
fpls-10-00198 February 19, 2019 Time: 17:5 # 1

MINI REVIEW
published: 21 February 2019

doi: 10.3389/fpls.2019.00198

Edited by:
Antia Rodriguez-Villalon,
ETH Zürich, Switzerland

Reviewed by:
Miguel A. Botella,

Universidad de Málaga, Spain
Roman Pleskot,

Ghent University, Belgium

*Correspondence:
Jules D. Petit

jules.petit@u-bordeaux.fr
Laurence Lins

l.lins@uliege.be
Emmanuelle M. Bayer

emmanuelle.bayer@u-bordeaux.fr

Specialty section:
This article was submitted to

Plant Cell Biology,
a section of the journal

Frontiers in Plant Science

Received: 10 December 2018
Accepted: 05 February 2019
Published: 21 February 2019

Citation:
Petit JD, Immel F, Lins L and

Bayer EM (2019) Lipids or Proteins:
Who Is Leading the Dance

at Membrane Contact Sites?
Front. Plant Sci. 10:198.

doi: 10.3389/fpls.2019.00198

Lipids or Proteins: Who Is Leading
the Dance at Membrane Contact
Sites?
Jules D. Petit1,2* , Françoise Immel1, Laurence Lins2* and Emmanuelle M. Bayer1*

1 UMR5200 CNRS, Laboratory of Membrane Biogenesis, University of Bordeaux, Villenave d’Ornon, France, 2 Laboratoire
de Biophysique Moléculaire aux Interfaces, TERRA Research Centre, GX ABT, Université de Liège, Liège, Belgium

Understanding the mode of action of membrane contact sites (MCSs) across eukaryotic
organisms at the near-atomic level to infer function at the cellular and tissue levels
is a challenge scientists are currently facing. These peculiar systems dedicated to
inter-organellar communication are perfect examples of cellular processes where the
interplay between lipids and proteins is critical. In this mini review, we underline the
link between membrane lipid environment, the recruitment of proteins at specialized
membrane domains and the function of MCSs. More precisely, we want to give insights
on the crucial role of lipids in defining the specificity of plant endoplasmic reticulum
(ER)-plasma membrane (PM) MCSs and we further propose approaches to study them
at multiple scales. Our goal is not so much to go into detailed description of MCSs,
as there are numerous focused reviews on the subject, but rather try to pinpoint
the critical elements defining those structures and give an original point of view by
considering the subject from a near-atomic angle with a focus on lipids. We review
current knowledge as to how lipids can define MCS territories, play a role in the
recruitment and function of the MCS-associated proteins and in turn, how the lipid
environment can be modified by proteins.

Keywords: membrane contact sites, plants, lipids, tether proteins, plasmodesmata, biophysics

INTRODUCTION

From an evolutionary perspective, membrane contact sites (MCSs) have been suggested to be the
first contacts between archeon and protobacterium, leading to the emergence of eukaryotic cells
(Jain and Holthuis, 2017). More generally, MCSs are described as a very close apposition (10–
30 nm gap) of membranes of usually two different organelles (intra-organellar MCSs also exist),
with specific lipid and protein populations (Bayer et al., 2017; Wang et al., 2017). MCSs create
micro-environments that are under tight spatial and temporal control. Their main function is
to promote fast inter-organellar communication through direct exchange of molecules such as
lipids or calcium and through coordinated actions, for instance, with proteins acting in trans on
the adjacent membrane to control receptor signaling or lipid synthesis (Eden et al., 2010; Haj
et al., 2012; Himschoot et al., 2017; Muallem et al., 2017; Henrich et al., 2018). MCSs’ capacity
to create and modulate micro-environments but also macro-environment at larger scales in the
cell, is determined by high regulation of lipids and proteins, both in composition and distribution
(Eisenberg-Bord et al., 2016; Gatta and Levine, 2017; Muallem et al., 2017). Many research have
been made on the diversity of membrane lipids and the consequences of their heterogeneous
distributions along and across the bilayer (Cacas et al., 2016; Sezgin et al., 2017; Gronnier et al., 2018;
Harayama and Riezman, 2018). There is also increasing knowledge about the identity and function
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of MCS-associated proteins (Eisenberg-Bord et al., 2016; Wong
et al., 2018). The exact definition of the MCSs is still
being discussed but an emerging consensus is that they are
(1) involved in the bulk lipid distribution and/or the fine
regulation of membrane lipid composition through (but not
only) direct lipid transfer which in turn is critical for local
and organellar cellular processes and (2) characterized with
the presence of tethering elements to hold the membranes
close to each other but without undergoing fusion. Lipid
transfer proteins (LTPs) are locally found at MCSs and,
in addition to lipid transfer, some are also able to act as
tethers (Lahiri et al., 2015; Eisenberg-Bord et al., 2016; Quon
et al., 2018; Tong et al., 2018). In turn, the lipids are
one of the main actors for LTP/tether recruitment, hence
stability and function of MCSs (Bian et al., 2018; Wong
et al., 2018). In such an environment, it is challenging to
understand the dynamics and relationships between proteins
and lipids but also interactions between lipid-lipid and
protein-protein inside these confined areas filled with such a
dynamic complexity.

