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Powdery mildew is a common disease in plants, and it is also one of the main diseases
in the middle and final stages of cucumber (Cucumis sativus). Powdery mildew on
plant leaves affects the photosynthesis, which may reduce the plant yield. Therefore,
it is of great significance to automatically identify powdery mildew. Currently, most
image-based models commonly regard the powdery mildew identification problem as a
dichotomy case, yielding a true or false classification assertion. However, quantitative
assessment of disease resistance traits plays an important role in the screening of
breeders for plant varieties. Therefore, there is an urgent need to exploit the extent
to which leaves are infected which can be obtained by the area of diseases regions. In
order to tackle these challenges, we propose a semantic segmentation model based
on convolutional neural networks (CNN) to segment the powdery mildew on cucumber
leaf images at pixel level, achieving an average pixel accuracy of 96.08%, intersection
over union of 72.11% and Dice accuracy of 83.45% on twenty test samples. This
outperforms the existing segmentation methods, K-means, Random forest, and GBDT
methods. In conclusion, the proposed model is capable of segmenting the powdery
mildew on cucumber leaves at pixel level, which makes a valuable tool for cucumber
breeders to assess the severity of powdery mildew.

Keywords: powdery mildew, cucumber leaf, convolutional neural network, image segmentation, deep-learning

INTRODUCTION

Powdery mildew is a common fungal disease that mainly infects plant leaves. The hazards of
powdery mildew are considerable and may affect photosynthesis (Watanabe et al., 2014). Indeed,
when the disease is severe, the infected leaves will shed (Marçais and Desprez-Loustau, 2014),
causing significant losses (Xia et al., 2016).

Therefore, it is particularly important to automatically recognize powdery mildew on plant
leaves. A number of high-quality image-based methods have been developed to recognize diseases
on plants (Mutka and Bart, 2015), including chlorophyll fluorescence imaging, hyperspectral
imaging, thermal imaging and visible light imaging. Chlorophyll fluorescence emission, an invisible
phenomenon, changes when plants are experiencing biotic and abiotic stresses (Baker, 2008). Thus,
chlorophyll fluorescence imaging can be used to measure this trait. Hyperspectral imaging is a
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technique that can be used to obtain the spectrum for each pixel
in the image of a scene, which has been widely used in plant
breeding (Dale et al., 2013). In addition, some fungi can affect
the transpiration of the leaves and affects the temperature of
the surface of the leaves (Lindenthal et al., 2005). Thus, thermal
imaging can be employed to measure the temperature of leaves
to identify the different types of disease. Methods based on
the chlorophyll fluorescence, hyperspectral, and thermal images
require expensive equipment and sophisticated analysis methods.
In contrast, visible-spectrum RGB images can be obtained using
a large number of very accessible devices. As a result, it is possible
to gather the data required by more sophisticated algorithms.
Therefore, in recent years, many methods for detecting plant
diseases using visible-spectrum images have been developed.

Based on the Hough transform of the image and the
random forest algorithm, Wspanialy and Moussa (2016) built
a detection machine vision system to detect early powdery
mildew. In the field testing on a greenhouse of tomato plants,
this method achieved 85% recognition accuracy. Zhang et al.
(2017) had combined the shape and color features from the
disease regions and used sparse representation classification to
recognize diseased leaf images. The method they proposed was
feasible in recognizing seven major diseases of cucumber, and
it achieved 85.7% recognition accuracy in their test datasets.
With the development of deep leaning in computer vision tasks,
especially convolutional neural networks (CNN), researchers can
achieve higher recognition accuracy in object detection and
semantic segmentation tasks. Therefore, deep learning might be
used in automatic plant disease identification (Barbedo, 2016).
At present, there have been many studies using CNN for plant
disease recognition. A plant disease classification model was
developed by Sladojevic et al. (2016), which could distinguish 13
different types of plants disease including powdery mildew from
the images of healthy plant leaves. Another study using CNN to
classify diseases of plants was (Amara et al., 2017). They used
the LeNet architecture to classify banana leaf diseases. In order
to overcome the problem of the slow recognition speed of neural
networks, Fuentes et al. (2017) proposed a real-time tomato plant
disease and pests recognition model, which could recognize nine
diseases including powdery mildew. There are also a number of
studies using CNN to classify plant diseases, including (Mohanty
et al., 2016; Wang et al., 2017; Ferentinos, 2018).

Notably, current image-based models commonly regard
the powdery mildew identification problem as a dichotomy
case, yielding a true or false classification assertion. However,
quantitative evaluation of the disease resistance traits plays an
important role in plant variety screening for breeders. Thus,
there is an urgent need to exploit the extent to which the
leaves are infected.

