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Understanding the spatial distribution of forage quality is important to address critical

research questions in grassland science. Due to its efficiency and accuracy, there has

been a widespread interest in mapping the canopy vegetation characteristics using

remote sensing methods. In this study, foliar chlorophylls, carotenoids, and nutritional

elements across multiple tallgrass prairie functional groups were quantified at the leaf

level using hyperspectral analysis in the region of 470–800 nm, which was expected

to be a precursor to further remote sensing of canopy vegetation quality. A method

of spectral standardization was developed using a form of the normalized difference,

which proved feasible to reduce the interference from background effects in the

leaf reflectance measurements. Chlorophylls and carotenoids were retrieved through

inverting the physical model PROSPECT 5. The foliar nutritional elements were modeled

empirically. Partial least squares regression was used to build the linkages between

the high-dimensional spectral predictor variables and the foliar biochemical contents.

Results showed that the retrieval of leaf biochemistry through hyperspectral analysis can

be accurate and robust across different tallgrass prairie functional groups. In addition,

correlations were found between the leaf pigments and nutritional elements. Results

provided insight into the use of pigment-related vegetation indices as the proxy of plant

nutrition quality.

Keywords: remote sensing, hyperspectral analysis, leaf pigments, nutritional elements, tallgrass prairie

INTRODUCTION

Interactive processes among fire, macro grazers, and vegetation canopy are of particular
interest in grassland science (Anderson, 2006; Anderson et al., 2007; Allred et al.,
2011a,b; Joern and Raynor, 2018). To address critical research questions concerning
the scale-dependent, hierarchical processes inherent to grassland systems, it is essential
to understand the spatial distribution of canopy characteristics over an extensive area
(Wallace et al., 1995; Collins and Smith, 2006; Bartlam-Brooks et al., 2013). With the development
of multiple airborne and satellite sensors, there is now a widespread interest in mapping
canopy characteristics through remote sensing analysis (Mutanga et al., 2004a; Kawamura
et al., 2008; Trombetti et al., 2008; Ozyigit and Bilgen, 2013). Compared to traditional
manual field measurements, remote sensing provides a way to rapidly and cost-effectively
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collect canopy information such as nutritional status,
photosynthesis rates and canopy structure over a large vegetative
area (Asrar et al., 1992; Chen and Cihlar, 1996; Gitelson et al.,
1996; Coops et al., 2003; Belluco et al., 2006). Of course, retrieving
such canopy characteristics from remotely sensed data requires
analytical methods capable of converting spectral response data
into usable information.

Spectral analysis at the leaf level is a preliminary step to
extending remote sensing of vegetation characteristics at the
canopy level. The leaf-level spectral analysis provides a fast and
cost-effective method of detecting foliar pigments and nutritional
elements (Carter and Knapp, 2001; Mutanga et al., 2004a;
Blackburn, 2007). In plant hyper-spectroscopy, the visible and
near infrared spectral region (400–2500 nm) is of special interest.
Hyperspectral analysis in this region is often based on the spectral
features resulting from absorption of electromagnetic energy by
a variety of chemical bonds in the leaf organic matter. The foliar
pigments and nutritional elements can be estimated from the
spectral features due to their direct or indirect associations with
the leaf organic matter (Goetz et al., 1985; Clark et al., 2003;
Galvez-Sola et al., 2015).

Vegetation characteristics can be linked to spectral features
statistically. In hyperspectral remote sensing, spectral data are
typically high-dimensional, fine spectral bands which are highly
correlated with each other (Landgrebe, 2002). High correlations
among a large number of predictor variables (hyperspectral
bands) may lead to problems of multicollinearity and overfitting
when using conventional multivariate regression for empirical
modeling (Kumar, 1975; Hawkins, 2004). In contrast, partial
least squares (PLS) regression addresses multicollinearity and
overfitting properly, and is therefore widely used in hyperspectral
analysis (Li et al., 2014; Yu et al., 2015; Ryan and Ali, 2016). PLS
regression can be considered a supervised dimension reduction
technique, which takes into account correlations between the
predictor variables and the dependent variables. Through PLS
regression the predictor variables are transformed into latent
factors in directions associated with the maximum variance
in the dependent variables (Malthouse et al., 1997; Rosipal
and Trejo, 2002). Usually, the first few latent factors explain
most of the variance in the dependent variables, and thus the
dependent variables can be modeled by a reduced number of
latent factors. In a PLS regression model, the model explanatory
power increases as the number of PLS factors increases. However,
the model prediction accuracy may decrease with an increase in
model complexity (Kuhn and Johnson, 2013).

