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The circadian clock synchronizes endogenous rhythmic processes with environmental
cycles and maximizes plant fitness. Multiple regulatory layers shape circadian oscillation,
and chromatin modification is emerging as an important scheme for precise circadian
waveforms. Here, we report the role of an evolutionarily conserved Sin3-histone
deacetylase complex (HDAC) in circadian oscillation in Arabidopsis. SAP30 FUNCTION-
RELATED 1 (AFR1) and AFR2, which are key components of Sin3-HDAC complex, are
circadianly-regulated and possibly facilitate the temporal formation of the Arabidopsis
Sin3-HDAC complex at dusk. The evening-expressed AFR proteins bind directly to the
CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and PSEUDO-RESPONSE REGULATOR
9 (PRR9) promoters and catalyze histone 3 (H3) deacetylation at the cognate regions
to repress expression, allowing the declining phase of their expression at dusk. In
support, the CCA1 and PRR9 genes were de-repressed around dusk in the afr1-1afr2-
1 double mutant. These findings indicate that periodic histone deacetylation at the
morning genes by the Sin3-HDAC complex contributes to robust circadian maintenance
in higher plants.

Keywords: circadian clock, chromatin modification, histone deacetylase (HDAC), Sin3 histone deacetylase and
corepressor complex, CCA1, PRR9

INTRODUCTION

The circadian clock is an internal time-keeper mechanism that ensures endogenous biological
rhythms with a period of approximately 24 h, coinciding with daily environmental cycles. A large
fraction of the plant transcriptome is clock-controlled, and thus the clock is globally linked to
diverse signaling and metabolic pathways to ensure optimal biological functions at a specific
time of day (Covington et al., 2008; Mizuno and Yamashino, 2008; Hsu and Harmer, 2012).
Synchronization of the clock with the environment is closely associated with plant growth and
fitness (Dodd et al., 2005; Fujiwara et al., 2008; Nusinow et al., 2011; Yoo et al., 2011; Lu et al., 2012;
Nagel and Kay, 2012; Haydon et al., 2013; Zhang et al., 2013).

The circadian clock is a highly conserved system in higher eukaryotes. In Arabidopsis, the
central oscillator is known to consist of an array of transcriptional loops. Two single-MYB
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transcription factors, CIRCADIAN CLOCK-ASSOCIATED
1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY),
establish the central loop by repressing transcription of TIMING
OF CAB EXPRESSION 1 (TOC1) that in turn, represses CCA1
and LHY expression (Alabadi et al., 2001; Huang et al., 2012;
Pokhilko et al., 2013). The central loop is further regulated by
PSEUDO-RESPONSE REGULATORs (PRR5, PRR7, and PRR9)
(Nakamichi et al., 2005, 2010; Salome et al., 2010) and the evening
complex (EC) consisting of EARLY FLOWERING 3 (ELF3),
ELF4, and LUX ARRYTHMO/PHYTOCLOCK 1 (LUX/PCL1)
(Nusinow et al., 2011; Chow et al., 2012; Herrero et al., 2012).
Moreover, the TOC1 protein also plays widespread roles in
transcriptionally repressing multiple core clock components,
underscoring the biological importance of transcriptional
regulation in circadian homeostasis (Gendron et al., 2012;
Huang et al., 2012).

Accumulating evidence suggests that circadian oscillation is
further shaped by additional regulatory mechanisms (Seo and
Mas, 2014). In particular, chromatin modification is an important
regulatory scheme underlying precise circadian waveforms (Mas,
2008; Stratmann and Mas, 2008; Kusakina and Dodd, 2012;
Nagel and Kay, 2012). Transcript accumulation of core clock
components correlates with rhythmic changes in accumulation
of histone H3 acetylation (H3ac) in Arabidopsis (Hemmes et al.,
2012; Malapeira et al., 2012; Song and Noh, 2012). Consistent
with the fact that histone acetylation status is dynamically
regulated by the antagonistic action of histone acetyltransferases
(HATs) and histone deacetylases (HDACs) (Kuo and Allis,
1998; Yang and Seto, 2007), temporal association of specific
sets of HATs and HDACs occurs at the loci of core clock
components to shape rhythmic expression (Hemmes et al., 2012;
Malapeira et al., 2012; Song and Noh, 2012). For instance, the
midday-expressed HISTONE ACETYLTRANSFERASE OF THE
TAFII250 FAMILY 2 (HAF2) protein catalyzes H3ac at the PRR5
and LUX loci to activate expression and is responsible for the
rising phase of PRR5 and LUX circadian expression (Lee and
Seo, 2018). In addition, the HDA6 and HDA19 proteins form
protein complexes together with the TOPLESS (TPL) and PRR
proteins, and repress expression of CCA1 and LHY during the
daytime (Wang et al., 2013). Despite the importance of diurnal
histone acetylation states of core clock genes in stable circadian
oscillation, the responsible epigenetic modifiers are yet to be
fully characterized.