In this paper, we proposed a new deep learning scheme
which represents powdery mildew infection by masked regions
generated from the segmentation model. In this way, the exact
severity of the disease can be obtained. Compared to the
hyperspectral image-based method, the proposed method is
easier to implement and does not require expensive special
imaging equipment. Further, compared to methods based on
visible image classification, our method is able to obtain the

location of the disease regions. With this advantage, the proposed
method can provide the area and shape of the disease regions.
The former can be used to indicate the severity of the disease,
and the latter can help with the morphological analysis of the
disease regions. Our method is available under the open-source
MIT License at https://github.com/ChrisLinSJTU/segmentation-
of-powdery-mildew.

K-means is a typical unsupervised method that can be used
for clustering. Zhang et al. (2017) employed K-means method
to segment the disease regions in plant leaves. While, Random
forest and Gradient boosting decision tree (Ke et al., 2017)
are supervised learning methods that can be used to deal with
classification and regression problems. Therefore, these three
methods can be applied to classify the pixels in an image
to segment the disease region. Consequently, we compared
the proposed method to these three segmentation methods.
However, compared with the deep learning-based methods, these
three methods have lower model complexity, which means that
the representation ability of these three methods is not as
powerful as deep learning-based methods. Experimental results
also showed that our method is superior to these three methods.

The rest of this paper is organized as Materials and Methods
followed by Results and Discussion. In the Materials and
Methods section, we collected image samples and proposed a
convolutional neural network based on U-net. Fifty cucumber
leaves infected with powdery mildew were collected, and the
annotations of all cucumber leaf images were manually created.
Thirty pairs (images and annotations) of them were used
for training and twenty pairs were used for testing. Image
augmentation techniques are used for better training the sematic
segmentation model. To obtain a more robust model, we used
a custom loss function and added a batch normalization (Ioffe
and Szegedy, 2015) layer behind each convolutional layer. In
the Result section, we used six metrics, including pixel accuracy,
intersection over union (Long et al., 2015), Dice accuracy
(Milletari et al., 2016), Recall, Precision and Fβ score to show the
results of the proposed model on twenty test samples. In addition,
we compared these six metrics with the existing K-means,
Random forest, and GBDT image segmentation methods. In the
Discussion section, we discussed the importance of the proposed
model and some findings in the experimental results.

MATERIALS AND METHODS

The image acquisition process is demonstrated in section
“Sample Collection,” and in section “Image Preprocessing,
Network Structure of the Image Segmentation Model,
Network Training, and Model Testing” we describe the
pipeline of our method.

Sample Collection
In this paper, 50 cucumber leaves infected with powdery mildew
were collected from Shanghai, China. The images of these
samples were captured in a Cucumber Fruit Leaf Phenotype
Automated Analysis Platform. It is an image-based cucumber
phenotype platform whose shape is an 80 cm × 80 cm × 140 cm
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FIGURE 1 | In vitro Cucumber Fruit/Leaf Phenotyping platform.

rectangle. A USB camera with a resolution of 2592 × 1944 × 3
is on top of it for photographing plants. There is a diffusion
background at the bottom for providing uniform illumination
and a peripheral artificial light source at the top for minimizing
the shadow. In addition, there is a computer next to sample
holding area that is used to perform phenotypic analysis. The
platform is shown in Figure 1. Figure 2A shows two samples of
cucumber leaves infected with powdery mildew.

To train the CNN for identifying disease areas on the leaves,
it is necessary to annotate the ground truth. Therefore, the
annotations of all the cucumber leaf images were manually
created. Figure 2B shows the disease areas of the cucumber
leaves. Figure 2C shows the annotation images of each sample, in
which the pixels of disease regions were annotated as white and
the rest were annotated as black.

In these 50 images and their annotations, we randomly
selected 30 pairs (images and its annotations) as a training set to
train our convolutional neural network and 20 pairs as a test set
to evaluate the performance of the algorithm.

Image Preprocessing
The background of the samples we collected was white, while the
main feature in the powdery mildew regions is also white. Thus, it

FIGURE 2 | (A) Two samples of cucumber leaves, (B) their disease areas,
(C) annotation of infected areas.

might be difficult to achieve good performance by directly using
the samples with white background for training. Consequently, it
is necessary to adjust the background color to black. The process
of separating a leaf from image was performed with following
steps: (1) an image was transformed into the HSV color space, (2)
the S channel was extracted and the OTSU method (Otsu, 1979)
was applied to it to obtain the mask, and (3) the RGB channels
of the original picture were multiplied by the mask to obtain a
picture with a black background. In addition, the images were
downscaled to 512× 512× 3 by down-sampling.

