J. Agric. Res.
54, 273–282. doi: 10.1071/AR02102

Hamza, M., and Anderson, W. (2005). Soil compaction in cropping systems: a
review of the nature, causes and possible solutions. Soil Tillage Res. 82, 121–145.
doi: 10.1016/j.still.2004.08.009

Henry, C. G., Sarzi Sartori, G. M., Gaspar, J. P., Marchesan, E., Hirsh, S. M., Horton,
A. P., et al. (2018). Deep tillage and gypsum amendments on fully, deficit
irrigated, and dryland soybean. Agron. J. 110, 737–748. doi: 10.2134/agronj2015.
11.0567

Herzog, M., Striker, G. G., Colmer, T. D., and Pedersen, O. (2016).
Mechanisms of waterlogging tolerance in wheat–a review of root and
shoot physiology. Plant Cell Environ. 39, 1068–1086. doi: 10.1111/pce.
12676

Heuperman, A. (2000). “Bio-drainage - an australian overview and two victorian
case studies,” in. Proceedings of the Eighth ICID International Drainage
Workshop Role of Drainage and Challenges in 21st century, New Delhi, 1–16.

Heuperman, A., and Kapoor, A. (2003). Biodrainage Status in India and
Other countries. New Delhi: Indian National Committee on Irrigation and
Drainage, 147.

Hossain, M. A., and Uddin, S. N. (2011). Mechanisms of waterlogging tolerance
in wheat: morphological and metabolic adaptations under hypoxia or anoxia.
Aust. J. Crop Sci. 5, 1094–1101.

Huang, B., Johnson, J. W., Nesmith, S., and Bridges, D. C. (1994). Growth,
physiological and anatomical responses of two wheat genotypes to waterlogging
and nutrient supply. J. Exp. Bot. 45, 193–202. doi: 10.1093/jxb/45.2.193

Huang, X., Fan, Y., Shabala, L., Rengel, Z., Shabala, S., and Zhou, M. (2018).
A major QTL controlling the tolerance to manganese toxicity in barley
(Hordeum vulgare L.). Mol. Breed. 38:16.

Huang, X., Shabala, S., Shabala, L., Rengel, Z., Wu, X., Zhang, G., et al. (2015).
Linking waterlogging tolerance with Mn2+ toxicity: a case study for barley.
Plant Biol. 17, 26–33. doi: 10.1111/plb.12188

Hussain, I., Sohail, M., Tanveer, S. K., and Muneer, M. (2018). Impact of planting
density and growth habit of genotypes on wheat yield under raised bed planting
method. Science 37, 158–162.

Indraratna, B. (2017). “Recent advances in vertical drains and vacuum preloading
for soft ground stabilisation,” in, Proceedings of 19th International Conference
on Soil Mechanics and Geotechnical Engineering, Seou, (London: International
Society for Soil Mechanics and Geotechnical Engineering), 145–170.

Indraratna, B., Rujikiatkamjorn, C., and Sathananthan, I. (2005). Analytical and
numerical solutions for a single vertical drain including the effects of vacuum
preloading. Can. Geotech. J. 42, 994–1014. doi: 10.1139/t05-029

Intergovernmental Panel on Climate Change [IPCC] (2014). Climate Change 2014:
Synthesis Report. Contribution of working groups I, II and III to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change. Geneva:
IPCC. doi: 10.1017/CBO9781107415416

Ishibashi, Y., Yamaguchi, H., Yuasa, T., Iwaya-Inoue, M., Arima, S., and
Zheng, S.-H. (2011). Hydrogen peroxide spraying alleviates drought stress in
soybean plants. J. Plant Physiol. 168, 1562–1567. doi: 10.1016/j.jplph.2011.
02.003

Jackson, M., and Colmer, T. (2005). Response and adaptation by plants to flooding
stress. Ann. Bot. 96, 501–505. doi: 10.1093/aob/mci205

Jackson, M., and Hall, K. (1987). Early stomatal closure in waterlogged pea plants
is mediated by abscisic acid in the absence of foliar water deficits. Plant Cell
Environ. 10, 121–130.

Jackson, M., and Ricard, B. (2003). Physiology, Biochemistry and Molecular Biology
of Plant Root Systems Subjected to Flooding of the Soil, in Root Ecology. Berlin:
Springer, 193–213. doi: 10.1007/978-3-662-09784-7_8

Jaiswal, A., and Srivastava, J. (2018). Changes in reactive oxygen scavenging
systems and protein profiles in maize roots in response to nitric oxide under
waterlogging stress. Indian J. Biochem. Biophys. 55, 26–33.

Jisha, K., Vijayakumari, K., and Puthur, J. T. (2013). Seed priming for abiotic stress
tolerance: an overview. Acta Physiol. Plant. 35, 1381–1396. doi: 10.1007/s11738-
012-1186-5

Jones, H. E., and Etherington, J. (1970). Comparative studies of plant growth
and distribution in relation to waterlogging: I. The survival of Erica
cinerea L. and E. tetralix L. and its apparent relationship to iron and
manganese uptake in waterlogged soil. J. Ecol. 58, 487–496. doi: 10.2307/
2258285

Kapoor, A. (2000). “Bio-drainage feasibility and principles of planning and design,”
in Proceedings of the Eighth ICID International Drainage Workshop, (New Delhi:
International Commission on Irrigation and Drainage), 17–32.

Kaur, G., Nelson, K., and Motavalli, P. (2018). Early-season soil waterlogging and N
fertilizer sources impacts on corn N uptake and apparent N recovery efficiency.
Agronomy 8:102. doi: 10.3390/agronomy8070102

Kaur, G., Zurweller, B. A., Nelson, K. A., Motavalli, P. P., and Dudenhoeffer, C. J.
(2017). Soil waterlogging and nitrogen fertilizer management effects on corn
and soybean yields. Agron. J. 109, 97–106. doi: 10.2134/agronj2016.07.0411

Kavian, A., Saleh, I., Habibnejad, M., and Jafarian, Z. (2018). Application of
vegetative buffer strips under natural rainfall to conserve soil and water.
Agriculture 64, 17–27.

Kawakami, E. M., Oosterhuis, D. M., and Snider, J. L. (2010). Physiological effects
of 1-methylcyclopropene on well-watered and water-stressed cotton plants.
J. Plant Growth Regul. 29, 280–288. doi: 10.1007/s00344-009-9134-3

Kazmi, S. I., Ertsen, M. W., and Asi, M. R. (2012). The impact of conjunctive use of
canal and tube well water in Lagar irrigated area, Pakistan. Phys. Chem. Earth
Parts A B C 47–48, 86–98. doi: 10.1016/j.pce.2012.01.001

Kijne, J. W. (2006). Abiotic stress and water scarcity: identifying and resolving
conflicts from plant level to global level. Field Crops Res. 97, 3–18. doi: 10.1016/
j.fcr.2005.08.011

Kim, Y., Seo, C.-W., Khan, A. L., Mun, B.-G., Shahzad, R., Ko, J.-W., et al. (2018).
Ethylene mitigates waterlogging stress by regulating glutathione biosynthesis-
related transcripts in soybeans. bioRxiv [Preprint]. doi: 10.1101/252312

King, K., Fausey, N., and Williams, M. (2014). Effect of subsurface drainage on
streamflow in an agricultural headwater watershed. J. Hydrol. 519, 438–445.
doi: 10.1016/j.jhydrol.2014.07.035

Kisaakye, E., Acuña, T. B., Johnson, P., and Shabala, S. (2017). “Improving
wheat growth and nitrogen-use efficiency under waterlogged conditions,” in
Proceedings of the 18th Australian Agronomy Conference, Ballarat, 1–4.

Kisaakye, E., Botwright Acuna, T., Johnson, P., and Shabala, S. (2015). “Effect
of water availability and nitrogen source on wheat growth and nitrogen-use
efficiency,” in Proceedings of the 17th Australian Society of Agronomy Conference,
Hobart, 20–24.

Kolekar, O., Patil, S., and Rathod, S. (2014). Effects of different mole drain spacings
on the yield of summer groundnut. Int. J. Res. Eng. Technol. 3, 2321–7308.

Konukcu, F., Gowing, J., and Rose, D. (2006). Dry drainage: a sustainable solution
to waterlogging and salinity problems in irrigation areas? Agric. Water Manag.
83, 1–12. doi: 10.1016/j.agwat.2005.09.003

Kruseman, G. P., and Ridder, N. A. (1990). Analysis and evaluation of pumping
test data. Anal. Eval. Pumping Test Data. 47:377.

Kuhwald, M., Blaschek, M., Brunotte, J., and Duttmann, R. (2017). Comparing
soil physical properties from continuous conventional tillage with long-term
reduced tillage affected by one-time inversion. Soil Use Manag. 33, 611–619.
doi: 10.1111/sum.12372

Kumar, N. (2018). Effect of planting method on productivity and economics
of sugarcane (Saccharum spp. hybrid complex) varieties under waterlogged
condition. Indian Soc. Agron. 63, 95–99.