We chose here to give a global view and additional thoughts
on the role of lipids at plant MCSs, mainly at endoplasmic
reticulum (ER)-plasma membrane (PM) MCSs (EPCSs). In this
review, we will first describe the different ways lipids can
define specific regions and regulate protein complexes through
the formation of lipid domains, the regulation of membrane
curvature and membrane electrostatics. Secondly, we will look
at the importance of lipid exchange at MCSs. Thirdly, we will
open a discussion about the particularity of plasmodesmata MCSs
and their potential implications in organelle crosstalk, cell-to-
cell communication and trafficking regulation. Finally, we list a
number of multidisciplinary approaches that could be used to
provide a complete view of these structures at (near) atomic and
molecular levels.

MEMBRANE LIPIDS CREATE UNIQUE
ENVIRONMENTS THAT DEFINE AND
REGULATE MCSS

MCSs have specific molecular compositions in both lipids
and proteins, which define nano- and microdomains within
the organelle. These subdomains are very important for the
cellular polarization of signaling events via the formation of
protein complexes, notably receptor complexes that are as
such spatially and temporally regulated, driving acute signaling
pathways (Burkart and Stahl, 2017; Gronnier et al., 2018). The
molecular mechanisms leading to subcompartmentalization in
general terms are gradually being uncovered and have been
shown to involve lipids, membrane biophysical properties and
the concerted action of specific protein machineries. Membrane
subdivision is arising from the combination of membrane
biophysical properties – such as fluidity, thickness, curvature and
electrostatics – and has consequences in the recognition pattern
of a plethora of lipid environment-sensing protein domains
(Prévost et al., 2015; Strahl et al., 2015; Pérez-Lara et al., 2016;
Lorent et al., 2017; Platre et al., 2018; Wong et al., 2018).

Membrane Fluidity and Domains
There are two main elements playing a role in membrane
fluidity and lipid domain formation and conservation. A very
general feature is the liquid-liquid phase separation, caused by the
tendency of sterols to associate with saturated lipids or proteins
and form sterol-enriched ordered domains (liquid ordered
Lo versus liquid disordered Ld domains) and of unsaturated
lipids to tune the phase separation stability (Levental et al.,
2016; Javanainen et al., 2017; Weiner and Feigenson, 2018).
More precisely, in plants, a model of PM nanodomain has
been proposed to involve plant-specific sphingolipids called
Glycosyl Inositol Phospho Ceramides (GIPCs). GIPCs possess
very long saturated acyl chains and presumably locate in the
outer leaflet of the PM. Poly glycosylated GIPCs tend to increase
the size of phytosterol-dependent ordered domains through
cooperative interactions (Figure 1A; Grosjean et al., 2015), which
likely mirrors poly phosphoinositides-enriched domains in the
inner leaflet, possibly through interdigitation; i.e., interaction
through very long fatty acyl chains between outer and inner
leaflet lipids (Raghupathy et al., 2015; Cacas et al., 2016;
Gronnier et al., 2016).