Network Structure of the Image
Segmentation Model
The convolutional neural network constructed in this paper is
mainly based on the U-Net. U-net is one of the convolution
neural networks that had shown excellent performance in
biomedical image segmentation (Ronneberger et al., 2015). It is
characterized by the Up-sampling layer and the concatenation
of the Up-sampling layer and the previous activation layer.
The process of Up-sampling makes the output of the neural
network the same size as the input image, achieving pixel-
level segmentation. In addition, the process of concatenation
enables precise positioning of the target. These two processes
are very appropriate for pixel-level segmentation of powdery
mildew. Moreover, based on massive data augmentation, the
network can be trained end-to-end (input is an image, and
output is also an image) from very few images. This is
very suitable for the agricultural field because, under normal
circumstances, there are no large data sets for researcher to
train neural networks, especially in the field of phenotypes.
The structure of the U-net we constructed in the paper is
shown in Figure 3.

In Figure 3, each color block represents a module of the
neural network. The number below each color block, such as
512 × 512, represents the size of the output image of the layer.
The number above each color block represents the “depth” of
the current layer. In the U-net we used, the input is a color
image, and the output is a grayscale image. For an output,
when the pixel value is greater than 0.5, it is marked as a
pixel in a disease area. Compared with the original U-net, we

Frontiers in Plant Science | www.frontiersin.org 3 February 2019 | Volume 10 | Article 155

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00155 February 14, 2019 Time: 12:34 # 4

Lin et al. Powdery Mildew Segmentation With CNN

FIGURE 3 | The structure of the proposed model.

had added a batch normalization layer behind each convolution
layers with a 3 × 3 convolution kernel. The addition of batch
normalization allows us to use higher learning rates to accelerate
the training process, and it also has the effect of regularization
(Ioffe and Szegedy, 2015). In addition, after adding the batch
normalization layer, the neural network becomes insensitive to
weight initialization.

The segmentation of disease regions is essentially a binary
classification problem which is performed on each pixel.
However, the number of pixels of disease regions are smaller
than non-disease regions. Thus, this creates a situation that the
positive and negative samples are not balanced, which could
make the neural network tend to have a low accuracy on
the category with fewer samples (Huang et al., 2016). This
could lead to a lower recognition accuracy in disease regions.
To solve this problem, based on the binary cross entropy
loss function (Goodfellow et al., 2016), we had magnified the
loss value of the positive pixels by 10 times, in which the
value of 10 was determined empirically. The loss function
we used is shown in Eq. 1.

L =
m∑

i=1

−(10× yi × log
(

y
′

i

)
+ (1− yi)× log(1− y

′

i)) (1)

m denotes the number of pixels in an image. yi denotes
the real value of the i-th pixel, whose value is 0 or 1. yi

′

denotes the predicted value of the i-th pixel by the method,
whose range is 0 to 1.

FIGURE 4 | Image augmentation of four samples (images and their
annotation).

Network Training
Since the training sample has only 30 images, we had to expand
these 30 images to train the neural network more effectively.
Expansion methods include rotation, horizontal and vertical
shift, zooming in and zooming out, horizontal flipping and
vertical flipping. The range of rotation is 0 to 180 degrees, and the
range of horizontal and vertical shift is 0.1 times width and height
of the image, respectively; the zoom range is 0.6 to 1.4. The values
of the four transformations to an image are all randomly selected
from their range. Moreover, when an image was transformed,
its annotation image was also transformed in the same way.
In addition, since the parameters of the transformations are
randomly selected, it is necessary to generate a random number.
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TABLE 1 | Accuracy of our model and K-means method in 20 test samples∗.

No. Our model IU acc. Our model Dice acc. Our model Pixel acc. K-means IU acc. K-means Dice acc. K-means Pixel acc.