As an alternative to empirical methods, vegetation
characteristics can also be retrieved through inverting physical
models of plant radiative transfer (Goel and Thompson, 1984a,b;
Goel and Grier, 1988). Compared to empirical methods, physical
models provide a more systematic description of relationships
between vegetation characteristics and vegetation reflectance,
which are potentially more robust and universal across different
measurement conditions, vegetation types and study sites. In
remote sensing of vegetation, PROSPECT is one of the most
popular leaf-level models due to its ease of use and general
robustness. In the PROSPECT model, leaf reflectance and
transmittance are modeled simply with the leaf mesophyll

structure and biochemical contents (Jacquemoud and Baret,
1990). The leaf biochemical constitutes include chlorophylls,
water and dry matter. More recently, carotenoids have been
separated from chlorophylls in the latest version PROSPECT 5,
which allows more accurate estimations of plant photosynthetic
pigments (Feret et al., 2008).

The objective of our study is to estimate leaf pigments and
macronutrients across different plant functional groups (grasses
vs. forbs) in a tallgrass prairie using hyperspectral reflectance
data, which is part of a larger research project aimed at
understanding the interplay between grassland forage quality
and pyric herbivory in a tallgrass prairie. The leaf pigments
and macronutrients analyzed included chlorophylls, carotenoids,
magnesium (Mg), phosphorus (P), sulfur (S), potassium (K),
and calcium (Ca). These leaf biochemical contents are important
properties that reveal plant nutritional status and vegetation
quality (Van Soest, 1994). The spectral analysis in this study
focused on the wavelengths of 470–800 nm. This spectral region
is of special interest in remote sensing of vegetation due to
a significant absorption feature in the red spectral domain. A
method of spectral standardization was developed to reduce the
strong background effects in the leaf reflectance measurements
for grassland plants. Chlorophyll and carotenoid concentrations
were retrieved by inverting the physical model PROSPECT 5.
The macronutrients were estimated empirically from specimens
collected in the field, because foliar nutrients are not parameters
of the PROSPECT 5 model, and cannot be retrieved through
inversion of the physical model. PLS regression was used to build
the linkages between the high-dimensional spectral predictor
variables and the foliar biochemical contents.

MATERIALS AND METHODS

Study Site
This study was conducted at Konza Prairie Biological Station
(KPBS, Figure 1), a tallgrass prairie site near Manhattan,
Kansas, USA (39◦05′N, 96◦35′W). The vegetation at the
site consists of more than 80% of grasses and a minor
proportion of forbs. Dominant grass species include
Andropogon gerardii, Sorghastrum nutans, Panicum virgatum,
and Schizachyrium scoparium; forbs include Aster ericoides,
Psoralea tenuiflora, Solidago missouriensis, Soldiago rigida,
Liaris aspera, Vernonia baldwinii, and Ambrosia psilostachya
(Collins and Calabrese, 2012).

KPBS is divided into more than fifty watersheds, in which
varying combinations of fire and ungulate grazing treatments
are replicated at the watershed level for long term investigations
into the interactive processes among fire, large grazers, and
vegetation communities. In addition, a variety of experiment
plots are operated with differing fire or nutrition treatments for
multiple research purposes. The foliar samples were collected
from three of these experiment plots, including the Hulbert plots,
the Belowground plots and the fertilization plots.

The Hulbert plots are managed to demonstrate the effects of
fire on plant growth and species diversity. Each Hulbert plot
measures 10m × 25m with a 5m buffer, which is subjected
to fire disturbances at an interval of 1, 2, 4, or 20 years.
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FIGURE 1 | Study site at Konza Prairie Biological Station (KPBS). KPBS includes (A) more than fifty watersheds and (B) a variety of experimental plots, such as the

Hulbert plots and Belowground plots.

The Belowground plots are set up to investigate how varying
combinations of fire, mowing, and fertilization affect both the
above and below ground accumulation of biomass. There are two
fire treatments (burned in spring and unburned), two mowing
treatments (mowed and not mowed), and four fertilization
treatments (additions of N, P, both N and P, and no fertilization
addition) applied in a three-way factorial arrangement. Four
replicates for each of the 16 treatment combinations are operated
in a total of 64 plots. Each Belowground plot measures 12m
× 12m (Callaham et al., 2002). The fertilization plots were
developed at a bison (Bison bison) grazed site burned every
4 years, watershed N4B, in 2014. The plots were arrayed in
four lines, two controlled (without applications of nitrogen
fertilization) and two fertilized, which were alternately parallel
arranged. Each line included five 2m × 2m plots with a one
meter buffer. In each fertilized line, 0, 12, 24, 48, and 96 grams
of ammonium nitrate (NH3NO3) were applied to each of the five
plots, respectively, at the beginning of the growing season.