The natural segregation of lipids into domains, caused by
their intrinsic properties is used, controlled and balanced by
the cell through the action of proteins in order to build
functional entities capable of molecular and cellular operations
such as signaling (Sezgin et al., 2017). The rigidity/fluidity of
the membrane partially derives from the proportion of sterols
present in the bilayer, as their stiff planar structure is constraining
the acyl chains of neighboring lipids (Dufourc, 2008). As a
consequence, the presence of nanodomains and membrane-
associated cytoskeleton is directly impacting the mobility of
peripheral and anchored protein. This so-called anomalous
diffusion of membrane-associated proteins and lipids could be
as important as membrane compartmentalization for mesoscopic
dynamics (100–1000 nm) (Wu et al., 2016). In addition, the
sterol enrichment together with the orderliness and length of
the lipid acyl chains are associated with the thickness of the
bilayer (Javanainen et al., 2017). One example of protein sorting
associated to lipid nano-domain formation is the distribution of
transmembrane domains via the hydrophobic mismatch; i.e., the
properties of the transmembrane domain is correlated to specific
lipid domains (Figure 1B; Milovanovic et al., 2015; Lorent et al.,
2017). A recent study describing the plasmodesmata proteome
of Populus trichocarpa shows an increase in the length of the
transmembrane domains of plasmodesmata-associated proteins
in comparison with membrane-associated proteins (Leijon et al.,
2018). This observation is in correlation with the specificity
of the membrane composition described at post cytokinesis
plasmodesmata (Grison et al., 2015) and pointing toward a thick
“raft-like” membrane.

In animals, MCSs between the ER and the trans-Golgi network
are critical for the regulation of the sterol and sphingolipid
transfer, mediated by the Ceramide Transport Protein (CERT)
and the Oxysterol Binding Protein (OSBP), which is very
important for the control of trans-Golgi lipid composition, hence
PM lipid composition (Yamaji et al., 2008; Olkkonen, 2015; Jain
and Holthuis, 2017; Hanada, 2018). GIPCs being plant-specific
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FIGURE 1 | Membrane biophysical properties and lipid-protein interplay at membrane contact sites (MCSs). (A) Poly glycosylated GIPCs tend to increase the size
and rigidity of phytosterol-dependent ordered membrane domains (Lo) through hydrogen bonding between the hydroxyl group of the sterols and the polarized
groups of the GIPCs located at the polar/hydrophobic interface. This interaction is also favored by the umbrella effect of the big GIPCs’ polar moiety, which prevents
water molecules to interact deeper into the bilayer (Grosjean et al., 2015). (B) Transmembrane protein distribution between different lipid domains relies on
transmembrane length, surface area and palmitoylation (adapted from Lorent et al., 2017). (C) Representation of the lipid packing of membrane domains.