1 69.93% 82.31% 97.76% 36.07% 53.02% 93.55%

2 81.92% 90.06% 95.65% 46.96% 63.91% 89.17%

3 53.98% 70.12% 99.24% 14.55% 25.41% 96.64%

4 83.41% 90.95% 94.73% 44.89% 61.96% 84.93%

5 82.35% 90.32% 96.88% 66.46% 79.85% 94.75%

6 73.04% 84.42% 96.17% 57.79% 73.25% 94.73%

7 82.68% 90.52% 95.78% 62.88% 77.21% 92.01%

8 83.11% 90.77% 95.60% 49.55% 66.26% 88.34%

9 63.33% 77.55% 96.79% 40.80% 57.95% 95.61%

10 71.71% 83.53% 96.67% 51.00% 67.55% 94.79%

11 73.00% 84.40% 96.43% 58.14% 73.53% 95.24%

12 79.20% 88.39% 96.98% 59.01% 74.22% 94.50%

13 64.31% 78.28% 97.76% 39.77% 56.91% 95.72%

14 85.65% 92.27% 94.42% 45.33% 62.38% 81.33%

15 65.78% 79.36% 93.18% 45.82% 62.84% 90.47%

16 67.21% 80.39% 95.14% 46.27% 63.27% 92.79%

17 54.09% 70.20% 95.34% 32.46% 49.01% 91.85%

18 72.71% 84.20% 93.90% 51.34% 67.85% 91.20%

19 64.99% 78.78% 96.33% 49.41% 66.14% 95.27%

20 69.76% 82.19% 96.80% 42.51% 59.65% 93.76%

∗The average accuracy values of IU, Dice, Pixel of the proposed model in test samples are 72.11, 83.45, and 96.08%, respectively; the average accuracy values of IU,
Dice, Pixel of the K-means method in test samples are 47.05, 63.11, and 92.33%, respectively.

To ensure the generated data is the same in each epoch during
the training process, we fixed the value of the random seed as
1. Based on 30 training samples and transformation methods,
10,000 training data pairs were generated. Four generated images
and the correspond annotation images are show in Figure 4.

In the optimization process, the Adam method was applied
with the learning rate of 0.0001, and other parameters are
consistent with those in the original manuscript (Kingma and Ba,
2014). As for the initialization of the weights, we used the Glorot
initialization method (Glorot and Bengio, 2010). We trained our
model with the generated 10,000 pairs, where the batch size for
each iteration was 2 with 32 epochs.

The hardware used for training the model is a GPU server
equipped with an Intel Xeon E5-2620 CPU and an NVIDIA
TESLA P100 GPU. We implemented our model with a high-
level neural network API called Keras (Chollet, 2015) with the
Tensorflow (Abadi et al., 2016) backend running on the Ubuntu
16.04 operating system.

Model Testing
Pixel-level segmentation of images is also known as semantic
segmentation, in which the common metrics include pixel
accuracy, intersection over union (Long et al., 2015) and dice
accuracy (Milletari et al., 2016). The equations of these three
metrics are shown in Eqs 2, 3, and 4, where ptf denotes the
number of pixels which are marked as disease regions by both
the output of the algorithm and the ground truth in an image; pt
and pf denote the number of pixels which are marked as disease
regions by the ground truth and the output of the algorithm,
respectively. In this paper, we use these three metrics to assess

the performance of the method.

AccPixel =
1
m

m∑
i=1

fi, f i =

{
1 yi = y

′

i
0 yi 6= y

′

i
(2)

AccIU =
ptf

pt + pf − ptf
(3)

AccDice =
2× ptf

pt + pf
(4)

To verify the performance of the proposed model, we used
20 samples to test it. The three metrics mentioned above, IU
accuracy, Dice accuracy and Pixel accuracy, were used to evaluate
the performance of the model. Since the final output of our model
is a 512 × 512 grayscale image and the values of all pixels vary

FIGURE 5 | Situation when Dice acc and IU acc are 0.8 (left) and 0.7 (right).
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from 0 to 1, a threshold, whose value is 0.5, was set to binarize
the output to obtain the segmented region. Recall, Precision and
Fβ (Powers, 2011) were also used to evaluate the performance
of the model. Generally, for disease recognition, all disease areas
are supposed to be detected by the algorithm. As a consequence,
Recall usually has priority over Precision. So, we set the β in Fβ as
2, which means the Recall is twice as important as the Precision.

Zhang et al. (2017) applied a sparse representation
classification method to recognize multiple diseases on cucumber
leaves, in which the K-means method was employed to segment
the disease regions. Therefore, we also compared our model with
the K-means disease segmentation method in detail.

RESULTS

Results of 20 Test Samples
Our model achieved satisfactory segmentation accuracy on
20 test samples. The result of IU accuracy, Dice accuracy
and Pixel accuracy of the proposed model and the K-means

method are shown in Table 1. Our models performed better
than the K-means method on these three metrics. The average
IU, Dice and Pixel accuracy of the former are 72.11, 83.45,
and 96.08%, respectively, while the latter are 47.05, 63.11,
and 92.33%, respectively. Generally, in the same segmentation
performance, the value of Dice accuracy is usually greater
than IU accuracy. For Dice accuracy, 0.8 can be a good
value, while 0.7 is good for IU accuracy. Figure 5 shows
the situation when Dice accuracy and IU accuracy are
0.8 and 0.7, respectively, in which they almost have the
same segmentation performance.

The results of Precision, Recall and F2-score of our model and
K-means method are shown in Table 2. The average Precision,
Recall and F2-score of the former are 73.30, 97.34, and 91.20%,
respectively, while the latter are 71.35, 60.55, and 60.83%,
respectively. The precision of the proposed model is not very
good, but the recall is quite high, which means the model has
a certain degree of over-segmentation. A further explanation is
that the most disease regions had been recognized; however, some
non-disease areas had been misidentified as disease areas. This

TABLE 2 | Precision, Recall and F-score of our model and K-means method∗.