The treatments of fire and mowing have an immediate effect
on the canopy structure. The fertilization additions affect the
soil nutrient availability. All these treatments can influence
the species composition in the canopy. The selection of these
experiment plots allows a wide range of foliar biochemical
contents to be sampled. The robustness of the modeling methods

developed in this study can be examined across multiple plant
functional groups.

Data Collection
Field data were collected multiple times across seasons during
the years of 2014–2016 (Table 1). In 2014–2015, the grasses and
forbs were collected separately from the fertilization plots and the
Hulbert plots; in 2016, mixed grassland plant types were collected
from the Belowground plots. The datasets embodied variations
from time, site, plant functional groups and measurement
conditions, making it possible to evaluate the general robustness
of the methodology in data analysis.

For each sample, around 5 grams of fresh leaves were
randomly clipped from the canopy with a pair of scissors, and
frozen in a cooler. Then the fresh leaf sample was divided into
subsamples for measurements of reflectance, leaf pigments and
nutritional elements in the laboratory. Hyperspectral reflectance
data ranging between 350 and 2500 nm were measured using a
leaf clip probe on an Analytical Spectral Devices (ASD) FieldSpec
Pro portable Spectroradiometer (Analytical Spectral Devices,
Boulder, CO, USA). During the leaf reflectance measurements,
the ASD spectroradiometer was calibrated every half an hour. To
determine chlorophyll and carotenoid concentrations, for each
sample, a piece of leaf segment with an area of 0.559 cm2 was
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TABLE 1 | Leaf sample datasets.

Site Fertilization

plots

Hulbert plots Belowground

plots

Date July–

September,

2014

June–September,

2015

July–September,

2016

Plant types

(Sample size)

Forbs (20)

Grasses (20)

Forbs (32)

Grasses (32)

Mixed plant

types (68)

MEASUREMENT

Reflectance ASD

FieldSpec

ASD FieldSpec ASD FieldSpec

PIGMENTS

Solvent Acetone 80% DMSO –

Instrument Spectronic 20

Genesys

Spectronic 20

Genesys

–

Nutritional

elements

– X-Ray

Fluorescence

X-Ray

Fluorescence

–, Not available.

extracted from the leaf sample using a puncher, and then dipped
into 10ml 80% acetone or Dimethyl-Sulfoxide (DMSO) for 72 h
dark storage (Gao, 2006). As the pigments were completely
extracted, 3ml solvent with the pigment extracts was transferred
to a transparent cuvette andmeasured by a Spectronic 20 Genesys
Spectroradiometer (Spectronic Instruments Inc., Rochester, NY,
USA). The concentrations of chlorophyll a, b, and carotenoids
in µg/ml were calculated using the empirical equations reported
by Wellburn (1994), and scaled in µg/cm2 with the specified
leaf sample area. The subsamples for analysis of macronutrients
were dried in an oven for 72 h at 75◦c, and then ground using a
mortar and pestle. The resulting dry foliar powders were analyzed
for element concentrations using a Bruker Tracer III-SD X-ray
fluorescence Spectroradiometer (Bruker, Kennewick, WA, USA).
Each sample of the dry foliar powders was measured three times,
of which the average was used to reducemeasurement errors. The
X-ray fluorescence method for quantification of leaf nutritional
elements is relatively new in plant analysis (Stephens and Calder,
2004; Towett et al., 2016). In our study, the leaf nutritional
elements analyzed included Mg, P, S, K, and Ca. These elements
are important plant nutrients. Their calibrations using the
method of X-ray fluorescence measurement have been developed
and proven reliable in previous studies (Towett et al., 2016).

Spectral Standardization
Spectral analysis in this study focused on the wavelengths of 470–
800 nm. This spectral region includes a significant absorption
feature in the red spectral domain, which is associated with
photosynthetic pigments. In measurements of leaf reflectance for
grassland plants, the background effects can be significant, given
that the narrow leaves may not cover the whole leaf clip probe
face of the ASD Spectroradiometer (Figure 2A). This irregular
measurement may lead to a shift and stretch in the resulting
spectrum (Figure 2B).