Histone deacetylase complex often form diverse types of
multiprotein co-repressor complexes and play a variety of
roles during plant growth and development (Buszewicz et al.,
2016; Kim et al., 2016; Hung et al., 2018; Park et al., 2018;
Tasset et al., 2018). One well-characterized HDAC complex
in eukaryotes is the Sin3-HDAC complex (Alland et al.,
2002; Kuzmichev et al., 2002; Silverstein and Ekwall, 2005;
Clark et al., 2015). In Arabidopsis, the Sin3-HDAC complex
participates in photoperiodic flowering through the periodic
acetylation of the FLOWERING LOCUS T (FT) locus (Gu
et al., 2013). The Sin3-HDAC complex is activated at the end
of the day and is recruited to the FT locus by AGAMOUS
LIKE 18 (AGL18) in a CONSTANS (CO)-dependent manner
under long-day conditions (Gu et al., 2013). In this study, we

report that the Arabidopsis Sin3-HDAC complex also temporally
regulates CCA1 and PRR9 expression through catalyzing H3
deacetylation and facilitates the declining phase of their circadian
expression during the evening time. These results reveal
that temporal association of chromatin modifiers underlies
robust rhythmic expression of clock genes and thereby stable
circadian oscillation.

RESULTS

Rhythmic Expression of AFRs Is Shaped
by CCA1
Histone deacetylase complex often form multiprotein co-
repressor complexes, as exemplified by the Sin3-HDAC complex
that consists of the master scaffold protein Sin3, the Reduced
Potassium Dependency 3 (RPD3)-type HDAC, and Sin3-
associated structural components, such as SIN3-ASSOCIATED
POLYPEPTIDE 18 (SAP18) and SAP30 (Zhang et al., 1997;
Laherty et al., 1998; Wu et al., 2000; Scott and Plon, 2003;
Song and Galbraith, 2006). The Arabidopsis genome contains six
Sin3 homologs, SIN3-LIKE 1-6 (SNL1-6), four RPD3 homologs
(HDA19, HDA9, HDA7, and HDA6), one SAP18 homolog, and
two SAP30 homologs (SAP30 FUNCTION-RELATED 1 (AFR1)
and AFR2) (Wu et al., 2000; Murfett et al., 2001; Pandey et al.,
2002; Gu et al., 2013).

Notably, AFR1 and AFR2 have been identified as regulators
of photoperiodic flowering, which facilitate periodic histone
deacetylation at the FT locus (Gu et al., 2013). Considering their
roles in temporal histone deacetylation, we hypothesized that
the Arabidopsis Sin3-HDAC complex may also be implicated
in circadian control. To examine the possible involvement
of the HDAC complex in circadian oscillation, we first
checked transcript accumulation of key components of the
Sin3-HDAC complex in seedlings entrained under neutral
day (ND) conditions. Quantitative real-time RT-PCR (RT-
qPCR) analysis revealed that only the AFR1 and AFR2
genes are circadianly-regulated (Figure 1A), while the other
components are not under the control of the circadian clock
(Figure 1B). The AFR genes peaked at dusk (Figure 1A), as
reported previously (Gu et al., 2013), suggesting that clock-
controlled AFRs presumably lead to diurnal formation of the
HDAC complex.

To explore the circadian component responsible for regulation
of the AFRs, we conducted analysis of the cis-elements
present within the AFR promoters. AFRs have multiple CCA1-
binding sites (CBSs, AAAATCT) and evening elements (EEs,
AAATATCT) in the upstream promoters (Figure 2A), which
are known to be bound by CCA1 and LHY (Wang et al.,
1997; Harmer et al., 2000; Michael and McClung, 2003; Nagel
et al., 2015). This observation raised the possibility that CCA1
may bind to the AFR promoters. To examine this possibility,
a chromatin immunoprecipitation (ChIP) assay was performed
using plants expressing epitope-tagged CCA1 under its own
native promoter (pCCA1:CCA1-HA-YFP/cca1-1). Total protein
extracts of samples collected at Zeitgeber Time 0 (ZT0) and ZT12
were immunoprecipitated with anti-HA antibody. ChIP-qPCR
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FIGURE 1 | Circadian expression of AFR1 and AFR2. Seedlings grown under neutral day conditions (ND, 12 h light: 12 h dark) for 2 weeks were transferred to
continuous light conditions (LL) at Zeitgeber Time 0 (ZT0). Whole seedlings were harvested from ZT24 to ZT68 to analyze transcript accumulation. Transcript levels
were determined by quantitative real-time RT-PCR (RT-qPCR). Gene expression values were normalized to EUKARYOTIC TRANSLATION INITIATION FACTOR 4A1
(eIF4A) expression. Three independent biological replicates were averaged. Bars represent the standard error of the mean. The white and gray boxes indicate the
subjective day and night, respectively. (A) Expression of AFR1 and AFR2. (B) Expression of other components of Sin3-HDAC.