No. Our model Precision Our model Recall Our model F2 Score K-means Precision K-means Recall K-means F2 Score

1 70.69% 98.48% 91.30% 43.08% 68.92% 61.54%

2 82.10% 99.74% 95.63% 93.61% 48.52% 53.69%

3 56.90% 91.32% 81.46% 16.20% 58.86% 38.56%

4 83.57% 99.77% 96.04% 94.00% 46.21% 51.44%

5 82.80% 99.34% 95.52% 91.17% 71.04% 74.32%

6 73.86% 98.50% 92.34% 78.70% 68.51% 70.33%

7 83.10% 99.39% 95.64% 91.50% 66.78% 70.60%

8 83.55% 99.37% 95.74% 89.44% 52.63% 57.35%

9 64.47% 97.30% 88.31% 63.78% 53.10% 54.94%

10 72.42% 98.66% 91.99% 72.42% 63.30% 64.93%

11 73.32% 99.42% 92.81% 79.89% 68.11% 70.18%

12 79.50% 99.53% 94.76% 81.04% 68.47% 70.66%

13 66.39% 95.35% 87.70% 49.58% 66.79% 62.45%

14 85.88% 99.68% 96.58% 95.43% 46.34% 51.65%

15 71.35% 89.38% 85.08% 73.48% 54.89% 57.82%

16 68.33% 97.63% 89.91% 65.84% 60.89% 61.82%

17 59.08% 86.48% 79.14% 40.65% 61.70% 55.90%

18 73.13% 99.22% 92.61% 84.52% 56.67% 60.67%

19 65.46% 98.89% 89.72% 65.23% 67.06% 66.69%

20 70.04% 99.44% 91.74% 57.37% 62.13% 61.12%

∗The average Precision, Recall and F2 score of our model in test samples are 73.30, 97.34, and 91.20%, respectively; the average Precision, Recall and F2 score of
K-means method in test samples are 71.35, 60.55, and 60.83%, respectively.

TABLE 3 | The performance of our method and the three other methods∗.

Method Precision Recall F2 score IU acc. Dice acc. Pixel acc.

The proposed method 73.30% 97.34% 91.20% 72.11% 83.45% 96.08%

GBDT 73.90% 70.81% 70.86% 56.96% 71.44% 94.33%

Random Forest 70.99% 69.33% 69.20% 54.84% 69.46% 93.95%

K-means 71.35% 60.55% 60.83% 47.05% 63.11% 92.33%

∗The average accuracy of Precision, Recall, F2 score, IU accuracy, Dice accuracy, and Pixel accuracy of the proposed model and three other methods.

Frontiers in Plant Science | www.frontiersin.org 6 February 2019 | Volume 10 | Article 155

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00155 February 14, 2019 Time: 12:34 # 7

Lin et al. Powdery Mildew Segmentation With CNN

FIGURE 6 | (A) Original images, (B) annotation images, (C–F) recognition results of the proposed model, K-means, Random forest, and GBDT methods.

FIGURE 7 | (A) Input image; (B–E) feature map of the proposed model given
this input image; (F) output image.

situation is acceptable, because, for disease detection, the disease
regions are not supposed to be missed by the algorithm.

In addition, we also compared the proposed method to the
Random forest method and GBDT (Ke et al., 2017) method.
Although these two methods are supervised learning method,
usually used for classification and regression, they also can be
used to image segmentation regarding pixels as classification
targets. As above, 30 images were used for training and 20
images were used for testing. Each image contains 262,144 pixels
(512 × 512), so the training set contains a total of 7,861,320
samples. Testing set contains 5242,880 samples. Lightgbm (Ke
et al., 2017) and scikit-learn (Pedregosa et al., 2011), two Python
packages, were used to implement these two methods separately.
The results show that the proposed methods have the best
performance in terms of IU accuracy, Dice accuracy, Pixel
accuracy, and Recall in twenty test images. However, for the

metric of Precision, the average accuracy of our method is slightly
lower than GBDT. These can be seen in Table 3.

Output of 3 Samples by Proposed Model
Figure 6 shows the recognition results of the proposed model,
K-means, Random forest, and GBDT methods on three test
samples, which include the original images, the annotation
image, the segmentation results of the proposed model and the
segmentation results of the other three methods. As can be
seen in Figure 6, when compared to the annotation images, the
prediction results of the proposed model have greater predicted
areas, which is consistent with the relatively high Recall.

As for the prediction result of the K-means, Random forest,
and GBDT methods, the areas of the segmentation are relatively
small. Thus, it leads to a unilateral bias of under segmentation of
the infected disease regions, which is evident in Figures 6D–F.