A spectral standardization method is developed to reduce
the background effects in the leaf reflectance measurements.
Four feature points are located on the original reflectance

spectrum, including the local minima in the blue and red
regions, the local maximum in the green region and the turning
point in the near infrared region (Figure 3A). Based on these
points, the original spectrum is scaled using a form of the
normalized difference:

NDRi =











Ri−Rb
Rg−Rb

, 470 ≤ i < g
Ri−Rr
Rg−Rr

, g ≤ i < r
Ri−Rr
Rnir−Rr

, r ≤ i < 800

where NDRi is the scaled reflectance with a form of the
normalized difference at the wavelength i; b is the wavelength
of the minimal reflectance in the region of 470–520 nm; g is
the wavelength of the maximum reflectance in the region of
520–600 nm; r is the wavelength of the minimum reflectance in
the region of 600–720 nm; nir is the wavelength of the turning
point in the region of 740–800 nm at which the first derivative
is equal to 0; Ri is the reflectance value at the wavelength i nm.
A comparison between the original reflectance and the scaled
reflectance (Figure 4) shows that the spectral response pattern
to the variation in the chlorophyll concentration is more evident
in the scaled reflectance than that in the original spectra. This
suggests that the spectral standardization method is feasible
and practical.

In addition to the standardized reflectance by the normalized
difference, spectral features that characterize the shape of
the spectral curve, such as the slope (Lugassi et al., 2015),
the red edge (Filella and Penuelas, 1994; Munden et al.,
1994; Schut and Ketelaars, 2003; Mutanga and Skidmore,
2007), and the triangle surrounding the red absorption
trough (Hunt et al., 2013), are considered important
indicators of foliar biochemical contents. In this study, the
absolute values of slopes across the wavelengths of b–g,
g–r, r–nir, and distances across b–r, g–nir on the scaled
reflectance spectral curve (Figure 3B) were included in
spectral analysis:

S1 =
1

g − b

S2 =
1

r − g

S3 =
1

nir − r

D1 = r − b

D2 = nir − g

where S1, S2, and S3 are the spectral slopes; D1 and D2 are
the spectral distance variables. On the scaled reflectance spectral
curve, the values at the wavelengths of g and nir are 1; the values
at the wavelengths of b and r are 0.

Retrieval of Leaf Pigments From
PROSPECT 5
Chlorophyll and carotenoid concentrations were retrieved by
inverting the leaf radiative model PROSPECT 5 (Figure 5).
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FIGURE 2 | (A) ASD’s leaf clip probe. Note that a narrow grassland leaf cannot cover the whole probe face. (B) The effects of leaf size on the measured reflectance

spectra. The spectral signals can be shifted and stretched due to the background effects as the leaf cannot cover the whole probe face.

FIGURE 3 | (A) Feature points in spectral standardization. Pb is the minimum point in the region of 470–520 nm; Pg is the maximum point in the region of

520–600 nm; Pr is the minimum point in the region of 600–720 nm; Pnir is the turning point in the region of 740–800 nm, where the first derivative is equal to 0. (B)

Spectral slopes S1, S2, S3, and distances D1, D2 as variables potentially related to foliar biochemical contents. Pb
′, Pg ′, Pr ′, and Pnir

′ are the points on the scaled

reflectance curve corresponding to the points Pb, Pg, Pr , and Pnir on the original reflectance curve.

FIGURE 4 | Comparison between (A) the original spectral measurements and (B) the standardized reflectance spectra for the grasses collected in 2015.
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FIGURE 5 | Overview of leaf pigment retrieval by inverting PROSPECT 5. The input parameters in PROSPECT 5 include chlorophylls (Cab), carotenoids (Ccx), water

thickness (Cw), dry matter (Cm), and the leaf structure parameter (N). Concentrations of chlorophylls and carotenoids are of interest to be modeled.