analysis showed that the proximal regions of transcriptional start
sites (TSSs) on the AFR promoters containing CBS and/or EE
elements were enriched following ChIP (Figure 2B). Binding
of CCA1 to the AFR promoter was specifically observed at
dawn, but not at dusk (Figure 2B), shaping circadian expression
of the AFRs.

To support AFR regulation by the transcriptional regulator
CCA1, we analyzed AFR expression in cca1-2 and cca1-
1lhy-21 mutant seedlings grown under ND conditions.
RT-qPCR analysis showed that the peak phase of AFR
expression was delayed in cca1-2 and cca1-1lhy-21, and
higher expression of AFRs around the end of night was

observed in the cca1-2 and cca1-1lhy-21 mutants compared
with wild-type (Figure 3A and Supplementary Figure S1).
In contrast, AFR expression was dramatically reduced in
CCA1-overexpressing lines (Figure 3B). To further support
the repressive role of CCA1 in AFR expression, we performed
transient expression assays using Arabidopsis mesophyll
protoplasts. The GUS reporter plasmids and effector plasmids
harboring 35S:CCA1-GFP fusion were co-transfected into
protoplasts (Supplementary Figure S2). Co-transfection of
a reporter construct with 35S:CCA1-GFP resulted in lower
GUS activity than the control plasmid (Supplementary
Figure S2). These results indicate that CCA1 shapes AFR
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FIGURE 2 | Binding of CCA1 to AFR promoters. (A) Promoter analysis of the AFR1 and AFR2 genes. Underbars indicate the regions amplified by PCR after
chromatin immunoprecipitation (ChIP). CBS, CCA1-binding site; EE, evening element. (B) Binding of CCA1 to the AFR loci. Two-week-old plants entrained with ND
cycles were subjected to LL. Plants were harvested at ZT0 and ZT12 for ChIP analysis with anti-HA antibody. Three independent biological replicates were averaged,
and statistically significant differences (Student’s t-test, ∗P < 0.05) are indicated by asterisks. Bars indicate the standard error of the mean.

expression and enables peak expression particularly during the
evening time.

AFRs Are Involved in Circadian
Oscillation
Since the AFR proteins are core Sin3-HDAC components
regulated by the circadian clock, we further investigated
the role of AFRs in circadian oscillation. We employed
the afr1-1afr2-1 double mutant and examined endogenous
circadian behavior. RT-qPCR analysis showed that
circadian output genes, COLD CIRCADIAN RHYTHM
RNA BINDING 2 (CCR2) and CHLOROPHYLL A/B-
BINDING PROTEIN 2 (CAB2), were altered in afr1-1afr2-1
mutant seedlings compared with wild-type (Figure 4A).
We also checked several core circadian oscillator genes,
including CCA1 and TOC1. Again, two genes were
also differentially expressed in the afr1-1afr2-1 mutant
compared with wild-type (Figure 4B). In particular,
the morning gene expression was delayed in afr1-1afr2-
1. The alteration patterns of the circadian genes were
dissimilar in afr1-1afr2-1 mutant. This might be due to
extensive circadian feedback network that balances 24 h

clock oscillation, as observed in several previous studies
(Somers et al., 2004; Ding et al., 2007; Hanano et al.,
2008; Li et al., 2011).

AFRs are components of the Arabidopsis Sin3-HDAC
complex (Gu et al., 2013). To provide further support that
AFR function in circadian oscillation depends on formation
of the Sin3-HDAC complex, we obtained a genetic mutant
of SAP18 and analyzed circadian oscillation. Since SAP18 is
the only member of the Sin3-HDAC components that exists
as a single copy in the Arabidopsis genome (Zhang et al.,
1997; Ahringer, 2000), we suspected that the sap18-2 mutant
could be used to reflect the roles of the Arabidopsis Sin3-
HDAC complex. Remarkably, the sap18-2 mutant exhibited
altered circadian expression of CCA1 and CCR2 (Figure 4C
and Supplementary Figure S3), similar to afr1-1afr2-1,
indicating that the Arabidopsis Sin3-HDAC complex controls
circadian oscillation.

