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Given the context of global warming and the increasing frequency of extreme climate
events, concerns have been raised by scientists, government, and the public regarding
drought occurrence and its impacts, particularly in arid and semi-arid regions. In this
paper, the drought conditions for the forest and grassland areas in the northern region
of China were identified based on 12 years of satellite-based Drought Severity Index
(DSI) data. The impact of drought on dryland vegetation in terms of carbon use
efficiency (CUE) and water use efficiency (WUE) were also investigated by exploring their
correlations with DSI. Results indicated that 49.90% of forest and grassland experienced
a dry trend over this period. The most severe drought occurred in 2001. In general,
most forests in the study regions experienced near normal and wet conditions during
the 12 year period. However, grasslands experienced a widespread drought after 2006.
The forest CUE values showed a fluctuation increase from 2000 to 2011, whereas the
grassland CUE remained steady over this period. In contrast, WUE increased in both
forest and grassland areas due to the increasing net primary productivity (NPP) and
descending evapotranspiration (ET). The CUE and WUE values of forest areas were
more sensitive to droughts when compared to the values for grassland areas. The
correlation analysis demonstrated that areas of DSI that showed significant correlations
with CUE and WUE were 17.24 and 10.37% of the vegetated areas, respectively.
Overall, the carbon and water use of dryland forests was more affected by drought
than that of dryland grasslands.

Keywords: carbon use efficiency, drought severity index, dryland vegetation, northern China, water use efficiency

INTRODUCTION

Recently, droughts have been frequently recorded due to climatic warming from elevated
concentrations of greenhouse gasses. This warming exacerbates water resource stress and poses
a significant threat to food security and the sustainability of human activities in these areas
(Vorosmarty et al., 2000; Rosegrant et al., 2003). The reports of the Intergovernmental Panel on
Climate Change suggest that drought frequency will likely increase by the end of 21st century,
particularly in regions that are currently dry (IPCC, 2014). At the ecosystem scale, drought
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will reduce the carbon sequestration ability of vegetation and
aggravate the water evaporation rate of ecosystems (Ciais et al.,
2005; Zhao and Running, 2010). The ecosystem-scale carbon
use efficiency (eCUE), which is defined as the ratio of net
primary productivity (NPP) to gross primary productivity (GPP),
describes the capacity of an ecosystem to transfer the carbon
from the atmosphere to vegetation biomass (DeLucia et al.,
2007). The ecosystem-scale water use efficiency (eWUE), a ratio
of NPP to evapotranspiration (ET), measures the net carbon
uptake per amount of water lost from the ecosystem (Beer et al.,
2009; Gang et al., 2016a,b). The eCUE and eWUE are two vital
indicators for addressing the ecosystem function in terms of
carbon and water cycles (Webb et al., 1978; LeHouerou, 1984;
DeLucia et al., 2007). The satellite-based imageries provide an
effective way in monitoring drought severity and vegetation
responses in term of carbon and water cycles (AghaKouchak
et al., 2015; Liu Y. et al., 2015). The impacts of droughts on
CUE and WUE have been widely reported in multiple scales
(Webb et al., 1978; DeLucia et al., 2007; Liu Y. et al., 2015;
Gang et al., 2016a). However, the occurrence of drought and its
subsequent influences on ecosystem-scale CUE and WUE have
not been extensively investigated, especially in the arid and semi-
arid regions. Therefore, further research is needed on the extent
and duration of droughts as well as their impacts on the carbon
and water cycles of dryland vegetation.

Precipitation is a primary input data in most drought indices,
which have been widely used in monitoring drought conditions
at different levels, such as the Standardized Precipitation Index
(SPI) (McKee et al., 1995), the Palmer Drought Severity Index
(PDSI) (Palmer, 1965), the Temperature-Vegetation Dryness
Index (TVDI) (Sandholt et al., 2002), the Vegetation, Water
and Thermal Stress Index (VWTCI) (Shakya and Yamaguchi,
2010), and the Percentage of Precipitation Anomaly (PPA).
The large-scale effects of drought on vegetation are detectable
with the help of remote sensing technology, which avoids
the deficiencies of filed-based metrological observation (Rhee
et al., 2010; Rojas et al., 2011). The Normalized Difference
Vegetation Index (NDVI), which can reflect the growth status
of plants, has been widely used for evaluating the effects of
drought on vegetation growth (Cunha et al., 2015; Klisch and
Atzberger, 2016). Many NDVI-based drought indicators have
also been developed, such as the Anomaly Vegetation Index
(AVI) (Chen et al., 1994), the Temperature Vegetation Drought
Index (TVDI) (Sandholt et al., 2002), and the Standardized
Vegetation Index (SVI) (Peters et al., 2002). ET, an important
component of terrestrial water cycles, is a more direct and
effective indicator for reflecting ecosystem moisture status (Mu
et al., 2007a, 2011). Remote sensing technology can provide
spatially explicit ET information for terrestrial ecosystems
(Jackson et al., 2005). Combining the MODIS-derived NDVI
and evapotranspiration/potential evapotranspiration (ET/PET)
data, Mu et al. (2013) developed a satellite-based drought index
with fine resolution at the global scale. This index is known
as Drought Severity Index (DSI). The DSI dataset has been
proven to be capable of monitoring droughts over the last
decade worldwide (Zhao and Running, 2011; Mu et al., 2013;
Zhang and Yamaguchi, 2014).