A reflectance spectral database was simulated by varying the
input parameters (Table 2), including chlorophylls (Cab),
carotenoids (Ccx), water thickness (Cw), dry matter (Cm),
and the leaf structure parameter (N). The output reflectance
values at the wavelengths of 470–800 nm were standardized
using the form of normalized difference, from which the
spectral slope and distance features were extracted (see
section Spectral Standardization). The resulting spectral
variables, including NDR470–NDR800, S1–S3, D1 and D2 were
related to chlorophyll and carotenoid concentrations in the
original model parameterization through PLS regression.
The PLS models were then applied to the standardized
spectral variables of the field measurements for leaf pigment
estimations. The predicted chlorophyll and carotenoid
concentrations from the PLS models were compared with
the laboratory chemical measurements for an assessment
of the model performance. Model prediction accuracy
was assessed by the root mean square error of prediction
(RMSEP), the coefficient of variability (CV), and the index
of agreement (d). RMSEP incorporates the bias (BIAS) and
the standard error corrected from the bias (SEPC); CV
is a measure of variation in relation to the mean, which
indicates the magnitude of the error (Feret et al., 2008); d
is a standardized measure of the degree of model prediction

errors (Willmott, 1981):

RMSEP =

√

∑n
i=1 (y

′

i − yi)
2

n

BIAS =

∑n
i=1 (y

′

i − yi)

n

SEPC =

√

∑n
i=1 (y

′

i − yi − BIAS)
2

n

RMSEP2 = SEPC2
+ BIAS2

CV = 100×
SEPC

yi

d = 1−

∑n
i=1

(

y
′

i − yi

)2

∑n
i=1

(
∣

∣y
′

i − yi
∣

∣ +
∣

∣yi − yi
∣

∣

)2

where yi is the measured value; yi
′ is the predicted value; yi is

the mean of the measured values; n is the sample size. d varies
between 0 and 1; a value of 0 indicates no agreement, and 1
indicates a perfect match.

Frontiers in Plant Science | www.frontiersin.org 6 February 2019 | Volume 10 | Article 142

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Ling et al. Analysis of Leaf Pigments

TABLE 2 | Input parameters and output in PROSPECT 5.

Parameter Range Increment

INPUT

Chlorophyll (Cab) 6–60 µg/cm2 2 µg/cm2

Carotenoids (Ccx) 2–16 µg/cm2 2 µg/cm2

Water thickness (Cw) 0.008–0.02 g/cm2 0.004 g/cm2

Dry matter (Cm) 0.005–0.02 g/cm2 0.005 g/cm2

Leaf structure parameter (N) 1.5–3 0.5

OUTPUT

Reflectance 470–800 nm 1 nm

TABLE 3 | Descriptive statistics for the measured chlorophyll and carotenoid

concentrations by laboratory chemical analysis.

Fertilization plot Hulbert plot

Forbs Grasses Forbs Grasses

Sample size 20 20 32 32

CHLOROPHYLLS (µg/cm2)

Min 28.37 27.04 6.62 24.92

Max 39.59 38.24 43.37 44.37

Mean 31.89 32.06 33.03 35.55

CAROTENOIDS (µg/cm2)

Min 8.20 8.602 2.97 7.91

Max 10.28 10.12 8.97 10.12

Mean 9.08 9.149 7.65 8.90

Empirical Estimation of Leaf Macronutrient
The foliar nutritional elements were modeled statistically from
the standardized reflectance measurements using PLS regression.
This procedure was not based on the PROSPECT model given
that the foliar nutritional elements have not been calibrated as
parameters in the radiative transfer process which the physical
model describes. Half of the samples were used for model
development, while the rest of the samples were used for
model assessment. Both the model development and assessment
datasets were required to cover the full range of the sampled
nutritional elements.

RESULTS AND DISCUSSION

Leaf Pigment Retrieval
Laboratory Chemical Analysis
Descriptive statistics for the leaf pigment measurements
(Table 3) showed that chlorophylls ranged from 6.62 to 44.37
µg/cm2, and carotenoids ranged from 2.97 to 10.28 µg/cm2

across all the samples. These values were in a reasonable range,
compared to those reported by Combal et al. (2003), le Maire
et al. (2004), and Feret et al. (2008). Datasets collected from
different plots and functional groups were slightly different in
their statistical characteristics. Themodel robustness was allowed
to be examined across different leaves with a wide range of
leaf pigments.

Adjustment of the Leaf Structure Parameter in

PROSPECT 5
In addition to chlorophylls and carotenoids, the leaf structure
parameter has a significant effect on the spectral shape in
the visible and near infrared region (le Maire et al., 2004).
A systematic change in the spectral response patterns due to
variations in the leaf structure parameter can be seen both
in the original reflectance spectra simulated from PROSPECT
5 and their corresponding standardized reflectance spectra
(Figure 6). In the original parameterization, the leaf structure
parameter N ranged between 1.5 and 3. The resulting predictions
of chlorophylls and carotenoids were generally overestimated
with the biases of 6.56 µg/cm2 (Figure 7A) and 2.94 µg/cm2

(Figure 7D), respectively. As N was adjusted within 1.7–1.9,
the model biases were reduced, and the model prediction
accuracy and the agreement statistics improved substantially
(Figures 7B,E). This result indicates that a proper selection of
the N range is essential for accurate retrieval of leaf biochemical
contents using the PROSPECT model.