(Continued)
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FIGURE 1 | Continued
Liquid ordered domain are more tightly packed than liquid disordered domains (Ld) because of the nature of the lipids and degree of their acyl chain saturation. Lipid
packing defects arise in liquid disordered domains. (D) Hypothetical model of calcium-dependent regulation of protein-plasma membrane interaction at endoplasmic
reticulum-plasma membrane MCS (EPCS). This hypothetical model gathers the possible interactions involving proteins, lipids and ions that could occur at MCS
during signaling events. Its goal is to illustrate the complexity of lipid/protein/ion interactions. The protein illustrated here represents a lipid transfer protein/tether
element that specifically locates to EPCS upon homodimerization. Left. In presence of calcium, domain A is able to interact with phosphatidylserine, the
inter-membrane gap is reduced, allowing the exchange of lipids by the lipid transfer domains (LTDs). Domain B cannot interact with the phosphatidylinositol
phosphates of the lipid nanodomains as they are shielded by the calcium ions (Middle). Right. In the absence of calcium, domain A is released from the membrane,
increasing the inter-membrane gap, and binds to the LTD, inhibiting lipid exchange between organelles. Domain B docks onto the lipid nanodomains via electrostatic
interactions with anionic PIPs and leads to the formation of bigger lipid domains where protein C can interact with one another and initiate/relay a signal. There are
two main domain types allowing peripheral binding of proteins, the anionic lipid and/or calcium-dependent C2 domains (such as domain A in this figure) and the
anionic lipid dependent PH domains (such as domain B in this figure). (E) Schematic view of plant cell-to-cell junction showing the cell wall (CW), the endoplasmic
reticulum (ER) network, plasma membrane (PM) and several plasmodesmata (PD). The right insert shows the PD ultrastructure. The close vicinity between the PM
and the desmotubule (Dt;a lumen-free tubule of ER), connected by spoke-like tethering elements, leaves a small inter-membrane gap between the two membranes,
called the cytoplasmic sleeve (CS).

sphingolipids, understanding their role in membranes and how
they could indirectly act at MCS by modulating lipid composition
would be a major step forward in cell biology. Although some
studies have shown enrichment of sphingolipids and phytosterols
at some plant MCSs (Fujimoto et al., 2011; Grison et al., 2015),
we currently don’t know the role of inter-organellar exchange
in maintaining these local lipid environments. The remaining
enigma behind the role of leaflet interdigitation mediated by
the GIPCs’ very long chain fatty acids and more globally the
asymmetrical distribution of lipids between the inner and outer
leaflets of the PM is also worth our attention (Cacas et al., 2016;
Gronnier et al., 2016).

Membrane Curvature and Lipid Packing
Another major component of the establishment of specialized
membrane domains is membrane curvature and lipid packing.
The latter can be described as the orderliness of the lipid
arrangement: lipid packing defects arise when cavities in the
membrane are formed at the interface with water, exposing
aliphatic carbons (Figure 1C; Jackson et al., 2016; Gautier
et al., 2018). This property of the bilayer relies upon a
balance between the size of the lipid polar head and the
degree of lipid unsaturation (Bigay and Antonny, 2012) but
also upon the curvature of the bilayer itself (Harayama and
Riezman, 2018). Other studies also suggest the formation of
lipid packing defects at Lo/Ld boundaries (Tripathy et al., 2018).
These membrane biophysical properties can drive membrane
adsorption of various peripheral proteins which recognize lipid
packing defects through, for instance, amphipathic helices in
membrane curvature-sensing proteins (Cui et al., 2011; Vanni
et al., 2013; Simunovic et al., 2015). In addition, the curvature
itself can drive autonomous sorting of molecules depending on
their properties, as it was shown for lipids (Baoukina et al., 2018)
and transmembrane proteins (Aimon et al., 2014). In the context
of MCSs, highly negatively curved membranes, such as PM inside
plasmodesmata intercellular pores, could cluster small polar head
lipids like phosphatidic acid (PA) and/or specific proteins, to
potentially regulate the function of the MCS.

Other proteins or local production/degradation of specific
lipids have been shown to induce membrane curvature (Tilsner
et al., 2016; Choudhary et al., 2018; Ramakrishnan et al.,
2018). The transmembrane region of human MCTP2 (Multiple

C2 domains and Transmembrane region Protein 2), a protein
that is suspected to act as a tether at EPCS in neurons
(Genç et al., 2017), was notably shown to act as a reticulon
domain, constraining the ER network into narrow tubules by
inducing curvature (Joshi et al., 2018). An interesting question
to ask is whether tether proteins can also shape membranes
at MCSs and how this could be linked with inter-organellar
exchange. Does the curvature induced by these tethers aim to
facilitate lipid extraction for transfer? Sterol extraction could
indeed be facilitated at positively curved membranes (Bigay
and Antonny, 2012) and maybe more stably incorporated into
membranes with no lipid packing defect such as negatively
curved membranes, possibly providing a driving force for
directional movement.