AFRs Bind to the CCA1 and PRR9 Loci
and Catalyze H3 Deacetylation at Dusk
AFRs most likely regulate the pace of the circadian clock
possibly in association with the central oscillator(s). To identify
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FIGURE 3 | Circadian expression of AFRs in CCA1-misexpressing plants. In (A,B), seedlings grown under ND conditions for 2 weeks were transferred to LL
conditions at ZT0. Whole seedlings were harvested from ZT24 to ZT68 to analyze transcript accumulation. Transcript levels were determined by RT-qPCR. Gene
expression values were normalized to eIF4A expression. Three independent biological replicates were averaged, and statistically significant differences (Student’s
t-test, ∗P < 0.05) are indicated by asterisks. Bars represent the standard error of the mean. The white and gray boxes indicate the subjective day and night,
respectively. (A) Expression of AFRs in the cca1-2 and cca1-1lhy-21 mutant. (B) Expression of AFRs in 35S:CCA1-MYC transgenic plants.

which circadian components are regulated by the AFRs, we
conducted ChIP assays using 35S:AFR1-MYC and 35S:AFR2-
MYC transgenic plants. Plants were grown under ND conditions
and harvested at ZT12, when AFR proteins highly accumulate
(Gu et al., 2013). ChIP-qPCR analysis showed that the
AFR proteins bind directly to the CCA1 and PRR9 loci
(Figures 5A,B), while the other clock members examined were
not targeted by the AFRs (Supplementary Figure S4). AFRs
were primarily targeted around the TSSs of the CCA1 and
PRR9 loci, rather than the 3′-regions of gene body (Figure 5B),
which is consistent with previous observations that chromatin
modification of core clock genes primarily occurs around TSSs
(Hemmes et al., 2012; Malapeira et al., 2012). In addition,

binding of AFRs to the CCA1 and PRR loci was prominent
at ZT12 (Figure 5B), when peak expression of AFRs was
observed (Figure 1A).

The temporal recruitment of AFRs to the morning gene
loci may cause periodic histone deacetylation. We examined
H3 acetylation (H3ac) levels, which correlate to transcript
accumulation of core clock genes (Hemmes et al., 2012; Malapeira
et al., 2012), at the CCA1 and PRR9 promoters in wild-type and
afr1-1afr2-1 seedlings. ChIP with anti-H3ac antibody revealed
that H3ac levels of the CCA1 and PRR9 genes were elevated
at ZT0 but reduced at ZT12 in wild-type (Figure 5C), as
reported previously (Hemmes et al., 2012; Malapeira et al.,
2012). However, the decline of H3ac accumulation at ZT12
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FIGURE 4 | Altered circadian rhythm in the afr1-1afr2-1 mutant. In (A–C), seedlings grown under ND were transferred to LL at ZT0. Whole seedlings were harvested
from ZT24 to ZT68 to analyze transcript accumulation. Gene expression values were normalized to eIF4A expression and represented as n-fold compared to the
value of the wild-type sample at ZT24. Three independent biological replicates were averaged, and statistically significant differences (Student’s t-test, ∗P < 0.05) are
indicated by asterisks. Bars indicate the standard error of the mean. The white and pale gray boxes indicate the subjective day and night, respectively.
(A) Expression of CCR2 and CAB2 in afr1-1afr2-1. (B) Expression of CCA1 and TOC1 in afr1-1afr2-1. (C) Expression of CCA1 and CCR2 in sap18-2.

was impaired in the afr1-1afr2-1 mutant (Figure 5C). Increased
H3ac levels at the CCA1 and PRR9 loci were observed in the
afr1-1afr2-1 mutant, particularly at ZT12 (Figure 5C). These
results indicate that AFRs mediate histone deacetylation at the
morning gene loci to stably downregulate expression during
evening time.

The AFR Proteins Are Responsible for
the Declining Phases of CCA1 and PRR9
Since the Sin3-HDAC complex catalyzes H3 deacetylation at the
CCA1 and PRR9 loci, we speculated that circadian expression
of the CCA1 and PRR9 genes may be shaped by diurnal
H3ac accumulation. To test this possibility, we measured CCA1
and PRR9 expression in the afr1-1afr2-1 mutant. In wild-type

seedlings, the CCA1 and PRR9 genes were highly expressed in
the morning, but repressed during the afternoon (Figures 4B,
6A). In contrast, decrease of CCA1 and PRR9 expression
during afternoon was compromised in the afr1-1afr2-1 mutant
(Figures 4B, 6A). Circadian patterns of CCA1 and PRR9
expression were altered in the afr1-1afr2-1 mutant background,
and the increased expression of CCA1 and PRR9 was clearly
observed at afternoon (Figures 4B, 6A).