Spectral Feature Selection by PLS Regression
For the leaf pigment retrieval models in this study, the first
three PLS factors were adequate to account for much of the
variance in the data and led to relatively high prediction accuracy.
The available predictors included the standardized continuous
reflectance variables NDR470–NDR800, the spectral slopes S1–S3,
and the distance variables D1 and D2. These predictor variables
were different in characteristics, forms and magnitudes. Their
importance to the corresponding PLS model is of interest.

Results showed that the models including all the
available predictors (NDR470–NDR800, S1–S3, D1 and D2,
see Figures 7B,E) had higher prediction accuracy and agreement
statistics than those including only the standardized continuous
reflectance variables (NDR470–NDR800, see Figures 7C,F).
With the slope and distance predictor variables included, high
loadings occurred at the distance variables in the first two
PLS factors, which accounted for more than 99% variance in
the data (Figures 8B,C,E,F). This indicates a significant effect
from the distance spectral variables (D1 and D2) on predicting
leaf pigments. The distance variables are comparable with the
leaf pigment spectral features, such as the red edge (Filella
and Penuelas, 1994; Munden et al., 1994; Schut and Ketelaars,
2003; Mutanga and Skidmore, 2007) and the red absorption
triangle (Hunt et al., 2013), which are based on the positions of
specific spectral feature points. The magnitude of the distance
variables is far higher than that of the standardized continuous
reflectance variables. This may be a factor that results in greater
loadings at the distance spectral variables. Although the distance
spectral variables are different from the standardized continuous
reflectance variables in characteristics, forms and magnitudes,
the addition of the distance variables in this way as the predictors
substantially improved the model accuracy and robustness.

The PLS loading distributions among the standardized
continuous reflectance variables revealed useful hyperspectral
features for detecting grassland plant quality. The loadings
of the first PLS factors in the models with only the
standardized continuous reflectance predictors (black squares in
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FIGURE 6 | Spectral response patterns varying with the leaf structure parameter N in (A) the reflectance spectra simulated from PROSPECT 5 and (B) their

corresponding standardized reflectance spectra. In the reflectance spectral simulation, Cab = 33 µg/cm2, Ccx = 9 µg/cm2, Cw = 0.014 g/cm2, Cm = 0.012

g/cm2, and N varies between 1.5 and 3 with a step of 0.25.

FIGURE 7 | Model assessment for (A–C) chlorophylls and (D–F) carotenoids. Prediction accuracies of models with different leaf structure parameter ranges and

spectral variables were compared. For the models in plots (A,D), the leaf structure parameter N ranged between 1.5 and 3; the spectral variables NDR470–NDR800,
S1–S3, D1, and D2 were included as the manifest explanatory variables for PLS regressions. In plots (B,E) N was adjusted within a range between 1.7 and 1.9; the

spectral variables were the same with that in plots (A,D). In plots (C,F) N ranged between 1.7 and 1.9; the manifest explanatory variables included NDR470–NDR800,
whereas the slope and distance spectral variables were excluded. The RMSEP, BIAS, SEPC, CV, and d were calculated for the pooled samples collected from the

fertilization plots in 2014 and the Hulbert plots in 2015. All the models were built using the first three PLS factors.

Figures 8A,D) are similar to that of the third PLS factors in
the models with all the available predictors (green diamonds
in Figures 8B,E). This result suggests that the feature selection
and integration among the standardized continuous reflectance
predictor variables via such a loading pattern can be an important
indicator of leaf chlorophyll and carotenoid concentrations.

Leaf Macronutrient Estimation
Laboratory X-ray Fluorescence Analysis
The leaf macronutrient concentrations were measured by
an X-ray fluorescence spectroscopy. The elements analyzed
included Mg, P, S, K, and Ca. These nutritional elements
are integral constituents of plant biomass and relevant for
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FIGURE 8 | Predictor variable loadings for the PLS factors used to estimate (A–C) chlorophylls and (D–F) carotenoids. The models in plots (A,D) included 331

standardized continuous reflectance variables, NDR470-NDR800, as the predictors. The models in plots (B,E) included all the available predictors, NDR470-NDR800,
S1-S3, D1, and D2. Plots (C,F) zoomed in on the loading distributions among the predictors 332–336 (the slope and distance predictor variables, S1-S3, D1, and D2).

grazer nutrition. The samples were divided almost equally
for modeling and validation. The descriptive statistics
(Table 4) showed that the range and mean of the modeling
dataset were consistent with that of the validation dataset,
suggesting a proper selection of the empirical modeling and
validation datasets.