Visualization of the Feature Map of CNN
Model
Feature map opens the gray box of a deep-learning based
model, illustrating the intermediate result of the learning
process. Figure 7 shows the feature map of the middle layers
and an output image (f) produced by the network when
given the input image (a). Figures 7B–D show the output
of the activation layer after the sixth, tenth, and fourteenth
convolutional layers, respectively. Figure 7E shows the output of
the last activation layer.

As can be seen from the Figure 7B, the edge of the leaf
the disease regions are highlighted by the convolutional neural
network. When it comes to the output of the middle layer which
is shown in Figure 7C, the feature map appears to be more
abstract. This is because the middle layer of a neural network is
difficult to interpret in general. In Figure 7D, the output of the
convolutional neural network has no obvious sharp edges. The
edges of the leaf gradually fade, which is expected because the
model is supposed to pay more attention to the disease region
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FIGURE 8 | Loss and IU accuracy through the training period.

rather the edge of a leaf. In the output of the activation layer
shown in Figure 7E, which is close to the output layer, the
disease region becomes more concentrated. Figure 8 shows the
convergence process of the loss function value and IU accuracy of
the proposed segmentation model during the period of training,
in which the bold line is the result of smoothing the original curve
for better demonstration.

DISCUSSION

This study aimed to tackle the problem of segmenting powdery
mildew on leaves accurately based on visible images. To address
this problem, we proposed a convolutional neural network model
based on the U-net architecture which is used for sematic
segmentation tasks in the field of computer vision. Experimental
results on 20 test samples demonstrated that, compared to
the existing K-means, Random forest, and GBDT image
segmentation methods, the proposed method greatly improved
the accuracy of powdery mildew segmentation. However, the
proposed method may have greater computational complexity,
which means it might be hard to deploy the proposed method to
portable device.

Compared to some feature-based plant disease identification
methods, this method alleviates researchers from manually
extracting complex features in the image and designing
complicated analytical methods. In addition, compared with
some existing methods based on deep learning for classifying
and identifying disease on plant leaves, our method can segment
powdery mildew on a cucumber leaf at the pixel level. In
summary, the principal discoveries include:

1. In twenty test samples, our model achieved a satisfactory
segmentation accuracy of powdery mildew under three
metrics of IU accuracy, Dice accuracy and Pixel accuracy.
Moreover, the Pixel accuracy of all samples is relatively

high, which means that the performance of the proposed
model when segmenting powdery mildew on cucumber
leaves is feasible in practice. We also randomly selected
three samples from twenty test samples to compare the
output of the proposed model and the three other methods.
The mask image output by the proposed model had
a certain degree of over-segmentation when segmenting
powdery mildew. However, the mask image obtained by
the K-means method had a certain degree of under-
segmentation. In addition, the edges of the predicted
area of the proposed model were smoother than the
K-means method. Generally speaking, the regions of
powdery mildew usually appear in block form. Therefore,
the smoother edge of the disease region is expected.

2. Unbalanced positive and negative samples in the image
cause relatively high segmentation accuracy, in which
there are more pixels belonging to the background.
Furthermore, the background might be easier to be
recognized than the foreground.

In addition, we also found an interesting phenomenon where,
in some test samples (such as sample number 3), the Pixel
accuracy is high, while the IU accuracy and Dice accuracy are
relatively low. After analyzing the image of this sample and
the output mask of the K-means algorithms, we found that the
area of the disease region in the image was very small. Since
the non-disease area is easier to identify, the Pixel accuracy
is very high in sample number 3. On the metric of Recall,
our model achieved good accuracy on these twenty samples. In
general, Recall and Precision are a pair of contradictory metrics.
Higher Recall typically corresponds to lower Precision, which
explains the paradox of segmentation of powdery mildew in
cucumber leaves. In general, higher Recall is preferred because
it can lead to the production of models which miss less disease
regions. Analysis and experimentation reveal that the proposed
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convolutional neural network based on the U-net can segment
powdery mildew on cucumber leaves accurately at pixel level
and can improve on the segmentation accuracy of the existing
methods. The improvement of segmentation accuracy helps
to estimate the severity of powdery mildew on leaves more
accurately, which makes our improved software a valuable tool
for cucumber breeders.

However, it is worth noting that there are some limitations in
this method. Given the fact that the images are collected on our
platform, to implement the proposed method, the images need
to be captured under controlled conditions, not in the field. In
addition, the insufficient size and variety of annotated datasets,
in which symptoms caused by other disorders are not contained
in our dataset, may be a factor that influences the performance of
deep learning methods (Barbedo, 2018). Thus, other types of leaf
damage should be minimal absent.

AUTHOR CONTRIBUTIONS

KL, LG, and YH conducted mathematical modeling and article
writing. KL also completed the software development and

experimental verification. CL and JP supervised the whole project
and conducted the experimental verification.