Membrane Electrostatics and Ions
The third main element defining membrane and domain
identity is the charge carried by the lipid polar heads,
more precisely anionic lipids. In plants, phosphatidylinositol-
4-phosphate (PI4P) is the major anionic lipid that drives the
electrostatic identity of the PM inner leaflet (Simon et al.,
2016) but a more recent research shows that the electrostatic
field is actually controlled by a combination of several charged
lipids, namely PI4P, PA and phosphatidylserine (PS) (Platre
et al., 2018). This three-way electrostatic landscape of plant
PM is critical for the creation of specific local charges
and thus the recruitment and function of cationic proteins
involved in cellular responses, such as the brassinosteroid
transport regulator BRI1 KINASE INHIBITOR1 (BKI1) and
auxin polarity modulators AGC kinases PINOID and D6-
PROTEIN KINASE (D6PK) (Barbosa et al., 2016; Simon et al.,
2016; Platre et al., 2018).

Negatively charged lipids are also critical elements of EPCSs,
acting as co-factors for membrane tethering through direct
interaction with tether proteins. Few examples are tricalbins
(Tcb1-3) and Ist2 proteins in yeast (Manford et al., 2012),
extended-synaptotagmins (E-Syt1-3), TMEM16, junctophilins
and STIM1 in humans and finally synaptotagmin 1/A (Syt1)
and MCTPs in plants (Henne et al., 2015; Tilsner et al., 2016;
Brault et al., 2018). Indeed, many LTPs/tethering elements
possess pleckstrin homology (PH) or C2 domains, which are
known anionic lipid-interacting domains (Wong et al., 2018). In
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animals, MCS tether proteins presenting a series of C2 domains
(like E-Syt1) were shown to have conditional environment-
mediated structural modifications, which initiate or relay a
signal at the MCS scale: decrease of inter-membrane gap, lipid
exchange, protein complex formation/loosening (Saheki and De
Camilli, 2017; Zhou et al., 2017; Bian et al., 2018). In plants,
we are running late on understanding the dynamic molecular
mechanisms occurring at MCSs but still, Syt1 C2 domains were
shown to interact with anionic lipids (Schapire et al., 2008; Pérez-
Sancho et al., 2015) and new insights on the function of MCTP
family at plasmodesmata EPCS might give us some clues as their
C2 domains also have the capacity to interact with PS and PI4P
(Brault et al., 2018).

Local lipid modifications, pH and gradients/local
concentrations of ions must also be taken into account in
the regulation of the membrane electrostatic signature and
thus the ability of anionic lipid-protein interactions. We know
that MCSs are places of calcium exchange and anionic lipid
concentration (Muallem et al., 2017). It is important to consider
how the two are related and the consequences it has on MCS
functions. For instance, the function of E-Syt1, which relies
on the membrane docking ability of its C2 domains with
anionic lipids, can be directly modulated by the presence of
calcium ions (Idevall-hagren et al., 2015; Bian et al., 2018) but
the latter can also shield PIP polar heads and prevent protein
binding at places undergoing signaling (Seo et al., 2015; Bilkova
et al., 2017; Himschoot et al., 2017; Figure 1D). Recent work
has also demonstrated the effect of local concentrations of
bivalent cations, mainly calcium, on the shaping of membranes
containing anionic lipids: the clustering of PS and PI(4,5)P2
caused by ion interactions drives a negative curvature and
tubulation of the bilayer (Doosti et al., 2017; Graber et al.,
2017). A last element that is able to determine a spatiotemporal
electrostatic signature is the pH, which can act on anionic
lipids, mainly PA (Shin et al., 2011; Tanguy et al., 2018). It is
possible that the pH at MCS could differ from the bulk cytosol
and studying its variations at these areas by using pH probes
could be interesting.