Empirical Modeling by PLS Regression
The predictors for PLS regression modeling of the plant nutrients
included NDR470–NDR800, S1–S3, D1 and D2. In the best-
performing models (Figure 9), there are no evident patterns
observed among the multiple plant functional groups, which
indicates that the models are robust across different plant forms.
In the assessment of the model performance (Table 5), the
RMSEP values for model-development are similar to that for
model-validation; the bias values in the validation procedure
are at low levels. This consistency between the modeling and
validation procedures verifies the model prediction capability.
The CV value is relatively low for the model of the element Mg,

TABLE 4 | Descriptive statistics of the foliar nutritional element concentrations for

the modeling and validation datasets.

Element Modeling Validation

Sample

size

Min Max Mean Sample

size

Min Max Mean

Mg 62 0.119 0.257 0.173 56 0.122 0.262 0.177

P 65 0.033 0.172 0.091 61 0.047 0.169 0.094

S 64 0.040 0.154 0.087 56 0.045 0.144 0.087

K 65 0.363 2.256 1.102 56 0.377 2.324 1.115

Ca 60 0.255 1.966 0.790 56 0.281 1.847 0.788

The number of the samples used in modeling and validation was slightly less than the foliar

sample size in the field data collection due to the loss in the laboratory measurements and

the outliers in the spectral modeling process.

but high for the model of Ca, indicating the magnitude of the
prediction error is low for Mg, but high for Ca. The d values are
at a generally high level, indicating a good agreement between the
predicted values and the measured values.
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FIGURE 9 | Comparisons between the measured and predicted nutrient concentrations for the elements (A) Mg, (B) P, (C) S, (D) K, and (E) Ca. Samples used in the

analysis included the forbs and grasses collected from the Hulbert plots in 2015 and the mixed plant types collected from the Belowground plots in 2016.

The nutritional element models generally require six to
nine PLS factors to achieve an acceptably low prediction error
when there is no evident modeling bias observed. Compared
to the three PLS factors in the leaf pigment retrieval models,
an increased number of factors in the nutrient models make
the nutrient predictions more complex. This finding implies
that the spectral modeling of the nutrient concentrations
depends more on the finely resolved hyperspectral features
(Mutanga et al., 2004a).

Correlations Between Leaf Biochemical Constituents
Correlations (Pearson’s r) between leaf biochemical constituents
were calculated for the Hulbert plot dataset, in which both
the leaf pigments and the nutritional elements were quantified
through the laboratory analysis (Table 6). The strong correlations
between chlorophylls and carotenoids are consistent with the
observations in previous studies indicating that chlorophylls and
carotenoids are co-varying in nature and statistically dependent
(Feret et al., 2008). Most of the plant nutritional elements
are significantly correlated. This association is understandable
because the macronutrients are collectively responsible for plant
metabolic processes (Mutanga et al., 2004b).

Relationships between leaf photosynthetic pigments and
nutritional elements in this native grassland study system are of
interest. Chlorophylls are positively correlated with the element
K. Carotenoids are negatively correlated with Mg and Ca. There
are no other statistically significant correlations between the leaf
pigments and the nutritional elements. However, the ratio of
chlorophylls to carotenoids shows positive correlations with the

TABLE 5 | Assessment of the PLS models for nutrient predictions.

Element Mg P S K Ca

MODELING

Number of factors 8 9 6 7 8

RMSEP 0.0246 0.0226 0.0189 0.2877 0.2555

VALIDATION

RMSEP 0.0269 0.0249 0.0224 0.3282 0.3257

BIAS 0.0051 0.0040 0.0026 0.0044 0.0187

SEPC 0.0264 0.0246 0.0223 0.3282 0.3251

CV 14.9437 26.1488 25.5306 29.4423 41.2515

d 0.7352 0.6910 0.7597 0.8327 0.6865

elements P, S, and K. This is consistent with previous studies
which reveal that the ratio of chlorophylls to carotenoids can be
an important index that reflects plant phenology and nutritional
status in tightly-controlled agricultural systems (Feret et al., 2008;
Yang et al., 2010). According to results of our study, the ratio
of chlorophylls to carotenoids is also found useful for detecting
general vegetation nutrition and forage quality across dominant
grasses and forbs in a natural tallgrass prairie system.