Laanbroek, H. (1990). Bacterial cycling of minerals that affect plant growth
in waterlogged soils: a review. Aquat. Bot. 38, 109–125. doi: 10.1016/0304-
3770(90)90101-P

Lal, S. K., Kumar, S., Sheri, V., Mehta, S., Varakumar, P., Ram, B., et al.
(2018). “Seed priming: An emerging technology to impart abiotic stress
tolerance in crop plants,” in Advances in Seed Priming, eds A. Rakshit and
H. Bahadur Singh (Singapore: Springer), 41–50. doi: 10.1007/978-981-13-
0032-5_3

Lee, T., Jang, C., Kim, J., Seong, R., Kim, I., Kim, D., et al. (2007). Expressed
sequence tags from wheat roots under hypoxia. Russ. J. Plant Physiol. 54,
659–668. doi: 10.1134/S1021443707050147

Lee, T. G., Jang, C. S., Kim, J. Y., Kim, D. S., Park, J. H., Kim, D. Y., et al. (2007).
A Myb transcription factor (TaMyb1) from wheat roots is expressed during
hypoxia: roles in response to the oxygen concentration in root environment and
abiotic stresses. Physiol. Plant. 129, 375–385. doi: 10.1111/j.1399-3054.2006.
00828.x

Lerch, R. N., Lin, C. H., Goyne, K. W., Kremer, R. J., and Anderson, S. H. (2017).
Vegetative buffer strips for reducing herbicide transport in runoff: effects of
buffer width, vegetation, and season. J. Am. Water Resour. Assoc. 53, 667–683.
doi: 10.1111/1752-1688.12526

Frontiers in Plant Science | www.frontiersin.org 18 February 2019 | Volume 10 | Article 140

https://doi.org/10.1071/AR02102
https://doi.org/10.1016/j.still.2004.08.009
https://doi.org/10.2134/agronj2015.11.0567
https://doi.org/10.2134/agronj2015.11.0567
https://doi.org/10.1111/pce.12676
https://doi.org/10.1111/pce.12676
https://doi.org/10.1093/jxb/45.2.193
https://doi.org/10.1111/plb.12188
https://doi.org/10.1139/t05-029
https://doi.org/10.1017/CBO9781107415416
https://doi.org/10.1016/j.jplph.2011.02.003
https://doi.org/10.1016/j.jplph.2011.02.003
https://doi.org/10.1093/aob/mci205
https://doi.org/10.1007/978-3-662-09784-7_8
https://doi.org/10.1007/s11738-012-1186-5
https://doi.org/10.1007/s11738-012-1186-5
https://doi.org/10.2307/2258285
https://doi.org/10.2307/2258285
https://doi.org/10.3390/agronomy8070102
https://doi.org/10.2134/agronj2016.07.0411
https://doi.org/10.1007/s00344-009-9134-3
https://doi.org/10.1016/j.pce.2012.01.001
https://doi.org/10.1016/j.fcr.2005.08.011
https://doi.org/10.1016/j.fcr.2005.08.011
https://doi.org/10.1101/252312
https://doi.org/10.1016/j.jhydrol.2014.07.035
https://doi.org/10.1016/j.agwat.2005.09.003
https://doi.org/10.1111/sum.12372
https://doi.org/10.1016/0304-3770(90)90101-P
https://doi.org/10.1016/0304-3770(90)90101-P
https://doi.org/10.1007/978-981-13-0032-5_3
https://doi.org/10.1007/978-981-13-0032-5_3
https://doi.org/10.1134/S1021443707050147
https://doi.org/10.1111/j.1399-3054.2006.00828.x
https://doi.org/10.1111/j.1399-3054.2006.00828.x
https://doi.org/10.1111/1752-1688.12526
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00140 February 8, 2019 Time: 19:38 # 19

Manik et al. Management Practices to Minimize the Impact of Waterlogging

Leul, M., and Zhou, W. (1998). Alleviation of waterlogging damage in winter
rape by application of uniconazole: effects on morphological characteristics,
hormones and photosynthesis. Field Crops Res. 59, 121–127. doi: 10.1016/
S0378-4290(98)00112-9

Leul, M., and Zhou, W. (1999). Alleviation of waterlogging damage in winter
rape by uniconazole application: effects on enzyme activity, lipid peroxidation,
and membrane integrity. J. Plant Growth Regulation 18, 9–14. doi: 10.1007/
PL00007046

Li, H. B., Vaillancourt, R., Mendham, N., and Zhou, M. X. (2008). Comparative
mapping of quantitative trait loci associated with waterlogging tolerance in
barley (Hordeum vulgare L.). BMC Genomics 9:401. doi: 10.1186/1471-2164-
9-401

Li, M.-F., Zhu, J.-Q., and Jiang, Z.-H. (2013). “Plant growth regulators and
nutrition applied to cotton after waterlogging,” in Proceedings of the Intelligent
System Design and Engineering Applications (ISDEA), Third International
Conference on, (Piscataway, NJ: IEEE), 1045–1048. doi: 10.1109/ISDEA.
2012.246

Li, W., Mo, W., Ashraf, U., Li, G., Wen, T., Abrar, M., et al. (2018). Evaluation of
physiological indices of waterlogging tolerance of different maize varieties in
South China. Appl. Ecol. Environ. Res. 16, 2059–2072. doi: 10.15666/aeer/1602_
20592072

Li, Y., Tullberg, J., and Freebairn, D. (2007). Wheel traffic and tillage effects on
runoff and crop yield. Soil Tillage Res. 97, 282–292. doi: 10.1016/j.still.2005.
10.001

Liao, M., Fillery, I. R., and Palta, J. A. (2004). Early vigorous growth is a major
factor influencing nitrogen uptake in wheat. Funct. Plant Biol. 31, 121–129.
doi: 10.1071/FP03060

Lin, C. H., Lerch, R. N., Goyne, K. W., and Garrett, H. E. (2011). Reducing
herbicides and veterinary antibiotics losses from agroecoystems using
vegetative buffers. J. Environ. Qual. 40, 791–799. doi: 10.2134/jeq2010.0141

Lin, K.-H. R., Tsou, C.-C., Hwang, S.-Y., Chen, L.-F. O., and Lo, H.-F. (2006).
Paclobutrazol pre-treatment enhanced flooding tolerance of sweet potato.
J. Plant Physiol. 163, 750–760. doi: 10.1016/j.jplph.2005.07.008

Linkemer, G., Board, J. E., and Musgrave, M. E. (1998). Waterlogging effects on
growth and yield components in late-planted soybean. Crop Sci. 38, 1576–1584.
doi: 10.2135/cropsci1998.0011183X003800060028x

Lone, A. A., Khan, M. H., Dar, Z. A., and Wani, S. H. (2018). Breeding strategies for
improving growth and yield under waterlogging conditions in maize: a review.
Maydica 61:11.

Lorimer, R. (2008). The Adoption of GPS in Cropping Agriculture. Cleveland,
OH: GPS.

Luan, H., Guo, B., Pan, Y., Lv, C., Shen, H., and Xu, R. (2018). Morpho-anatomical
and physiological responses to waterlogging stress in different barley (Hordeum
vulgare L.) genotypes. Plant Growth Regulation 85, 399–409. doi: 10.1007/
s10725-018-0401-9

Lubkowski, K., and Grzmil, B. (2007). Controlled release fertilizers. Pol. J. Chem.
Technol. 9, 83–84. doi: 10.2478/v10026-007-0096-6

Ma, Y. L., Wang, H. F., Wang, P., Yu, C. G., Luo, S. Q., Zhang, Y. F., et al.
(2018). Effects of cadmium stress on the antioxidant system and chlorophyll
fluorescence characteristics of two Taxodium clones. Plant Cell Rep. 37,
1547–1555. doi: 10.1007/s00299-018-2327-0

MacEwan, R., Gardner, W., Ellington, A., Hopkins, D., and Bakker, A. (1992). Tile
and mole drainage for control of waterlogging in duplex soils of south-eastern
Australia. Aust. J. Exp. Agric. 32, 865–878. doi: 10.1071/EA9920865

Malano, H. M., and van Hofwegen, P. (2006). Management of Irrigation and
Drainage Systems. London: CRC Press.

Malik, A. I., Colmer, T. D., Lambers, H., and Schortemeyer, M. (2001). Changes
in physiological and morphological traits of roots and shoots of wheat in
response to different depths of waterlogging. Funct. Plant Biol. 28, 1121–1131.
doi: 10.1071/PP01089

Marashi, S. K. (2018). Evaluation of uptake rate and distribution of nutrient ions
in wheat (Triticum aestivum L.) under waterlogging condition. Plant Physiol. 8,
2539–2547.

Masunaga, T., and Marques Fong, J. D. (2018). “Chapter 11 - strategies
for increasing micronutrient availability in soil for plant uptake,” in Plant
Micronutrient Use Efficiency, eds M. A. Hossain, T. Kamiya, D. J. Burritt,
L.-S. Phan Tran, and T. Fujiwara (Cambridge, MA: Academic Press),
195–208.