LIPID EXCHANGE AT MCS

At MCS, we observe an alternative transport to vesicular
trafficking: a direct shuttle/exchange of lipids between
membranes. This exchange seems to be a way to guarantee
robust mechanism of lipid transfer and regulation between
compartments as it results in organellar lipid modifications and
plays a major role in cellular events such insulin response (Lees
et al., 2017) and neuronal growth (Petkovic et al., 2014). This
fast and efficient crosstalk is performed by a specialized group of
proteins, the lipid transfer proteins (LTPs) and relies on protein
membrane binding through lipid interaction (mainly anionic
lipid and/or calcium-dependent C2 domains and anionic lipid-
dependent PH domains), but also on the close proximity of the
two membranes (Figure 1D; Wong et al., 2018). Non-vesicular
transport of lipids by LTPs is important for the regulation of
membrane composition in tight places, which cannot be achieved

by vesicles. It may also play an essential role in controlling the
bulk lipid distribution of organelles.

For example, the OSBP and OSBP-Related Proteins (ORP,
Osh) associate with vesicle-associated membrane protein-
associated proteins (VAPs) at ER MCSs to specifically exchange
sterols, PS and PIP molecules (Olkkonen, 2015; Moser von
Filseck and Drin, 2016). Osh4 uses the PI4P imbalance created
at the ER by PI4P phosphatase Sac1p to exchange PI4P extracted
from the trans-Golgi network with sterols. This counter-flow
process results in sterol enrichment at the trans-Golgi network
and PI4P pool maintenance at the ER (Saint-jean et al., 2011).
Interestingly, maintaining this PI4P pool at the ER allows the
recruitment of CERT in order to transport ceramide from the
ER to the trans-Golgi (Yamaji et al., 2008; Moser von Filseck
and Drin, 2016). This trafficking of sterols and sphingolipids
to the trans-Golgi leads to the indirect regulation of the PM
lipid composition. ORP5/8 also contributes to build the PM
lipid signature by counter-flowing PS to it, in exchange of
PI4P and more efficiently PI(4,5)P2 from the ER (Chung et al.,
2015; Ghai et al., 2017). Overall, it becomes clear that the
transport of sterols, sphingolipids and anionic lipids is critical
for the definition of membrane signature and control of lipid
composition. This leads us to believe that lipid exchange at
MCSs is at the basis of membrane identity by shaping their
properties through the transfer of specific lipids. It also allows
the creation and maintenance of lipid gradients needed for
the function of molecular machineries during cellular actions.
However, our knowledge on how plant lipid transfer at MCS
is able to tune organellar function and respond to signaling
pathways remains limited.

MCS AT PLASMODESMATA, OPENINGS
ON A VERY CONFINED SPACE

Plasmodesmata are plant-specific channels crossing cell walls and
enabling cell-to-cell communication (Brunkard and Zambryski,
2017). They are unique as they allow continuity of PM,
ER and cytosol between cells (Figure 1E) and provide a
direct cytosolic road for cell-to-cell molecular trafficking of
metabolites, transcription factors, RNAs and calcium, and their
membranes also host signaling pathways’ machineries with
receptor-like proteins (Kim et al., 2005; Rutschow et al., 2011;
Furuta et al., 2012; Brunkard et al., 2015; Chen et al., 2016a;
Tilsner et al., 2016; Brunkard and Zambryski, 2017). New
insights into the plasmodesmata ultrastructure have revealed
extremely tight vicinity (down to 3 nm) between the ER
and the PM inside the pores, with spoke-like tethering
elements connecting the two (Figure 1E), and highlighted
the plasticity of these membrane junctions during cell growth
and development (Nicolas et al., 2017). To some extent, this
observation leads to the re-consideration of plasmodesmata as
specialized EPCS and questions the function of ER-PM contacts
at plasmodesmata (Tilsner et al., 2016; Nicolas et al., 2017).
While plasmodesmata are structurally related to MCSs, being
sites of ER-PM contacts, we do not know if they are involved
in inter-organellar communication yet. Plasmodesmata are,
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however, well-established sites of intercellular communication
and, over the last decade, they have emerged as important
signaling hubs playing a role in ever growing aspects of plant
physiology. Merging these two elements results in the possibility
of plasmodesmata to be a unique kind of MCS, acting as a node
for both inter-organellar and cell-to-cell communication. Indeed,
organelle crosstalk would clearly play a role in plasmodesmata
function and local lipid transfer activity between the membranes
would be conceivable since plasmodesmata are usually 500nm
long channels and reaching inside the pore for vesicles is
challenging, especially in mature tissues where the cell wall
will be thicker.