FUNDING

This research was funded by the Agri-tech Program of
Shanghai Science and Technology Committee under Grant No.
16391903101 and by the Foundation of Key Laboratory of Urban
Agriculture in South China, Ministry of Agriculture, China under
Grant No. 2017-009. This research was also funded by the
2015–2017 Shanghai Jiao Tong University “Agri+X” Funding,
“establishment and application of automated analysis platform
for cucumber complex phenotype” (Agri-X2015002).

ACKNOWLEDGMENTS

The help of Jingwei Zhang in sample collection and
Zhihong Ma in construction of the experimental platform are
gratefully acknowledged.

REFERENCES
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016).

“Tensorflow: a system for large-scale machine learning,” in Proceedings of the
12th USENIX Symposium on Operating Systems Design and Implementation.
Savannah, GA 265–283.

Amara, J., Bouaziz, B., and Algergawy, A. (2017). “A deep learning-based
approach for banana leaf diseases classification,” in BTW Workshops,
(Bonn: Lecture Notes in Informatics (LNI), Gesellschaft für Informatik),
79–88.

Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo.
Annu. Rev. Plant Biol. 59, 89–113. doi: 10.1146/annurev.arplant.59.032607.
092759.

Barbedo, J. G. A. (2018). Factors influencing the use of deep learning for plant
disease recognition. Biosyst. Eng. 172, 84–91. doi: 10.1016/j.biosystemseng.
2018.05.013.

Barbedo, J. G. A. (2016). A review on the main challenges in automatic plant
disease identification based on visible range images. Biosyst. Eng. 144, 52–60.
doi: 10.1016/j.biosystemseng.2016.01.017.

Chollet, F. (2015). Keras: Deep Learning Library for Theano and Tensorflow.
Available at: https://keras.io/ [accessed on August 31, 2018].

Dale, L. M., Thewis, A., Boudry, C., Rotar, I., Dardenne, P., Baeten, V., et al.
(2013). Hyperspectral imaging applications in agriculture and agro-food
product quality and safety control: a review. Appl. Spectrosc. Rev. 48, 142–159.
doi: 10.1080/05704928.2012.705800.

Ferentinos, K. P. (2018). Deep learning models for plant disease detection and
diagnosis. Comput. Electron. Agric. 145, 311–318. doi: 10.1016/j.compag.2018.
01.009.

Fuentes, A., Yoon, S., Kim, S. C., and Park, D. S. (2017). A robust deep-learning-
based detector for real-time tomato plant diseases and pests recognition. Sensors
17:2022. doi: 10.3390/s17092022.

Glorot, X., and Bengio, Y. (2010). “Understanding the difficulty of training deep
feedforward neural networks,” in Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, Italy, 249–256.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep Learning.
Cambridge, MA: MIT press.

Huang, C., Li, Y., Change Loy, C., and Tang, X. (2016). Learning deep
representation for imbalanced classification in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, (Berlin: Springer),
5375–5384.

Ioffe, S., and Szegedy, C. (2015). Batch normalization: accelerating deep network
training by reducing internal covariate shift in Proceedings of the 32nd
International Conference on International Conference on Machine Learning,
(Washington, DC: JMLR.org), 448–456.

Kingma, D. P., and Ba, J. L. (2014). Adam: a method for stochastic optimization.
arXiv [Preprint]. arXiv:1412.6980v9

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., et al. (2017). “Lightgbm:
a highly efficient gradient boosting decision tree,” in Proceedings of the 31st
Conference on Neural Information Processing Systems (NIPS 2017), Long Beach,
CA, 3146–3154.

Lindenthal, M., Steiner, U., Dehne, H. W., and Oerke, E. C. (2005). Effect of downy
mildew development on transpiration of cucumber leaves visualized by digital
infrared thermography. Phytopathology 95, 233–240. doi: 10.1094/PHYTO-95-
0233.

Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks
for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39:4.
doi: 10.1109/TPAMI.2016.2572683.

Marçais, B., and Desprez-Loustau, M. -L. (2014). European oak powdery mildew:
impact on trees, effects of environmental factors, and potential effects of climate
change. Ann. Forest Sci. 71, 633–642.

Milletari, F., Navab, N., and Ahmadi, S. (2016). “V-net: fully convolutional
neural networks for volumetric medical image segmentation,” in 2016
Fourth International Conference on 3D Vision, IEEE Hoboken, NJ, 565–571.
doi: 10.1109/3DV.2016.79.

Mohanty, S. P., Hughes, D. P., and Salathé, M. (2016). Using deep learning for
image-based plant disease detection. Front. Plant Sci. 7:1419 doi: 10.3389/fpls.
2016.01419.