Matosic, S., Birkás, M., Vukadinovic, V., Kisic, I., and Bogunovic, I. (2018). Tillage,
manure and gypsum use in reclamation of saline-sodic soils. Agric. Conspectus
Sci. 83, 131–138.

McCaskill, M., and Kearney, G. (2016). Control of water leakage from below the
root zone by summer-active pastures is associated with persistence, density and
deep rootedness. Crop Pasture Sci. 67, 679–693. doi: 10.1071/CP15337

McDaniel, B. K., and Binder, B. M. (2012). Ethylene receptor1 (ETR1) is sufficient
and has the predominant role in mediating inhibition of ethylene responses by
silver in Arabidopsis thaliana. J. Biol. Chem. 112:383034.

McFarlane, D., and Cox, J. (1992). Management of excess water in duplex soils.
Aust. J. Exp. Agric. 32, 857–864. doi: 10.1071/EA9920857

Miller, G., Shulaev, V., and Mittler, R. (2008). Reactive oxygen signaling and abiotic
stress. Physiol. Plant. 133, 481–489. doi: 10.1111/j.1399-3054.2008.01090.x

Milroy, S. P., Bange, M. P., and Thongbai, P. (2009). Cotton leaf nutrient
concentrations in response to waterlogging under field conditions. Field Crops
Res. 113, 246–255. doi: 10.1016/j.fcr.2009.05.012

Misak, R., Baki, A. A., and El-Hakim, M. (1997). On the causes and control of the
waterlogging phenomenon, Siwa Oasis, northern Western Desert, Egypt. J. Arid
Environ. 37, 23–32. doi: 10.1006/jare.1997.0252

Monaghan, R., Paton, R., and Drewry, J. (2002). Nitrogen and phosphorus losses
in mole and tile drainage from a cattle-grazed pasture in eastern Southland.
N. Zealand J. Agric. Res. 45, 197–205. doi: 10.1080/00288233.2002.9513510

Monaghan, R., and Smith, L. (2004). Minimising surface water pollution resulting
from farm-dairy effluent application to mole-pipe drained soils. II. The
contribution of preferential flow of effluent to whole-farm pollutant losses in
subsurface drainage from a West Otago dairy farm. N. Zealand J. Agric. Res. 47,
417–428. doi: 10.1080/00288233.2004.9513610

Mondal, T., Mitra, B., and Das, S. (2018). Precision nutrient management in
wheat (Triticum aestivum) using Nutrient Expert R©: Growth phenology, yield,
nitrogen-use efficiency and profitability under eastern sub-Himalayan plains.
Indian J. Agron. 63, 174–180.

Morales-Olmedo, M., Ortiz, M., and Sellés, G. (2015). Effects of transient soil
waterlogging and its importance for rootstock selection. Chilean J. Agric. Res.
75, 45–56. doi: 10.4067/S0718-58392015000300006

Morard, P., and Silvestre, J. (1996). Plant injury due to oxygen deficiency in the
root environment of soilless culture: a review. Plant Soil 184, 243–254. doi:
10.1007/BF00010453

Morling, R. (1982). Pros and Cons of Controlled Traffic Farming. ASAE Paper
82-1043. Washington, DC: ASAE.

Muirhead, W., Humphreys, E., Jayawardane, N., and Moll, J. (1996). Shallow
subsurface drainage in an irrigated vertisol with a perched water table. Agric.
Water Manag. 30, 261–282. doi: 10.1016/0378-3774(95)01225-7

Muñoz-Carpena, R., Fox, G. A., Ritter, A., Perez-Ovilla, O., and Rodea-
Palomares, I. (2018). Effect of vegetative filter strip pesticide residue
degradation assumptions for environmental exposure assessments. Sci. Total
Environ. 619, 977–987. doi: 10.1016/j.scitotenv.2017.11.093

Muñoz-Carpena, R., Fox, G. A., and Sabbagh, G. J. (2010). Parameter importance
and uncertainty in predicting runoff pesticide reduction with filter strips.
J. Environ. Qual. 39, 630–641. doi: 10.2134/jeq2009.0300

Mustafa, H. S. B., Mahmood, T., Ullah, A., Sharif, A., Bhatti, A. N., Muhammad
Nadeem, M., et al. (2017). Role of seed priming to enhance growth and
development of crop plants against biotic and abiotic stresses. Bull. Biol. Allied
Sci. Res. 2, 1–11.

Najeeb, U., Bange, M. P., Tan, D. K., and Atwell, B. J. (2015). Consequences of
waterlogging in cotton and opportunities for mitigation of yield losses. AoB
Plants 7:lv080. doi: 10.1093/aobpla/plv080

Najeeb, U., Tan, D., Bange, M., and Atwell, B. (2017). “Stress-induced fruit
abscission in cotton and role of ethylene,” in Proceedings of the 18th Australian
Agronomy Conference, (Ballarat VIC: Australian Society of Agronomy), 1–4.

Najeeb, U., Tan, D. K., Bange, M. P., and Atwell, B. J. (2018). Protecting cotton
crops under elevated CO2 from waterlogging by managing ethylene. Funct.
Plant Biol. 45, 340–349. doi: 10.1071/FP17184

Negusse, T., Yazew, E., and Tadesse, N. (2013). Quantification of the impact of
integrated soil and water conservation measures on groundwater availability in
Mendae Catchment, Abraha We-Atsebaha, eastern Tigray, Ethiopia. Momona
Ethiopian J. Sci. 5, 117–136.

Nguyen, H. C., Lin, K. H., Ho, S. L., Chiang, C. M., and Yang, C. M. (2018).
Enhancing the abiotic stress tolerance of plants: From chemical treatment to

Frontiers in Plant Science | www.frontiersin.org 19 February 2019 | Volume 10 | Article 140

https://doi.org/10.1016/S0378-4290(98)00112-9
https://doi.org/10.1016/S0378-4290(98)00112-9
https://doi.org/10.1007/PL00007046
https://doi.org/10.1007/PL00007046
https://doi.org/10.1186/1471-2164-9-401
https://doi.org/10.1186/1471-2164-9-401
https://doi.org/10.1109/ISDEA.2012.246
https://doi.org/10.1109/ISDEA.2012.246
https://doi.org/10.15666/aeer/1602_20592072
https://doi.org/10.15666/aeer/1602_20592072
https://doi.org/10.1016/j.still.2005.10.001
https://doi.org/10.1016/j.still.2005.10.001
https://doi.org/10.1071/FP03060
https://doi.org/10.2134/jeq2010.0141
https://doi.org/10.1016/j.jplph.2005.07.008
https://doi.org/10.2135/cropsci1998.0011183X003800060028x
https://doi.org/10.1007/s10725-018-0401-9
https://doi.org/10.1007/s10725-018-0401-9
https://doi.org/10.2478/v10026-007-0096-6
https://doi.org/10.1007/s00299-018-2327-0
https://doi.org/10.1071/EA9920865
https://doi.org/10.1071/PP01089
https://doi.org/10.1071/CP15337
https://doi.org/10.1071/EA9920857
https://doi.org/10.1111/j.1399-3054.2008.01090.x
https://doi.org/10.1016/j.fcr.2009.05.012
https://doi.org/10.1006/jare.1997.0252
https://doi.org/10.1080/00288233.2002.9513510
https://doi.org/10.1080/00288233.2004.9513610
https://doi.org/10.4067/S0718-58392015000300006
https://doi.org/10.1007/BF00010453
https://doi.org/10.1007/BF00010453
https://doi.org/10.1016/0378-3774(95)01225-7
https://doi.org/10.1016/j.scitotenv.2017.11.093
https://doi.org/10.2134/jeq2009.0300
https://doi.org/10.1093/aobpla/plv080
https://doi.org/10.1071/FP17184
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00140 February 8, 2019 Time: 19:38 # 20

Manik et al. Management Practices to Minimize the Impact of Waterlogging

biotechnological approaches. Physiol. plant. 164, 452–466. doi: 10.1111/ppl.
12812

Nguyen, L. T., Osanai, Y., Anderson, I. C., Bange, M. P., Tissue, D. T., and Singh,
B. K. (2018). Flooding and prolonged drought have differential legacy impacts
on soil nitrogen cycling, microbial communities and plant productivity. Plant
Soil 431, 371–387. doi: 10.1007/s11104-018-3774-7

Nguyen, T. N., Tuan, P. A., Mukherjee, S., Son, S., and Ayele, B. T. (2018).
Hormonal regulation in adventitious roots and during their emergence under
waterlogged conditions in wheat. J. Exp. Bot. 69, 4065–4082. doi: 10.1093/jxb/
ery190

Nichols, P. (2018). Yanco Subterranean Clover. Orange: Department of Primary
Industries and Regional Development (DPIRD).

Nicholson, C. (2016). “Business case for investment in subsoil modification with
organic material,” in Prepared for Southern Farming Systems, As Part of the
National Landcare project, INNOV-108, (St, Inverleigh VIC: Southern Farming
Systems (SFS)).