To further support the repressive role of AFRs in CCA1 and
PRR9 expression, we examined the extent of AFR regulation
of CCA1 and PRR9 transcription activity in Arabidopsis
mesophyll protoplasts. The GUS reporter plasmids and effector
plasmids harboring 35S:AFR-MYC fusion constructs were
co-transfected into mesophyll protoplasts (Figure 6B). Co-
transfection of a reporter construct with 35S:AFR1-MYC
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FIGURE 5 | H3 deacetylation at the CCA1 and PRR9 loci during evening time
by AFRs. In (B,C), 2-week-old seedlings grown under ND were transferred to
LL and harvested at ZT0 and ZT12. Enrichment of putative binding regions of
AFRs in promoters of the CCA1 and PRR9 genes was analyzed by ChIP-PCR.
Three independent biological replicates were averaged, and statistical
significance of the measurements was determined by a Student’s t-test
(∗P < 0.05). Bars indicate the standard error of the mean. (A) Genomic
regions for ChIP analysis. Underbars represent the amplified genomic regions.
(B) Binding of AFRs to the CCA1 and PRR9 loci. (C) Accumulation of H3ac at
the CCA1 and PRR9 loci in the afr1-1afr2-1 mutant. Anti-H3ac antibody was
used for ChIP to assess H3ac accumulation at the loci.

or 35S:AFR2-MYC led to lower GUS activity than the
control plasmid (Figure 6C). These results indicate that
AFR activity limits expression of morning genes, CCA1
and PRR9.

FIGURE 6 | Increased expression of PRR9 at dusk in afr1-1afr2-1.
(A) Transcript accumulation of PRR9. Seedlings grown under ND were
transferred to LL at ZT0. Whole seedlings were harvested from ZT24 to ZT68
to analyze transcript accumulation. Gene expression values were normalized
to eIF4A expression and represented as n-fold compared to the value of the
wild-type sample at ZT24. Three independent biological replicates were
averaged, and statistical significance of the measurements was determined by
a Student’s t-test (∗P < 0.05). Bars indicate the standard error of the mean.
The white and pale gray boxes indicate the subjective day and night,
respectively. (B) Recombinant constructs used for transient expression
assays. (C) Transient expression analysis using Arabidopsis protoplasts. The
core elements of CCA1 and PRR9 genes were inserted into the reporter
plasmid. A recombinant reporter was transiently coexpressed with an effector
construct containing the 35S:AFR-MYC construct in Arabidopsis protoplasts,
and GUS activity was fluorimetrically determined. Luciferase gene expression
was used to normalize GUS activity. Three independent measurements were
averaged. Statistical significance was determined by a Student’s t-test
(∗P < 0.05). Bars indicate the standard error of the mean.

The AFR Proteins May Interact With LNK
In yeast, SAP30 is a key player in recruitment of the SAP30-
Sin3-HDAC co-repressor complex to target loci (Ahringer, 2000).
It is possible that the yeast SAP30 protein interacts extensively
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with DNA-binding transcription factors. Consistently, the
Arabidopsis AFR1 and AFR2 proteins also frequently associate
with transcription factors and guide the Sin3-HDAC complex
to cognate target chromatin regions (Gu et al., 2013). To
identify the molecular components that recruit the Sin3-HDAC
complex to the CCA1 and PRR9 loci, we performed yeast-
two-hybrid (Y2H) assays. Clock genes were fused in-frame to
the 3′-end of the activation domain (AD) of GAL4, and each
construct was coexpressed in yeast cells with a recombinant
plasmid containing the GAL4 DNA binding domain (BD)-AFR
fusion construct. Cell growth on selective medium showed that
the transcriptional corepressors NIGHT LIGHT-INDUCIBLE
AND CLOCK-REGULATED 1 (LNK1) and LNK2 specifically
bind to AFR1 and AFR2 (Figure 7A and Supplementary
Figure S5). The in vivo interactions of LNK and AFR
proteins were verified by BiFC assays. Coexpression of AFR-
nYFP and LNK-cYFP constructs allowed nuclear emission of
YFP fluorescence, indicating physical interactions (Figure 7B).
Given that the LNK corepressors act along with several DNA-
binding proteins such as REVEILLE 4 (RVE4) and RVE8 (Xie
et al., 2014; Perez-Garcia et al., 2015), AFRs may be recruited
to the CCA1 and PRR9 loci at least by the DNA-binding
RVE-LNK complex.