Mutka, A. M., and Bart, R. S. (2015). Image-based phenotyping of plant disease
symptoms. Front. Plant Sci. 5:734. doi: 10.3389/fpls.2014.00734.

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE
Trans. Syst. Man Cybern. Syst. 9, 62–66. doi: 10.1109/TSMC.1979.4310076.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
et al. (2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12,
2825–2830.

Powers, D. M. (2011). Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation. J. Mach. Learn. Technol. 2, 37–63.

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-net: convolutional networks
for biomedical image segmentation,” in International Conference on Medical
Image Computing and Computer-Assisted Intervention, Berlin: Springer, 234–
241. doi: 10.1007/978-3-319-24574-4_28

Frontiers in Plant Science | www.frontiersin.org 9 February 2019 | Volume 10 | Article 155

https://doi.org/10.1146/annurev.arplant.59.032607.092759.
https://doi.org/10.1146/annurev.arplant.59.032607.092759.
https://doi.org/10.1016/j.biosystemseng.2018.05.013.
https://doi.org/10.1016/j.biosystemseng.2018.05.013.
https://doi.org/10.1016/j.biosystemseng.2016.01.017.
https://keras.io/
https://doi.org/10.1080/05704928.2012.705800.
https://doi.org/10.1016/j.compag.2018.01.009.
https://doi.org/10.1016/j.compag.2018.01.009.
https://doi.org/10.3390/s17092022.
https://arxiv.org/pdf/1412.6980.pdf
https://doi.org/10.1094/PHYTO-95-0233.
https://doi.org/10.1094/PHYTO-95-0233.
https://doi.org/10.1109/TPAMI.2016.2572683.
https://doi.org/10.1109/3DV.2016.79.
https://doi.org/10.3389/fpls.2016.01419.
https://doi.org/10.3389/fpls.2016.01419.
https://doi.org/10.3389/fpls.2014.00734.
https://doi.org/10.1109/TSMC.1979.4310076.
https://doi.org/10.1007/978-3-319-24574-4_28
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00155 February 14, 2019 Time: 12:34 # 10

Lin et al. Powdery Mildew Segmentation With CNN

Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., and Stefanovic, D. (2016).
Deep neural networks based recognition of plant diseases by leaf image
classification. Comput. Intell. Neurosci. 2016:1–11. doi: 10.1155/2016/3289801.

Wang, G., Sun, Y., and Wang, J. (2017). Automatic image-based plant disease
severity estimation using deep learning. Comput. Intell. Neurosci. 2017:1–8.
doi: 10.1155/2017/2917536.

Watanabe, M., Kitaoka, S., Eguchi, N., Watanabe, Y., Satomura, T., Takagi, K., et al.
(2014). Photosynthetic traits and growth of Quercus mongolica var. crispula
sprouts attacked by powdery mildew under free-air CO2 enrichment. Eur. J.
Forest Res. 133, 725–733. doi: 10.1007/s10342-013-0744-8.

Wspanialy, P., and Moussa, M. (2016). Early powdery mildew detection system for
application in greenhouse automation. Comput. Electron. Agric. 127, 487–494.
doi: 10.1016/j.compag.2016.06.027.

Xia, C., Li, N., Zhang, X., Feng, Y., Christensen, M. J., and Nan, Z. (2016). An
Epichloë endophyte improves photosynthetic ability and dry matter production
of its host achnatherum inebrians infected by Blumeria graminis under various

soil water conditions. Fungal Ecol. 22, 26–34. doi: 10.1016/j.funeco.2016.
04.002.

Zhang, S., Wu, X., You, Z., and Zhang, L. (2017). Leaf image based cucumber
disease recognition using sparse representation classification. Comput. Electron.
Agric. 134, 135–141. doi: 10.1016/j.compag.2017.01.014.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Lin, Gong, Huang, Liu and Pan. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 10 February 2019 | Volume 10 | Article 155

https://doi.org/10.1155/2016/3289801.
https://doi.org/10.1155/2017/2917536.
https://doi.org/10.1007/s10342-013-0744-8.
https://doi.org/10.1016/j.compag.2016.06.027.
https://doi.org/10.1016/j.funeco.2016.04.002.
https://doi.org/10.1016/j.funeco.2016.04.002.
https://doi.org/10.1016/j.compag.2017.01.014.
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

	Deep Learning-Based Segmentation and Quantification of Cucumber Powdery Mildew Using Convolutional Neural Network
	Introduction
	Materials and Methods
	Sample Collection
	Image Preprocessing
	Network Structure of the Image Segmentation Model
	Network Training
	Model Testing

	Results
	Results of 20 Test Samples
	Output of 3 Samples by Proposed Model
	Visualization of the Feature Map of CNN Model

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	References