Noreen, S., Fatima, Z., Ahmad, S., and Ashraf, M. (2018). Foliar Application of
Micronutrients in Mitigating Abiotic Stress in Crop Plants Plant Nutrients and
Abiotic Stress Tolerance. Singapore: Springer, 95–117. doi: 10.1007/978-981-10-
9044-8_3

Pagliai, M., Vignozzi, N., and Pellegrini, S. (2004). Soil structure and the effect of
management practices. Soil Tillage Res. 79, 131–143. doi: 10.1016/j.still.2004.
07.002

Palla, A., Colli, M., Candela, A., Aronica, G., and Lanza, L. (2018). Pluvial flooding
in urban areas: the role of surface drainage efficiency. J. Flood Risk Manag. 11,
S663–S676. doi: 10.1111/jfr3.12246

Pandey, D., Goswami, C., Kumar, B., and Jain, S. (2002). Effect of growth regulators
on photosynthetic metabolites in cotton under water stress. Biol. Plant. 45,
445–448. doi: 10.1023/A:1016286121451

Pang, J., Cuin, T., Shabala, L., Zhou, M., Mendham, N., and Shabala, S. (2007a).
Effect of secondary metabolites associated with anaerobic soil conditions on ion
fluxes and electrophysiology in barley roots. Plant Physiol. 145, 266–276.

Pang, J., Ross, J., Zhou, M., Mendham, N., and Shabala, S. (2007b). Amelioration
of detrimental effects of waterlogging by foliar nutrient sprays in barley. Funct.
Plant Biol. 34, 221–227. doi: 10.1071/FP06158

Pang, J., Zhou, M., Mendham, N., and Shabala, S. (2004). Growth and physiological
responses of six barley genotypes to waterlogging and subsequent recovery.
Aust. J. Agric. Res. 55, 895–906. doi: 10.1071/AR03097

Pang, J. Y., Newman, I., Mendham, N., Zhou, M., and Shabala, S. (2006).
Microelectrode ion and O2 fluxes measurements reveal differential sensitivity
of barley root tissues to hypoxia. Plant Cell Environ. 29, 1107–1121. doi: 10.
1111/j.1365-3040.2005.01486.x

Parent, C., Capelli, N., Berger, A., Crèvecoeur, M., and Dat, J. F. (2008). An
overview of plant responses to soil waterlogging. Plant Stress 2, 20–27.

Perata, P., Armstrong, W., and Voesenek, L. A. (2011). Plants and flooding stress.
N. Phytol. 190, 269–273. doi: 10.1111/j.1469-8137.2011.03702.x

Pereira, E. I, Nogueira, A. A. R., Cruz, C. C., Guimaraþes, G. G., Foschini,
M. M., Bernardi, A. C., et al. (2017). Controlled urea release employing
nanocomposites increases the efficiency of nitrogen use by forage. ACS Sustain.
Chem. Eng. 5, 9993–10001. doi: 10.1021/acssuschemeng.7b01919

Pérez-Jiménez, M., Hernández-Munuera, M., Piñero, M. C., López-Ortega, G.,
and del Amor, F. M. (2018). Are commercial sweet cherry rootstocks adapted
to climate change? Short-term waterlogging and CO2 effects on sweet cherry
cv.‘Burlat’. Plant Cell Environ. 41, 908–918. doi: 10.1111/pce.12920

Peries, R. (2013). Subsoil Manuring: An Innovative Approach To Addressing Subsoil
Problems Targeting Higher Water Use Efficiency In Southern Australia. St,
Inverleigh VIC: Southern Farming Systems.

Petrov, V., Hille, J., Mueller-Roeber, B., and Gechev, T. S. (2015). ROS-mediated
abiotic stress-induced programmed cell death in plants. Front. Plant Sci. 6:69.
doi: 10.3389/fpls.2015.00069

Pierret, A., Doussan, C., Capowiez, Y., and Bastardie, F. (2007). Root
functional architecture: a framework for modeling the interplay between
roots and soil. Vadose Zone J. 6, 269–281. doi: 10.2136/vzj2006.
0067

Ploschuk, R. A., Miralles, D. J., Colmer, T. D., Ploschuk, E. L., and Striker, G. G.
(2018). Waterlogging of winter crops at early and late stages: impacts on leaf
physiology, growth and yield. Front. Plant Sci. 9:1863. doi: 10.3389/fpls.2018.
01863

Ponnamperuma, F. (1984). “Effects of flooding on soils,” in Flooding and Plant
Growth, ed. T. T. Kozlowski (Cambridge, MA: Academic Press), 9–45.
doi: 10.1016/B978-0-12-424120-6.50007-9

Prathapar, S., Rajmohan, N., Sharma, B., and Aggarwal, P. (2018). Vertical drains
to minimize duration of seasonal waterlogging in Eastern Ganges Basin flood
plains: a field experiment. Nat. Hazards 92, 1–17. doi: 10.1007/s11069-018-
3188-0

Price, P. (2004). Spreading the PA Message. Canberra, ACT: Grains Research and
Development Corporation.

Pujol, V., and Wissuwa, M. (2018). Contrasting development of lysigenous
aerenchyma in two rice genotypes under phosphorus deficiency. BMC Res.
Notes 11:60. doi: 10.1186/s13104-018-3179-y

Pulford, I., and Tabatabai, M. (1988). Effect of waterlogging on enzyme
activities in soils. Soil Biol. Biochem. 20, 215–219. doi: 10.1016/0038-0717(88)
90039-9

Qingjie, W., Hao, C., Hongwen, L., Wenying, L., Xiaoyan, W., McHugh, A. D.,
et al. (2009). Controlled traffic farming with no tillage for improved fallow
water storage and crop yield on the Chinese Loess Plateau. Soil Tillage Res. 104,
192–197. doi: 10.1016/j.still.2008.10.012

Qiu, J. (1991). Study on determination of wet tolerance of 4572 barley germplasm
resources. Acta Agric. Shanghai 7, 27–32.

Rademacher, W. (2015). Plant growth regulators: backgrounds and uses in plant
production. J. Plant Growth Regulation 34, 845–872. doi: 10.1007/s00344-015-
9541-6

Rajaeian, S., and Ehsanpour, A. (2015). Physiological responses of tobacco plants
(Nicotiana rustica) pretreated with ethanolamine to salt stress. Russ. J. Plant
Physiol. 62, 246–252. doi: 10.1134/S1021443715020156

Ram, J., Garg, V., Toky, O., Minhas, P., Tomar, O., Dagar, J., et al. (2007).
Biodrainage potential of Eucalyptus tereticornis for reclamation of shallow
water table areas in north-west India. Agrofor. Syst. 69, 147–165. doi: 10.1007/
s10457-006-9026-5

Rao, R., Li, Y., Bryan, H. H., Reed, S. T., and D’AMBROSIO, F. (2002).
“Assessment of foliar sprays to alleviate flooding injury in corn (Zea mays L.),”
in Proceedings of the Florida State Horticultural Society, (Lake Alfred: Florida
State Horticultural Society), 208–211.

Raper, R. (2005). Agricultural traffic impacts on soil. J. Terramech. 42, 259–280.
doi: 10.1016/j.jterra.2004.10.010

Rasaily, R. G., Li, H., He, J., Wang, Q., and Lu, C. (2012). Influence of no tillage
controlled traffic system on soil physical properties in double cropping area of
North China plain. Afr. J. Biotechnol. 11, 856–864.

Rasheed, R., Iqbal, M., Ashraf, M. A., Hussain, I., Shafiq, F., Yousaf, A., et al. (2018).
Glycine betaine counteracts the inhibitory effects of waterlogging on growth,
photosynthetic pigments, oxidative defence system, nutrient composition, and
fruit quality in tomato. J. Hortic. Sc. Biotechnol. 93, 385–391. doi: 10.1080/
14620316.2017.1373037

Rebetzke, G., Botwright, T., Moore, C., Richards, R., and Condon, A. (2004).
Genotypic variation in specific leaf area for genetic improvement of early vigour
in wheat. Field Crops Res. 88, 179–189. doi: 10.1016/j.fcr.2004.01.007

Reddy, K., and Patrick, W. H. Jr. (1975). Effect of alternate aerobic and anaerobic
conditions on redox potential, organic matter decomposition and nitrogen
loss in a flooded soil. Soil Biol. Biochem. 7, 87–94. doi: 10.1016/0038-0717(75)
90004-8

Ren, B., Zhang, J., Dong, S., Liu, P., and Zhao, B. (2018). Exogenous 6-
benzyladenine improves antioxidative system and carbon metabolism of
summer maize waterlogged in the field. J. Agron. Crop Sci. 204, 175–184.
doi: 10.1111/jac.12253

Ren, B., Zhu, Y., Zhang, J., Dong, S., Liu, P., and Zhao, B. (2016). Effects
of spraying exogenous hormone 6-benzyladenine (6-BA) after waterlogging
on grain yield and growth of summer maize. Field Crops Res. 188, 96–104.
doi: 10.1016/j.fcr.2015.10.016