Plasmodesmata are also singular amongst MCSs as they
present a unique structural organization and membrane
biophysical properties. Inside the pore, both the ER and the
PM present extreme curvature, both positive and negative. So
instead of two “flat” membrane segments tethered together,
plasmodesmata MCS features two membrane tubes nested into
each other and sitting at cell interfaces (which is neither inside
the cell, neither part of the extracellular matrix). The extremely
confined space between the ER and the PM (2–3 nm) is also
not usual for MCSs and tight connection between the PM and
cell wall components might lead us to someday talk about
WALL-PM-ER MCSs.

A global view of protein population at plasmodesmata is
starting to emerge (Fernandez-calvino et al., 2011; Salmon

and Bayer, 2013; Kraner et al., 2017; Brault et al., 2018)
and few lipidomics, showing specific lipid composition of
plasmodesmata-enriched biochemical fraction, have been
performed (Grison et al., 2015). However, we currently have little
understanding on how the lipid and protein populations are
regulating each other and how they play a role in plasmodesmata
dynamics. A glimpse on the identity, structure and mode
of action of plasmodesmata-associated tethering elements
could open the door on understanding the molecular
mechanisms taking place at plasmodesmata and potentially
bridge extracellular, PM and endomembrane signaling.

UNDERSTANDING THE MCS AND ITS
DYNAMICS REQUIRE
INTERDISCIPLINARY APPROACHES

Understanding the dynamics of MCSs and its actors (lipid-
protein, lipid-lipid and protein-protein interactions) requires
bridging across scales from atomic (or near-atomic) to cellular
and tissue levels, to get a comprehensive picture of MCSs.
While cellular and tissue-level events can be tackled by classical
cell biology (such as confocal microscopy) and genetic tools,
their limits in terms of resolution encourage the use of
in silico, biophysical-based tools and electron microscopy for
understanding MCSs at atomic/macromolecular-levels. Many

TABLE 1 | Non-extensive list of tools usable for atomic/macromolecular-level study of MCSs.

Technique Usage Reference

In silico

Hypermatrix Energy-based calculation of lipid-ligand interactions
and 3D arrangements

Deleu et al., 2014; Cacas et al., 2016

IMPALA Energy-based prediction of the insertion of molecules in
lipid bilayers

Basyn et al., 2001; Lins et al., 2001; Cacas
et al., 2016

Molecular dynamics Atomic and coarse grained simulations to study the
behavior over time of lipids bilayers and proteins

Deleu et al., 2014; Yamamoto et al., 2016;
Duncan et al., 2017; Gronnier et al., 2017

In vitro

PIP Strips Determination of protein ability to interact with specific
anionic lipids

Pérez-Sancho et al., 2016

Liposome flottation/sedimentation assays Determination of protein ability to interact with a lipid
bilayer

Schapire et al., 2008; Pérez-Sancho et al.,
2016; Meca et al., 2018

Tubule formation by optical tweezers on liposome Study of membrane curvature-induced sorting of
proteins

Aimon et al., 2014; Prévost et al., 2015; Chen
et al., 2016b

In vitro tethering to reconstitute simplified MCS with
isolated protein and controlled lipid and ion
environment.

Characterization of the ability of a protein to tether two
liposomes using dynamic light scattering and the
inter-liposome distance by FRET. Visualize the tethering
ultrastructure using cryo-electron microscopy

Mesmin et al., 2013; Lin et al., 2014; Diao et al.,
2015

Isothermal Titration Calorimetry (ITC) Determination of the affinity constant and
thermodynamics parameters for the interaction
between proteins and liposomes.