Taken together, the Arabidopsis Sin3-HDAC complex
facilitates temporal H3 deacetylation at the CCA1 and PRR9
loci to stably regulate circadian oscillation. The AFR proteins
diurnally accumulate and possibly lead to temporal association
of the Sin3-HDAC complex at evening time. The AFR proteins
bind specifically to the morning gene loci and facilitate H3
deacetylation at the cognate regions at dusk. Binding of the
Sin3-HDAC complex to the target promoter regions is likely
specified by the RVE-LNK complex (Figure 8).

DISCUSSION

Chromatin Modification and the
Circadian Clock
Rhythmic expression of core clock genes is intimately associated
with the levels of histone modification, including H3ac and
H3K4me3, at gene promoters in Arabidopsis (Hemmes et al.,
2012; Malapeira et al., 2012). Dynamic cycles of histone
modifications at the clock genes may result from transient
binding of chromatin modifiers to the gene promoters. To date,
several chromatin modifiers responsible for circadian control
have been identified.

The SET DOMAIN GROUP 2 (SDG2)/ARABIDOPSIS
TRITHORAX-RELATED 3 (ATXR3) protein is responsible for
H3K4me3 deposition to activate multiple core clock genes.
The H3K4me3 histone mark interferes with clock repressor
binding at the core clock promoters, conferring correct timing of
transcriptional repression to target clock genes (Hemmes et al.,
2012; Malapeira et al., 2012). Accordingly, the SDG2/ATXR3-
deficient mutants exhibit a global decrease in H3K4me3 levels
and also a reduced amplitude of core clock gene expression
(Berr et al., 2010; Malapeira et al., 2012; Yao et al., 2013;
Pinon et al., 2017).

FIGURE 7 | Interactions of AFRs with LNKs. (A) Y2H assays. Y2H assays
were performed with AFR proteins fused to the DNA-binding domain (BD) of
GAL4 and LNKs fused with the transcriptional activation domain (AD) of GAL4
for analysis of interactions. Interactions were examined by cell growth on
selective media. -LWHA indicates Leu, Trp, His, and Ade drop-out plates. -LW
indicates Leu and Trp drop-out plates. GAL4 was used as a positive control
(P). (B) BiFC assays. Partial fragments of YFP protein were fused with AFRs
and LNKs, and co-expressed in Arabidopsis protoplasts. The IDD14-RFP
construct was used as a nuclear marker. Reconstituted fluorescence was
examined by confocal microscopy. Scale bars: 20 µm.
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FIGURE 8 | AFRs temporally regulate CCA1 and PRR9 genes during evening
time. Arabidopsis Sin3-HDAC participates in regulating rhythmic expression of
the CCA1 and PRR9 genes. The evening-expressed AFR proteins may
temporally form the Sin3-HDAC corepressor complex and bind directly to the
CCA1 and PRR9 promoters to catalyze H3 deacetylation at the cognate
regions, allowing the declining phase of CCA1 and PRR9 expression during
evening time. Binding regions of the Sin3-HDAC complex are likely specified
by LNK-associated DNA-binding factors.

Circadian expression of the CCA1 and LHY genes is
regulated by a couple of chromatin modifiers. The JMJ30/JMJD5
gene is clock-controlled and peaks at dusk (Lu et al., 2011).
This pattern of JMJ30 expression is shaped by the central
oscillators CCA1 and LHY, which directly bind to the
JMJ30 promoter (Lu et al., 2011). In turn, JMJ30 promotes
expression of CCA1 and LHY, presumably through its
histone demethylase activity (Lu et al., 2011). In addition,
HDA6 and HDA19 are also implicated in the Arabidopsis
circadian system. The HDAC proteins form a protein
complex with PRRs and TPL/TPRs (Wang et al., 2013),
and repress expression of CCA1 and LHY by directly
binding to the CCA1 and LHY promoters (Wang et al.,
2013). Consistently, suppression of HDAC activity leads
to circadian period lengthening and compromises the
transcriptional repression activities of PRR5, PRR7, and
PRR9 (Wang et al., 2013).

The Arabidopsis Sin3-HDAC complex is a different type
of HDAC complex involved in circadian oscillation. Key
members of the complex, AFR1 and AFR2, are under the
control of the circadian clock and form a Sin3-HDAC
complex possibly in a diurnal manner to mediate periodic
histone deacetylation at the CCA1 and PRR9 loci. AFR-
dependent H3 deacetylation at the CCA1 and PRR9 is
relevant during the evening time and thereby dampens
expression specifically at dusk. Notably, even though they
share the same HDAC components, the AFR-containing
Sin3-HDAC complex and HDA6/HDA19-PRR-TPL complex
have different binding targets in the control of circadian
oscillation. Different compositions of the protein complexes
may lead to different abilities in interactive protein recognition,
construction of protein interaction networks and thus target
chromatin binding. For instance, the AFR proteins may
specifically recruit transcriptional co-regulators, such as LNKs,

and facilitate new repertoires of target gene regulation in
circadian control.