Rengasamy, P. (2006). World salinization with emphasis on Australia. J. Exp. Bot.
57, 1017–1023. doi: 10.1093/jxb/erj108

Renton, M., and Flower, K. C. (2015). Occasional mouldboard ploughing slows
evolution of resistance and reduces long-term weed populations in no-till
systems. Agric. Syst. 139, 66–75. doi: 10.1016/j.agsy.2015.06.005

Riffkin, P., Evans, P., Chin, J., and Kearney, G. (2003). Early-maturing spring wheat
outperforms late-maturing winter wheat in the high rainfall environment of
south-western Victoria. Aust. J. Agric. Res. 54, 193–202. doi: 10.1071/AR02081

Frontiers in Plant Science | www.frontiersin.org 20 February 2019 | Volume 10 | Article 140

https://doi.org/10.1111/ppl.12812
https://doi.org/10.1111/ppl.12812
https://doi.org/10.1007/s11104-018-3774-7
https://doi.org/10.1093/jxb/ery190
https://doi.org/10.1093/jxb/ery190
https://doi.org/10.1007/978-981-10-9044-8_3
https://doi.org/10.1007/978-981-10-9044-8_3
https://doi.org/10.1016/j.still.2004.07.002
https://doi.org/10.1016/j.still.2004.07.002
https://doi.org/10.1111/jfr3.12246
https://doi.org/10.1023/A:1016286121451
https://doi.org/10.1071/FP06158
https://doi.org/10.1071/AR03097
https://doi.org/10.1111/j.1365-3040.2005.01486.x
https://doi.org/10.1111/j.1365-3040.2005.01486.x
https://doi.org/10.1111/j.1469-8137.2011.03702.x
https://doi.org/10.1021/acssuschemeng.7b01919
https://doi.org/10.1111/pce.12920
https://doi.org/10.3389/fpls.2015.00069
https://doi.org/10.2136/vzj2006.0067
https://doi.org/10.2136/vzj2006.0067
https://doi.org/10.3389/fpls.2018.01863
https://doi.org/10.3389/fpls.2018.01863
https://doi.org/10.1016/B978-0-12-424120-6.50007-9
https://doi.org/10.1007/s11069-018-3188-0
https://doi.org/10.1007/s11069-018-3188-0
https://doi.org/10.1186/s13104-018-3179-y
https://doi.org/10.1016/0038-0717(88)90039-9
https://doi.org/10.1016/0038-0717(88)90039-9
https://doi.org/10.1016/j.still.2008.10.012
https://doi.org/10.1007/s00344-015-9541-6
https://doi.org/10.1007/s00344-015-9541-6
https://doi.org/10.1134/S1021443715020156
https://doi.org/10.1007/s10457-006-9026-5
https://doi.org/10.1007/s10457-006-9026-5
https://doi.org/10.1016/j.jterra.2004.10.010
https://doi.org/10.1080/14620316.2017.1373037
https://doi.org/10.1080/14620316.2017.1373037
https://doi.org/10.1016/j.fcr.2004.01.007
https://doi.org/10.1016/0038-0717(75)90004-8
https://doi.org/10.1016/0038-0717(75)90004-8
https://doi.org/10.1111/jac.12253
https://doi.org/10.1016/j.fcr.2015.10.016
https://doi.org/10.1093/jxb/erj108
https://doi.org/10.1016/j.agsy.2015.06.005
https://doi.org/10.1071/AR02081
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00140 February 8, 2019 Time: 19:38 # 21

Manik et al. Management Practices to Minimize the Impact of Waterlogging

Rincon-Florez, V. A., Dang, Y. P., Crawford, M. H., Schenk, P. M., and Carvalhais,
L. C. (2016). Occasional tillage has no effect on soil microbial biomass, activity
and composition in Vertisols under long-term no-till. Biol. Fertil. Soils 52,
191–202. doi: 10.1007/s00374-015-1066-4

Ritzema, H., Satyanarayana, T., Raman, S., and Boonstra, J. (2008). Subsurface
drainage to combat waterlogging and salinity in irrigated lands in India: lessons
learned in farmers’ fields. Agric. Water Manag. 95, 179–189. doi: 10.1016/j.
agwat.2007.09.012

Robertson, D., Zhang, H., Palta, J. A., Colmer, T., and Turner, N. C. (2009).
Waterlogging affects the growth, development of tillers, and yield of wheat
through a severe, but transient, N deficiency. Crop Pasture Sci. 60, 578–586.
doi: 10.1071/CP08440

Robertson, M. (2008). The Economics of Precision. Grains Research Update:
Northern Region. New South Wales: Grains Research and Development
Corporation.

Robertson, M., Carberry, P., and Brennan, L. (2007). The Economic Benefits of
Precision Agriculture: Case Studies From Australian Grain Farms. Available
at: https://grdc.com.au/resources-and-publications/grdc-update-papers/
tab-content/grdc-update-papers/2008/02/economic-benefits-of-precision-
agriculture-case-studies-from-australian-grain-farms

Robinson, M., Mulqueen, J., and Burke, W. (1987). On flows from a clay soil—
seasonal changes and the effect of mole drainage. J. Hydrol. 91, 339–350.
doi: 10.1016/0022-1694(87)90210-1

Rochester, I., Peoples, M., Hulugalle, N., Gault, R., and Constable, G. (2001). Using
legumes to enhance nitrogen fertility and improve soil condition in cotton
cropping systems. Field Crops Res. 70, 27–41. doi: 10.1016/S0378-4290(00)
00151-9

Romina, P., Abeledo, L. G., and Miralles, D. J. (2018). Physiological traits associated
with reductions in grain number in wheat and barley under waterlogging. Plant
Soil 429, 1–13.

Roper, M. M., Davies, S. L., Blackwell, P. S., Hall, D. J. M., Bakker, D. M.,
Jongepier, R., et al. (2015). Management options for water-repellent soils in
Australian dryland agriculture. Soil Res. 53, 786–806. doi: 10.1071/SR14330

Roth, C. H., Fischer, R. A., Piggin, C., and Meyer, W. (2005). Evaluation and
Performance of Permanent Raised Bed Systems in Asia, Mexico and Australia:
A Synopsis Griffith, NSW: Australia and Mexico: 200–208.

Roy Chowdhury, S., Kumar, A., Brahmanand, P., Ghosh, S., Mohanty, R., Jena, S.,
et al. (2011). Application of Bio-Drainage for Reclamation of Waterlogged
Situations in Deltaic Orissa. Research Bulletin 53. Bhubaneswar: Directorate of
Water Management.

Saadat, S., Bowling, L., Frankenberger, J., and Kladivko, E. (2018). Nitrate and
phosphorus transport through subsurface drains under free and controlled
drainage. Water Res. 142, 196–207. doi: 10.1016/j.watres.2018.05.040

Sairam, R., Kumutha, D., Ezhilmathi, K., Chinnusamy, V., and Meena, R.
(2009). Waterlogging induced oxidative stress and antioxidant enzyme
activities in pigeon pea. Biol. Plant. 53, 493–504. doi: 10.1007/s10535-009-
0090-3

Sale, P. (2014). Final report for ULA00008 Validating subsoil manuring in the High
Rainfall Zone in Victoria (VIC). Barton ACT: GRDC.

Saleh, I., Kavian, A., Roushan, M. H., and Jafarian, Z. (2018). The efficiency
of vegetative buffer strips in runoff quality and quantity control.
Int. J. Environ. Sci. Technol. 15, 811–820. doi: 10.1007/s13762-017-
1411-2

Sarkar, A., Banik, M., Ray, R., and Patra, S. (2018). Soil moisture and groundwater
dynamics under biodrainage vegetation in a waterlogged land. Int. J. Pure Appl.
Biosci. 6, 1225–1233. doi: 10.18782/2320-7051.6052

Sarkar, R., Reddy, J., Sharma, S., and Ismail, A. M. (2006). Physiological basis of
submergence tolerance in rice and implications for crop improvement. Curr.
Sci. 91, 899–906.

Savvides, A., Ali, S., Tester, M., and Fotopoulos, V. (2016). Chemical priming of
plants against multiple abiotic stresses: mission possible? Trends Plant Sci. 21,
329–340. doi: 10.1016/j.tplants.2015.11.003

Sayed, S. A. (1998). Impacts of boron application on maize plants growing under
flooded and unflooded conditions. Biol. Plant. 41, 101–109. doi: 10.1023/A:
1001720702268

Scanlan, C. A., and Davies, S. L. (2019). Soil mixing and redistribution by strategic
deep tillage in a sandy soil. Soil Tillage Res. 185, 139–145. doi: 10.1016/j.still.
2018.09.008

Schmidt, E., and Zemadim, B. (2015). Expanding sustainable land management in
Ethiopia: scenarios for improved agricultural water management in the Blue
Nile. Agric. Water Manag. 158, 166–178. doi: 10.1016/j.agwat.2015.05.001

Schneider, F., Don, A., Hennings, I., Schmittmann, O., and Seidel, S. J. (2017). The
effect of deep tillage on crop yield–What do we really know? Soil Tillage Res.
174, 193–204. doi: 10.1016/j.still.2017.07.005

Setter, T., and Belford, B. (1990). Waterlogging: how it reduces plant growth and
how plants can overcome its effects. J. Dep. Agric. West. Aust. Ser. 4, 51–55.