Ghai et al., 2012

Langmuir Trough Determination of the kinetics of adsorption and affinity
parameters of proteins for lipid monolayers

Eeman et al., 2006; Calvez et al., 2011;
Gronnier et al., 2017

Solid state NMR Study lipid-protein interactions and the deformation of
the lipid membrane caused by the interaction at atomic
level

Huster, 2014; Gronnier et al., 2017

In situ

(Cryo) electron tomography Visualize MCS architecture at macromolecular scale Collado and Fernández-Busnadiego, 2017;
Nicolas et al., 2017
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options are possible but a number of approaches are especially
interesting in the context of protein/lipid interaction, hence
MCSs (see Table 1). For example, molecular modeling and
dynamic simulations are relatively easy-accessible ways to study,
simultaneously or not, the structure and function of proteins
and lipid bilayers at a molecular/atomic level and often bring
evidences on questions that could not be answered by other
means (Javanainen et al., 2017). Currently, the increasing
computational power and the development of efficient coarse
grained force fields for an increasing number of molecules1

(Marrink et al., 2007) allow the simulation of bigger and more
complex systems during longer time scales (up to the micro-scale)
(Duncan et al., 2017; Hsu et al., 2017), which fit MCS scales.

The study of a system closely related to MCSs, the SNARE
(Soluble NFS attachment protein receptor)-mediated membrane
fusion, involved for example in the highly regulated release
of neurotransmitters at the synapse in animals (Chen and
Scheller, 2001), proves the need for multidisciplinary tools to
understand the molecular operations and underlying subtleties.
Animal synaptotagmin 1 (Syt1), a tether protein that possesses
a transmembrane domain and two C2 domains, is a major
actor of SNARE as it is implicated in each step of the
neurotransmitter release process. For example, the role of PIP, PS
and calcium in PM docking of Syt1 C2 domains and bridging
of the membranes was revealed by using isothermal titration
calorimetry (ITC), fluorescence energy transfer (FRET) and
vesicle sedimentation assays, NMR and computational modeling
(Lin et al., 2014; Pérez-Lara et al., 2016). Understanding the
causes and function of the ring-like oligomerization of Syt1and
the role of tandem C2 domain interaction was performed
using electron microscopy, circular dichroism, ITC, atomic force
microscopy, floatation, and sedimentation assays (Evans et al.,
2016; Zanetti et al., 2016). Comprehending the nature of the Syt1-
SNARE complex interaction was possible mainly through NMR
and molecular modeling and dynamics (Brewer et al., 2015). All
these techniques brought an integrated vision of the dynamic
molecular mechanisms occurring at this crucial interface. We
believe that employing similar resources for MCS-associated
processes would undoubtedly bring us new and original insights
in these peculiar systems of cell biology.

CONCLUSION

There is still a lot to be done in the understanding of plant
EPCS function and the molecular mechanisms involved in their

1 http://cgmartini.nl/

dynamics and regulation. Important questions concern the
function and role of membrane compartmentalization (lipid
nanodomains, inner/outer leaflet composition, interdigitation),
the molecular mechanisms associated with the tethering
machinery at MCSs (tethers’ identity, effect of tethering in lipid
transfer and signaling pathways) and the roles of the lipid
environment in the definition of MCSs (regulation, dynamics).
However, increasing technical resources have helped to grasp
pieces of the puzzle that we are only now starting to assemble.
The complexity arising from the incredible diversity in lipids and
proteins and, over all, the complex relationships that interconnect
them are not making the task easy to accomplish. The biophysical
properties of the membrane derived from the intrinsic nature
of a plethora of lipids species and their mutual interactions,
is impacting on the recruitment and function of proteins,
which in turn are fine tuning their lipid environment. The
effects of this cycle are expected to get even more intertwined
inside very confined environments, such as MCSs, and the
entanglement is such that every molecule and every interaction
is part of the dance, driving short or long-term consequences
on MCS function.
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