A significant number of HATs and HDACs participate in
circadian oscillation. Specific sets of HAT and HDAC shape
circadian expression of core clock genes. For instance, HAF2 adds
acetyl groups specifically to the PRR5 and LUX loci to facilitate
the rising phase of expression (Lee and Seo, 2018), and the Sin3-
HDAC complex removes the acetyl groups at the CCA1 and PRR9
loci to reset the acetylation state. This is likely not an exceptional
case, and many biological responses are probably diurnally
shaped by means of chromatin modifications (Kouzarides, 2007;
Jang et al., 2011; Seo and Mas, 2014). The opposing activities
of HAT and HDAC at specific genes conceivably modulate
the acetylation dynamics of target chromatin regions during
a day and set gene expression at the adequate level at the
right time.

Interactions of Chromatin Modifiers With
DNA-Binding Transcription Factors
Histone acetyltransferases and HDACs are targeted to actively
transcribed loci to control acetylation state and thereby gene
expression at the genome level (Kuo and Allis, 1998; Wang
et al., 2009; Peserico and Simone, 2011; Hemmes et al.,
2012; Malapeira et al., 2012). However, since they have no
selectivity to DNA elements, they are usually recruited to
specific target loci by DNA-binding transcription factors
(Todeschini et al., 2014; Bauer and Martin, 2017; Inukai
et al., 2017). Interactions of chromatin modifiers with
transcription factors allow elegant spatial and temporal
modification of chromatin contexts (Munshi et al., 1998,
2001; Agalioti et al., 2000; Lomvardas and Thanos, 2002;
Bauer and Martin, 2017).

Interactions of HDAC proteins with core clock components
are crucial for refining circadian behavior in eukaryotes (Perales
and Mas, 2007; Nakahata et al., 2008; Grimaldi et al., 2009). For
example, in mammals, SIRT1 associates with a core transcription
factor CLOCK, a positive regulator of the circadian machinery,
and is recruited to the circadian gene promoters (Nakahata
et al., 2008). Similarly, HDACs are associated with core clock
components with DNA-binding activities in the control of
circadian signaling in Arabidopsis (Perales and Mas, 2007).
In the circadian expression of TOC1, the histone acetylation
state seems to be regulated, at least in part, by the clock
factors CCA1 and RVE8, as plants mis-expressing the MYB
transcription factors exhibit an altered pattern of histone
acetylation at the TOC1 locus (Perales and Mas, 2007). CCA1
may specify repressive chromatin structures at the TOC1 locus
to regulate its expression at dawn, whereas RVE8, which has
a high degree of sequence homology to CCA1, favors H3
acetylation in contrast to CCA1, most likely by antagonizing
CCA1 function during the TOC1 raising phase (Farinas and
Mas, 2011). Although chromatin modifiers responsible for
accumulation of H3ac at the TOC1 locus are elusive so far, the
oscillating H3ac levels are dependent on core clock transcription
factors that will recruit HATs and/or HDACs to shape the
waveform of TOC1.
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AFR1 and AFR2 are recruited to the CCA1 and PRR9
chromatin for H3 deacetylation possibly by LNKs, although
further experiments are required to prove the putative
interactions. The morning-expressed LNK1 and LNK2
transcriptional coactivators lack DNA binding domains,
but they interact with the bona fide DNA-binding proteins
including CCA1, LHY, RVE4, and RVE8 to bind to core clock
genes (Xie et al., 2014). Although it is unclear so far, the
LNK1/2-interacting CCA1/RVEs and/or as-yet-unidentified
DNA-binding proteins may transcriptionally activate CCA1 and
PRR9 expression in the morning and also enable recruitment
of the Sin3-HDAC complex to the morning gene loci to
subsequently dampen expression after peak phase. The dynamic
nature of histone acetylation and deacetylation depends on
sophisticated interactions with transcription factors, and protein
interaction networks further diversify the molecular mechanisms
underlying rhythmic expression of core clock genes and thus
circadian oscillation.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Arabidopsis thaliana (Columbia-0 ecotype) was used for all
experiments described, unless specified otherwise. Plants were
grown under neutral day conditions (NDs; 12-h light/12-h dark
cycles) with cool white fluorescent light (120 µmol photons
m−2 s−1) at 22-23◦C. The afr1-1afr2-1 mutant was previously
reported (Gu et al., 2013). sap18-2, cca1-1lhy-21, and cca1-2
mutants were obtained from Arabidopsis Biological Resource
Center (ABRC). The lack of gene expression in mutants was
verified by means of RT-PCR.