Setter, T., and Waters, I. (2003). Review of prospects for germplasm improvement
for waterlogging tolerance in wheat, barley and oats. Plant Soil 253, 1–34.
doi: 10.1023/A:1024573305997

Shabala, S. (2011). Physiological and cellular aspects of phytotoxicity tolerance in
plants: the role of membrane transporters and implications for crop breeding
for waterlogging tolerance. N. Phytol. 190, 289–298. doi: 10.1111/j.1469-8137.
2010.03575.x

Shabala, S., White, R. G., Djordjevic, M. A., Ruan, Y.-L., and Mathesius, U.
(2016). Root-to-shoot signalling: integration of diverse molecules,
pathways and functions. Funct. Plant Biol. 43, 87–104. doi: 10.1071/
FP15252

Shahrayini, E., Fallah, M., Shabanpour, M., Ebrahimi, E., and Saadat, S. (2018).
Investigation of soil compaction on yield and agronomic traits of wheat under
saline and non-saline soils. Arch. Agron. Soil Sci. 64:10. doi: 10.1080/03650340.
2018.1431832

Sharma, S. K., Kulshreshtha, N., Kumar, A., Yaduvanshi, N. P. S., Singh, M., Prasad,
K. R. K., et al. (2018). Waterlogging effects on elemental composition of wheat
genotypes in sodic soils. J. Plant Nutr. 41, 1252–1262. doi: 10.1080/01904167.
2018.1434541

Shaviv, A. (2001). Advances in controlled-release fertilizers. Adv. Agron. 71, 1–49.
doi: 10.1016/S0065-2113(01)71011-5

Shaxson, F., and Barber, R. (2003). Optimizing Soil Moisture For Plant Production:
The Significance Of Soil Porosity. Rome: UN-FAO.

Shoji, S., Delgado, J., Mosier, A., and Miura, Y. (2001). Use of controlled release
fertilizers and nitrification inhibitors to increase nitrogen use efficiency and to
conserve air andwater quality. Commun. Soil Sci. Plant Anal. 32, 1051–1070.
doi: 10.1081/CSS-100104103

Silberstein, R., Vertessy, R., Morris, J., and Feikema, P. (1999). Modelling the effects
of soil moisture and solute conditions on long-term tree growth and water use: a
case study from the Shepparton irrigation area, Australia. Agric. Water Manag.
39, 283–315. doi: 10.1016/S0378-3774(98)00083-3

Silva, D. M. D., Fonte, N. D. S. D., Souza, K. R. D. D., Rodrigues-Brandão, I., Alves,
I. T. L., and Donizeti, J. (2017). Relationship between manganese toxicity and
waterlogging tolerance in Zea mays L. cv. Saracura. Acta Sci. Agron. 39, 75–82.
doi: 10.4025/actasciagron.v39i1.30997

Singh, A. (2012). Development and application of a watertable model for the
assessment of waterlogging in irrigated semi-arid regions. Water Resour.
Manag. 26, 4435–4448. doi: 10.1007/s11269-012-0154-6

Singh, A. (2016). Hydrological problems of water resources in irrigated agriculture:
A management perspective. J. Hydrol. 541, 1430–1440. doi: 10.1016/j.jhydrol.
2016.08.044

Singh, A. (2018a). Managing the salinization and drainage problems of irrigated
areas through remote sensing and GIS techniques. Ecol. Indic. 89, 584–589.
doi: 10.1016/j.ecolind.2018.02.041

Singh, A. (2018b). Salinization of agricultural lands due to poor drainage: A
viewpoint. Ecol. Indic. 95, 127–130. doi: 10.1016/j.ecolind.2018.07.037

Singh, A., and Panda, S. N. (2012). Integrated salt and water balance modeling for
the management of waterlogging and salinization. I: validation of SAHYSMOD.
J. Irrigation Drainage Eng. 138, 955–963. doi: 10.1061/(ASCE)IR.1943-4774.
0000511

Singh, G., and Lal, K. (2018). Review and case studies on biodrainage: An
alternative drainage system to manage waterlogging and salinity. Irrigation
Drainage 67, 51–64. doi: 10.1002/ird.2252

Singh, S. P., and Setter, T. L. (2017). Effect of waterlogging on element
concentrations, growth and yield of wheat varieties under farmer’s sodic
field conditions. Proc. Natl. Acad. Sci. India Section B Biol. Sci. 87, 513–520.
doi: 10.1007/s40011-015-0607-9

Smedema, L. K., Vlotman, W. F., and Rycroft, D. (2014). Modern Land Drainage:
Planning, Design and Management of Agricultural Drainage Systems. Boca
Raton, FL: CRC Press.

Frontiers in Plant Science | www.frontiersin.org 21 February 2019 | Volume 10 | Article 140

https://doi.org/10.1007/s00374-015-1066-4
https://doi.org/10.1016/j.agwat.2007.09.012
https://doi.org/10.1016/j.agwat.2007.09.012
https://doi.org/10.1071/CP08440
https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2008/02/economic-benefits-of-precision-agriculture-case-studies-from-australian-grain-farms
https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2008/02/economic-benefits-of-precision-agriculture-case-studies-from-australian-grain-farms
https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2008/02/economic-benefits-of-precision-agriculture-case-studies-from-australian-grain-farms
https://doi.org/10.1016/0022-1694(87)90210-1
https://doi.org/10.1016/S0378-4290(00)00151-9
https://doi.org/10.1016/S0378-4290(00)00151-9
https://doi.org/10.1071/SR14330
https://doi.org/10.1016/j.watres.2018.05.040
https://doi.org/10.1007/s10535-009-0090-3
https://doi.org/10.1007/s10535-009-0090-3
https://doi.org/10.1007/s13762-017-1411-2
https://doi.org/10.1007/s13762-017-1411-2
https://doi.org/10.18782/2320-7051.6052
https://doi.org/10.1016/j.tplants.2015.11.003
https://doi.org/10.1023/A:1001720702268
https://doi.org/10.1023/A:1001720702268
https://doi.org/10.1016/j.still.2018.09.008
https://doi.org/10.1016/j.still.2018.09.008
https://doi.org/10.1016/j.agwat.2015.05.001
https://doi.org/10.1016/j.still.2017.07.005
https://doi.org/10.1023/A:1024573305997
https://doi.org/10.1111/j.1469-8137.2010.03575.x
https://doi.org/10.1111/j.1469-8137.2010.03575.x
https://doi.org/10.1071/FP15252
https://doi.org/10.1071/FP15252
https://doi.org/10.1080/03650340.2018.1431832
https://doi.org/10.1080/03650340.2018.1431832
https://doi.org/10.1080/01904167.2018.1434541
https://doi.org/10.1080/01904167.2018.1434541
https://doi.org/10.1016/S0065-2113(01)71011-5
https://doi.org/10.1081/CSS-100104103
https://doi.org/10.1016/S0378-3774(98)00083-3
https://doi.org/10.4025/actasciagron.v39i1.30997
https://doi.org/10.1007/s11269-012-0154-6
https://doi.org/10.1016/j.jhydrol.2016.08.044
https://doi.org/10.1016/j.jhydrol.2016.08.044
https://doi.org/10.1016/j.ecolind.2018.02.041
https://doi.org/10.1016/j.ecolind.2018.07.037
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000511
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000511
https://doi.org/10.1002/ird.2252
https://doi.org/10.1007/s40011-015-0607-9
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00140 February 8, 2019 Time: 19:38 # 22

Manik et al. Management Practices to Minimize the Impact of Waterlogging

Sojka, R., and Scott, H. (2002). Aeration Measurement Encyclopedia of Soil Science,
1st Edn. New York, NY: Marcel Dekker, Inc, 27–29.

Solaiman, Z., Colmer, T., Loss, S., Thomson, B., and Siddique, K. (2007). Growth
responses of cool-season grain legumes to transient waterlogging. Aust. J. Agric.
Res. 58, 406–412. doi: 10.1071/AR06330

Soomro, U. A., Rahman, M. U., Odhano, E. A., Gul, S., and Tareen, A. Q. (2009).
Effects of sowing method and seed rate on growth and yield of wheat (Triticum
aestivum). World J. Agric. Sci. 5, 159–162.

Stapper, M., and Harris, H. (1989). Assessing the productivity of wheat genotypes
in a Mediterranean climate, using a crop-simulation model. Field Crops Res. 20,
129–152. doi: 10.1016/0378-4290(89)90057-9

Striker, G. (2008). Visiting the methodological aspects of flooding experiments:
Quantitative evidence from agricultural and ecophysiological studies. J. Agron.
Crop Sci. 194, 249–255. doi: 10.1111/j.1439-037X.2008.00317.x

Sudama, S., Tiwari, T. N., Srivastava, R. P., Singh, G. P., and Singh, S. (1998). Effect
of potassium on stomatal behaviour, yield and juice quality of sugarcane under
moisture stress condition. Indian J. Plant Physiol. 3, 303–305.