Forage Quality Across Plant Functional
Groups
The hyperspectral analysis methods developed in this study
were verified to be robust and reliable across different plant
functional groups. There was no evident bias found among
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TABLE 6 | Correlations between leaf biochemical constituents.

Cab Ccx Cab:Ccx Mg P S K Ca

Cab 1

Ccx 0.80* 1

Cab:Ccx 0.71* 0.18 1

Mg −0.10 −0.53* 0.23 1

P 0.17 −0.19 0.35* 0.53* 1

S 0.13 −0.23 0.32* 0.49* 0.60* 1

K 0.32* −0.12 0.50* 0.39* 0.63* 0.63* 1

Ca −0.12 −0.62* 0.27 0.79* 0.26 0.31* 0.20 1

*Statistically significant at the 95% confidence level: p < 0.05.

models for grasses, forbs, and mixed plant types in the retrieval
of leaf pigments and macronutrients. This reveals a limitation in
differentiation between grasses and forbs by using the spectral
features analyzed in this study. However, classification of plant
types and functional groups is necessary in determining grassland
forage quality for Plains bison in tallgrass prairies. Bison typically
select palatable grass species and avoid forbs (Plumb and
Dodd, 1993; Raynor et al., 2016). Analysis of grassland nutrient
distribution without consideration of plant types and functional
groups may lead to incorrect interpretations of relationships
between forage quality and bison grazing patterns. Further
researches on discrimination between grasses and forbs through
field measurements or texture analysis (Petrou et al., 2015) with
remote sensing imagery are essential for fully understanding the
interplay between vegetation resources and ungulate grazers.

CONCLUSIONS

Results of this study show that the hyperspectral features in
the spectral region of 470–800 nm are useful for detecting
concentrations of leaf pigments and nutritional elements. A
spectral standardization method using a form of normalized
difference is developed and proved effective to reduce the
significant background impact in measurements of leaf
reflectance for grassland plants. In this method, four feature
points are highlighted, including the nadirs in the blue and red
regions, the green peak and the turning point in the near infrared
region. The positions and reflectance values of these feature
points provide useful information for estimating leaf pigments.

In retrieval of leaf pigments from PROSPECT 5, the leaf
structure parameter has a significant effect on the spectral
response pattern. A proper selection of the range of the leaf
structure parameter can reduce much of the bias in model
validation and improve model prediction accuracy. This study
documents that a range of leaf structure parameter from 1.7
to 1.9 is reasonable for common forbs and grasses in tallgrass
prairies. In inversion of PROSPECT 5, PLS regression shows the
capability of building the linkages between the high dimensional
spectral variables and the vegetation parameters. The advantage
of using PLS regression is that the spectral features relevant
to the vegetation parameters of interest can be selected and

integrated effectively from a wide range of available spectral
predictor variables.

Development of PLS regression models for the leaf nutrients
demonstrates that a reasonable selection of the modeling and
validation datasets is critical to improving prediction accuracy
of the empirical models. The nutrient models require more PLS
factors to achieve an acceptable level of model accuracy than
the models developed for retrieval of leaf pigments. This finding
implies that spectral modeling of the nutrients is more complex
and depends more on the finely resolved spectral features.

Promising methods to quantify leaf pigments and nutritional
elements using the hyperspectral analysis were developed in
this study. The model prediction accuracy is comparable
with those reported by Feret et al. (2008) for leaf pigment
retrieval and Mutanga et al. (2004b) for nutritional element
estimation. Further, this study examined relationships between
leaf photosynthetic pigments and nutritional elements, providing
a comprehensive assessment of leaf nutrition status for grassland
forbs and grasses. It is found that the leaf photosynthetic
pigments are significantly correlated with part of the nutritional
elements. The ratio of chlorophylls to carotenoids is informative
to reflect the plant phenology and nutrition status (Feret et al.,
2008; Yang et al., 2010). These findings provide insight into
the use of pigment-related vegetation indices as indicators
of vegetation quality. The spectral models developed in this
study are robust across different plant types and measurement
conditions. These results at the leaf level are of great value
as a preliminary step to mapping the forage quality in
grassland canopies from reflectance data collected by airborne or
satellite sensors.
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