Quantitative Real-Time RT-PCR Analysis
Total RNA was extracted using the TRI reagent (TAKARA Bio,
Singa, Japan) according to the manufacturer’s recommendations.
Reverse transcription (RT) was performed using Moloney
Murine Leukemia Virus (M-MLV) reverse transcriptase (Dr.
Protein, Seoul, South Korea) with oligo(dT18) to synthesize first-
strand cDNA from 2 µg of total RNA. Total RNA samples were
pretreated with an RNAse-free DNAse. cDNAs were diluted to
100 µL with TE buffer, and 1 µL of diluted cDNA was used for
PCR amplification.

Quantitative RT-PCR reactions were performed in 96-
well blocks using the Step-One Plus Real-Time PCR System
(Applied Biosystems). The PCR primers used are listed
in Supplementary Table S1. The values for each set of
primers were normalized relative to the EUKARYOTIC
TRANSLATION INITIATION FACTOR 4A1 (eIF4A) gene
(At3g13920). All RT-qPCR reactions were performed
in three independent biological replicates using total
RNA samples extracted from three independent replicate
samples. The comparative 11CT method was employed
to evaluate the relative quantities of each amplified
product in the samples. The threshold cycle (CT) was
automatically determined for each reaction by the system
set with default parameters. Specificity of the RT-qPCR

reactions was determined by melt curve analysis of the
amplified products using the standard method installed
in the system.

Yeast Two-Hybrid Assays
Yeast two-hybrid (Y2H) assays were performed using the
BD Matchmaker system (Clontech, Mountain View, CA,
United States). The pGADT7 vector was used for GAL4-
AD fusion, and the pGBKT7 vector was used for GAL4-BD
fusion. The yeast strain AH109 harboring the LacZ and His
reporter genes was used. PCR products were subcloned into the
pGBKT7 and pGADT7 vectors. The expression constructs were
cotransformed into yeast AH109 cells and transformed cells were
selected by growth on SD/-Leu/-Trp medium.

Bimolecular Fluorescence
Complementation (BiFC) Assays
The LNK genes were fused in-frame to the 5′ end of a gene
sequence encoding the C-terminal half of EYFP in the pSATN-
cEYFP-C1 vector (E3082). The AFR cDNA sequences were
fused in-frame to the 5′ end of a gene sequence encoding
the N-terminal half of EYFP in the pSATN-nEYFP-C1 vector
(E3081). The IDD14-RFP construct was used as a nuclear
marker (Seo et al., 2011). The expression constructs were
cotransformed into Arabidopsis protoplasts. Expression of the
fusion constructs was monitored by fluorescence microscopy
using a Zeiss LSM510 confocal microscope (Carl Zeiss,
Jena, Germany).

Chromatin Immunoprecipitation (ChIP)
pCCA1:CCA1-HA-YFP/cca1-1 and 35S:AFR-MYC transgenic
plants were used for ChIP. Anti-MYC (06-599, Millipore),
anti-HA (ab9110, Abcam), and anti-H3ac (05-724, Millipore)
antibodies and salmon sperm DNA/protein A agarose beads
(Millipore, Billerica, MA, United States) were used for
chromatin immunoprecipitation. DNA was purified using
phenol/chloroform/isoamyl alcohol and sodium acetate (pH
5.2). The level of eluted DNA fragments was quantified
by quantitative real-time PCR using specific primer sets
(Supplementary Table S2). The values were normalized to the
input DNA level.

Transient Expression Assays
For transient expression assays using Arabidopsis protoplasts,
reporter and effector plasmids were constructed. The
core elements of the CCA1 and PRR9 promoters were
inserted into the reporter plasmid, which contains a
minimal 35S promoter sequence and the GUS gene.
To construct the p35S:AFR effector plasmids, the AFR1
and AFR2 cDNAs were inserted into the effector vector
containing the CaMV 35S promoter. Recombinant
reporter and effector plasmids were cotransformed
into Arabidopsis protoplasts by polyethylene glycol-
mediated transformation. GUS activity was measured by
a fluorometric method. A CaMV 35S promoter-luciferase
construct was also cotransformed as an internal control.
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The luciferase assay was performed using the Luciferase Assay
System kit (Promega,1).
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