Sundgren, T. K., Uhlen, A. K., Lillemo, M., Briese, C., and Wojciechowski, T.
(2018). Rapid seedling establishment and a narrow root stele promotes
waterlogging tolerance in spring wheat. J. Plant Physiol. 227, 45–55. doi: 10.
1016/j.jplph.2018.04.010

Swarup, A., and Sharma, D. (1993). Influence of top-dressed nitrogen in alleviating
adverse effects of flooding on growth and yield of wheat in a sodic soil. Field
Crops Res. 35, 93–100. doi: 10.1016/0378-4290(93)90142-A

Takeda, K., and Fukuyama, T. (1986). Variation and Geographical Distribution Of
Varieties For Flooding Tolerance In Barley Seeds. Okayama: Barley Genetics
Newsletter.

Tanji, K. K. (1990). “Nature and extent of agricultural salinity. agricultural salinity
assessment and management,” in ASCE Manuals and Reports on Engineering
Practice No. 671, ed. K. K. Tanji (New York, NY: American Society of Civil
Engineers), 619.

Taylor, J. (1992). Reduction of traffic-induced soil compaction. Soil Tillage Res. 24,
301–302. doi: 10.1016/0167-1987(92)90115-R

Taylor, J. H. (1983). Benefits of permanent traffic lanes in a controlled traffic crop
production system. Soil Tillage Res. 3, 385–395. doi: 10.1016/0167-1987(83)
90040-5

Teixeira, D. L., de Matos, A. T., de Matos, M. P., Miranda, S. T., and Vieira,
D. P. (2018). Evaluation of the effects of drainage and different rest periods
as techniques for unclogging the porous medium in horizontal subsurface
flow constructed wetlands. Ecol. Eng. 120, 104–108. doi: 10.1016/j.ecoleng.2018.
05.042

Tewari, S., and Mishra, A. (2018). Flooding Stress in Plants and Approaches
to Overcome Plant Metabolites and Regulation Under Environmental
Stress. New York,NY: Elsevier, 355–366. doi: 10.1016/B978-0-12-812689-9.
00018-2

Thomsen, M. N., Tamirat, T. W., Pedersen, S. M., Lind, K. M., Pedersen, H. H.,
de Bruin, S., et al. (2018). “Farmers’ perception of Controlled Traffic Farming
(CTF) and associated technologies (No. 2018/12),” in IFRO Working Paper
(Copenhagen: University of Copenhagen).

Tian, S., Fischer, M., Chescheir, G. M., Youssef, M. A., Cacho, J. F., and King, J. S.
(2018). Microtopography-induced transient waterlogging affects switchgrass
(Alamo) growth in the lower coastal plain of North Carolina, USA. GCB
Bioenergy 10, 577–591. doi: 10.1111/gcbb.12510

Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., and Polasky, S. (2002).
Agricultural sustainability and intensive production practices. Nature 418,
671–677. doi: 10.1038/nature01014

Trenkel, M. E. (2010). Slow-and Controlled-Release and Stabilized Fertilizers: An
Option for Enhancing Nutrient Use Efficiency in Agriculture. Paris: International
fertilizer industry association.

Trought, M., and Drew, M. (1980). The development of waterlogging in wheat
seedlings. I. Shoot and root growth in relation to changes in the concentration
of dissolved gases and solutes in the soil solution. Plant Soil 54, 77–94.
doi: 10.1007/BF02182001

Tullberg, J. (2000). Wheel traffic effects on tillage draught. J. Agric. Eng. Res. 75,
375–382. doi: 10.1006/jaer.1999.0516

Tullberg, J., Yule, D., and McGarry, D. (2007). Controlled traffic farming—from
research to adoption in Australia. Soil Tillage Res. 97, 272–281. doi: 10.1016/j.
still.2007.09.007

Tuohy, P., Humphreys, J., Holden, N., and Fenton, O. (2015). “Mole drainage
performance in a clay loam soil,” in NJF Congress: Nordic view to sustainable
rural development, (Riga: NJF).

Tuohy, P., Humphreys, J., Holden, N., and Fenton, O. (2016). Runoff and
subsurface drain response from mole and gravel mole drainage across episodic
rainfall events. Agric. Water Manag. 169, 129–139. doi: 10.1016/j.agwat.2016.
02.020

Tuohy, P., O’Loughlin, J., and Fenton, O. (2018). Modeling performance of a
tile drainage system incorporating mole drainage. Trans. ASABE 61, 169–178.
doi: 10.13031/trans.12203

Unger, P. W., Sharpley, A. N., Steiner, J. L., Papendick, R. I., and Edwards,
W. M. (2018). Soil Management Research for Water Conservation and Quality,
Advances in Soil and Water Conservation. Abingdon: Routledge, 69–98.
doi: 10.1201/9781315136912-5

Varadachari, C., and Goertz, H. M. (2010). “Slow-release and controlled-release
nitrogen fertilizers,” in ING Bulletins on Regional Assessment of Reactive
Nitrogen. ed. S. Bijay (New Delhi: SCON-ING).

Velmurugan, A., Swarnam, T., Ambast, S., and Kumar, N. (2016). Managing
waterlogging and soil salinity with a permanent raised bed and furrow
system in coastal lowlands of humid tropics. Agric. Water Manag. 168, 56–67.
doi: 10.1016/j.agwat.2016.01.020

Vwioko, E., Adinkwu, O., and El-Esawi, M. A. (2017). Comparative physiological,
biochemical, and genetic responses to prolonged waterlogging stress in okra and
maize given exogenous ethylene priming. Front. Physiol. 8:632. doi: 10.3389/
fphys.2017.00632

Wani, S. H., Choudhary, M., Kumar, P., Akram, N. A., Surekha, C., Ahmad, P., et al.
(2018). “Marker-assisted breeding for abiotic stress tolerance in crop plants,”
in Biotechnologies of Crop Improvement, eds S. Gosal and S. Wani (Cham:
Springer), 3.

Ward, A., Johnston, T., Watson, D., and Jenkin, T. (2007). .
Ward, A., Sharpley, A., Miller, K., Dick, W., Hoorman, J., Fulton, J., et al. (2018).

An assessment of in-field nutrient best management practices for agricultural
crop systems with subsurface drainage. J. Soil Water Conser. 73, 5A–10A.
doi: 10.2489/jswc.73.1.5A

Watson, E., Lapins, P., and Barron, R. (1976). Effect of waterlogging on the growth,
grain and straw yield of wheat, barley and oats. Aust. J. Exp. Agric. 16, 114–122.
doi: 10.1071/EA9760114

Webb, B., Blackwell, P., Riethmuller, G., and Lemon, J. (2004). Tramline Farming
Systems: Technical Manual. State of Western: DAFWA.

Weber, B., and Hill, J. (2016). Remote Sensing of Biological Soil Crusts at Different
Scales Biological Soil Crusts: An Organizing Principle in Drylands. Berlin:
Springer, 215–234. doi: 10.1007/978-3-319-30214-0_12

Williams, M., King, K., and Fausey, N. (2015). Drainage water management effects
on tile discharge and water quality. Agric. Water Manag. 148, 43–51. doi: 10.
1016/j.agwat.2014.09.017

Wollmer, A. C., Pitann, B., and Mühling, K. H. (2018). Nutrient deficiencies
do not contribute to yield loss after waterlogging events in winter wheat
(Triticum aestivum). Ann. Appl. Biol. 173, 141–153. doi: 10.1111/aab.
12449

Wu, H., Xiang, J., Chen, H., Zhang, Y., Zhang, Y., and Zhu, F. (2018).
Effects of exogenous growth regulators on plant elongation and carbohydrate
consumption of rice seedlings under submergence. J. Appl. Ecol. 29, 149–157.
doi: 10.13287/j.1001-9332.201801.021

Wu, X., Tang, Y., Li, C., McHugh, A., Li, Z., and Wu, C. (2018). Individual
and combined effects of soil waterlogging and compaction on physiological
characteristics of wheat in southwestern China. Field Crops Res. 215, 163–172.
doi: 10.1016/j.fcr.2017.10.016

Wu, Q.-X., Zhu, J.-Q., Liu, K.-W., and Chen, L.-G. (2012). Effects of fertilization on
growth and yield of cotton after surface waterlogging elimination. Adv. J. Food
Sci. Technol. 4, 398–403.

Xian, C., Qi, Z., Tan, C. S., and Zhang, T.-Q. (2017). Modeling hourly subsurface
drainage using steady-state and transient methods. J. Hydrol. 550, 516–526.
doi: 10.1016/j.jhydrol.2017.05.016

Xiao, Y.-P., Wei, K., Chen, J.-X., Zhou, M.-X., and Zhang, G.-P. (2007). Genotypic
difference in growth inhibition and yield loss of barley under waterlogging
stress. Agric. Life Sci. 33, 525–532.

Yaduvanshi, N., Setter, T., Sharma, S., Singh, K., and Kulshreshtha, N. (2012).
Influence of waterlogging on yield of wheat (Triticum aestivum), redox

Frontiers in Plant Science | www.frontiersin.org 22 February 2019 | Volume 10 | Article 140

https://doi.org/10.1071/AR06330
https://doi.org/10.1016/0378-4290(89)90057-9
https://doi.org/10.1111/j.1439-037X.2008.00317.x
https://doi.org/10.1016/j.jplph.2018.04.010
https://doi.org/10.1016/j.jplph.2018.04.010
https://doi.org/10.1016/0378-4290(93)90142-A
https://doi.org/10.1016/0167-1987(92)90115-R
https://doi.org/10.1016/0167-1987(83)90040-5
https://doi.org/10.1016/0167-1987(83)90040-5
https://doi.org/10.1016/j.ecoleng.2018.05.042
https://doi.org/10.1016/j.ecoleng.2018.05.042
https://doi.org/10.1016/B978-0-12-812689-9.00018-2
https://doi.org/10.1016/B978-0-12-812689-9.00018-2
https://doi.org/10.1111/gcbb.12510
https://doi.org/10.1038/nature01014
https://doi.org/10.1007/BF02182001
https://doi.org/10.1006/jaer.1999.0516
https://doi.org/10.1016/j.still.2007.09.007
https://doi.org/10.1016/j.still.2007.09.007
https://doi.org/10.1016/j.agwat.2016.02.020
https://doi.org/10.1016/j.agwat.2016.02.020
https://doi.org/10.13031/trans.12203
https://doi.org/10.1201/9781315136912-5
https://doi.org/10.1016/j.agwat.2016.01.020
https://doi.org/10.3389/fphys.2017.00632
https://doi.org/10.3389/fphys.2017.00632
https://doi.org/10.2489/jswc.73.1.5A
https://doi.org/10.1071/EA9760114
https://doi.org/10.1007/978-3-319-30214-0_12
https://doi.org/10.1016/j.agwat.2014.09.017
https://doi.org/10.1016/j.agwat.2014.09.017
https://doi.org/10.1111/aab.12449
https://doi.org/10.1111/aab.12449
https://doi.org/10.13287/j.1001-9332.201801.021
https://doi.org/10.1016/j.fcr.2017.10.016
https://doi.org/10.1016/j.jhydrol.2017.05.016
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00140 February 8, 2019 Time: 19:38 # 23

Manik et al. Management Practices to Minimize the Impact of Waterlogging

potentials, and concentrations of microelements in different soils in India and
Australia. Soil Res. 50, 489–499. doi: 10.1071/SR11266

Yaduvanshi, N., Setter, T., Sharma, S., Singh, K., and Kulshreshtha, N. (2014).
Influence of waterlogging on yield of wheat (Triticum aestivum), redox
potentials, and concentrations of microelements in different soils in India and
Australia. Soil Res. 50, 489–499. doi: 10.1071/SR11266

Ylivainio, K., Jauhiainen, L., Uusitalo, R., and Turtola, E. (2018). Waterlogging
severely retards P use efficiency of spring barley (Hordeum vulgare). J. Agron.
Crop Sci. 204, 74–85. doi: 10.1111/jac.12241

Ylivainio, K., Uusitalo, R., and Turtola, E. (2008). Meat bone meal and fox manure
as P sources for ryegrass (Lolium multiflorum) grown on a limed soil. Nutr.
Cycling Agroecosyst. 81, 267–278. doi: 10.1007/s10705-007-9162-y

Yordanova, R., Uzunova, A., and Popova, L. (2005). Effects of short-term soil
flooding on stomata behaviour and leaf gas exchange in barley plants. Biol.
Plant. 49, 317–319. doi: 10.1007/s10535-005-7319-6

Yu, Q., Shen, Y., Wang, Q., Wang, X., Fan, L., Wang, Y., et al. (2019).
Light deficiency and waterlogging affect chlorophyll metabolism and
photosynthesis in Magnolia sinostellata. Trees 33, 11–22. doi: 10.1007/s00468-
018-1753-5

Zhang, H., Turner, N., Poole, M., and Simpson, N. (2006). Crop production
in the high rainfall zones of southern Australia—potential, constraints
and opportunities. Aust. J. Exp. Agric. 46, 1035–1049. doi: 10.1071/
EA05150

Zhang, H., Turner, N. C., and Poole, M. L. (2004). Yield of wheat and canola in
the high rainfall zone of south-western Australia in years with and without
a transient perched water table. Aust. J. Agric. Res. 55, 461–470. doi: 10.1071/
AR03122

Zhang, J., and Zhang, X. (1994). Can early wilting of old leaves account for much
of the ABA accumulation in flooded pea plants? J. Exp. Bot. 45, 1335–1342.
doi: 10.1093/jxb/45.9.1335

Zhang, S. (2005). Soil Hydraulic Properties and Water Balance Under Various
Soil Management Regimes on the Loess Plateau, China. Ph.D. thesis, Swedish
University of Agricultural Sciences, Umeå.

Zhang, X., Shabala, S., Koutoulis, A., Shabala, L., Johnson, P., Hayes, D., et al.
(2015). Waterlogging tolerance in barley is associated with faster aerenchyma
formation in adventitious roots. Plant Soil 394, 355–372. doi: 10.1007/s11104-
015-2536-z

Zhang, X. C., Fan, Y., Shabala, S., Koutoulis, A., Shabala, L., Johnson, P., et al.
(2017). A new major-effect QTL for waterlogging tolerance in wild barley (H.
spontaneum). Theor. Appl. Genet. 130, 1559–1568. doi: 10.1007/s00122-017-
2910-8

Zheng, W., Liu, Z., Zhang, M., Shi, Y., Zhu, Q., Sun, Y., et al. (2017).
Improving crop yields, nitrogen use efficiencies, and profits by using
mixtures of coated controlled-released and uncoated urea in a wheat-
maize system. Field Crops Res. 205, 106–115. doi: 10.1016/j.fcr.2017.
02.009

Zhou, M. (2010). “Improvement of plant waterlogging tolerance,” in Waterlogging
Signalling and Tolerance In Plants, eds S. Shabala and S. Mancuso (Berlin:
Springer), 267–285.

Zhou, M., Li, H., and Mendham, N. (2007). Combining ability of waterlogging
tolerance in barley. Crop Sci. 47, 278–284. doi: 10.2135/cropsci2006.02.0065

Zhou, M. X. (2011). Accurate phenotyping reveals better QTL for waterlogging
tolerance in barley. Plant Breed. 130, 203–208. doi: 10.1111/j.1439-0523.2010.
01792.x

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Manik, Pengilley, Dean, Field, Shabala and Zhou. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Plant Science | www.frontiersin.org 23 February 2019 | Volume 10 | Article 140

https://doi.org/10.1071/SR11266
https://doi.org/10.1071/SR11266
https://doi.org/10.1111/jac.12241
https://doi.org/10.1007/s10705-007-9162-y
https://doi.org/10.1007/s10535-005-7319-6
https://doi.org/10.1007/s00468-018-1753-5
https://doi.org/10.1007/s00468-018-1753-5
https://doi.org/10.1071/EA05150
https://doi.org/10.1071/EA05150
https://doi.org/10.1071/AR03122
https://doi.org/10.1071/AR03122
https://doi.org/10.1093/jxb/45.9.1335
https://doi.org/10.1007/s11104-015-2536-z
https://doi.org/10.1007/s11104-015-2536-z
https://doi.org/10.1007/s00122-017-2910-8
https://doi.org/10.1007/s00122-017-2910-8
https://doi.org/10.1016/j.fcr.2017.02.009
https://doi.org/10.1016/j.fcr.2017.02.009
https://doi.org/10.2135/cropsci2006.02.0065
https://doi.org/10.1111/j.1439-0523.2010.01792.x
https://doi.org/10.1111/j.1439-0523.2010.01792.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

	Soil and Crop ManagementPractices to Minimize the Impact of Waterlogging on Crop Productivity
	Introduction
	Waterlogging Effect on Soil and Plant Growth
	Soil Management
	Controlled Traffic Farming (CTF)
	Strategic Deep Tillage and Subsoil Manuring
	Drainage Systems
	Surface Drainage
	Raised Bed System
	Subsurface Drainage
	Subsurface Pipe Drains
	Vertical Subsurface Drainage
	Mole Drains

	Crop Management
	Early Sowing and Vigorous Crops
	Bio-Drainage
	Nutrient Application
	Plant Growth Regulators
	Combined Application of Fertilizer and Growth Regulators
	Use of Anti-ethylene Agents
	Pretreatment With Hydrogen Peroxide
	Use of Tolerant Species and Varieties

	Summary and Recommendations
	Author Contributions
	Funding
	References