The northwest regions of China and Inner Mongolia (NWIM),
which are mainly situated in the northern inland of China, are
characterized with a dry climate, scarce precipitation, intensive
evaporation, and a fragile environment (Gou et al., 2015). The
unique location and climate make these regions vulnerable to
climate change and human disturbance. Previous research has
demonstrated that Ningxia, Gansu, and Xinjing provinces have
experienced different drought conditions in the past decade, and
these conditions exerted great influence on environment and
agricultural production (Gou et al., 2015; Huang et al., 2015;
Wang et al., 2015; Zhang et al., 2016). However, most of these
studies mainly focused on the regional scale. The extent and
severity of drought occurrences as well as the effects of droughts
on carbon and water cycles at the ecosystem scale are still open
questions that require further study.

The first decade of the 21st century has been estimated as
the warmest period since the 1880s. These extreme temperatures
highlight the importance of identifying the drought condition for
the dryland vegetation during this particular period (Zhao and
Running, 2010). The primary objectives of this study are: (i) to
examine the extent and duration of drought events in the forests
and grasslands of the NWIM from 2000 to 2011 via remotely
sensed DSI data; (ii) to quantify the annual changes of ecosystem-
scale CUE and WUE for forests and grasslands during this period;
and (iii) to explore the correlations between vegetation CUE,
WUE, and climate variables to reveal the environment drivers
of vegetation carbon and water utilization. The outcomes of
this study will elucidate the extent and duration of drought
occurrence in the forests and grasslands of the NWIM region,
and the results provide guidance for the initiation of adaptation
strategies to respond to the climate extremes.

MATERIALS AND METHODS

Study Area
The NWIM region covers three provinces (Shaanxi, Gansu,
and Qinghai) and three autonomous regions (Ningxia Hui
Autonomous Region, Inner Mongolia Autonomous Region, and
Xinjiang Uygur Autonomous Region) between the latitudes of
37–53◦N and the longitudes of 73–126◦E (Figure 1). The total
area of NWIM is approximately 4.15 × 106 km2, occupying
approximately 45% of the land area of China and supporting 10%
of the population. Most of this region is characterized by arid
and semi-arid climates with mean annual temperatures (MAT)
ranging from−7 to 16◦C. The mean annual precipitation (MAP)
ranges from 10 to 1100 mm (Shi et al., 2007; Mu et al., 2013;
Wang H. et al., 2013). The MAP exhibits an obvious latitudinal
distribution. Xinjiang and northern Inner Mongolia exhibit lower
values and the southern areas of Shaanxi, Gansu, and Qinghai
present higher MAP values (Shi et al., 2007).

Land Use and Land Cover Data
The land use and land cover map of the NWIM region
was derived from the International Geosphere-Biosphere
Project (IGBP) land cover dataset, which contains 17 land
cover classes (Loveland et al., 2000). In this study, closed
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FIGURE 1 | The elevation (A) and land use types (B) in the NWIM region.

shrublands, open shrublands, woody savannas, savannas,
and non-woody grasslands were regrouped as grasslands.
The NWIM region has the largest typical steppe grassland
in China, covering more than 41.00% of the total region.
Evergreen needle forest, evergreen broadleaf forest, deciduous

needle forest, and mixed forests were reclassified as forests,
and these areas account for 4.70% of the total NWIM
region. Barren/deserts, occupying 44.80% of the region, is
the mostly widely distributed land use type in the NWIM
region. Water bodies, croplands, and urban area made
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up to 1.52, 7.69, and 0.24% of total area, respectively.
Only the grassland and forest areas were included in the
following analyses.

MODIS DSI, GPP, NPP, and ET Data
The annual MODIS DSI, GPP, NPP, and ET data from 2000 to
2011 for the NWIM region were obtained from the Numerical
Terra dynamic Simulation Group at the University of Montana1.
The DSI (0.05◦ spatial resolution) was based on the basis of
ET/PET and snow-free growing season MODIS NDVI products
for all vegetated land areas(Atkinson et al., 2011; Mu et al., 2013).
The NDVI has been widely used to monitor the global vegetation
photosynthetic activities due to its sensitivity to vegetation
drought responses and associated water stress, especially in the
water-limited regions (Huete et al., 2002; Justice et al., 2002). DSI
is calculated as a standardized value, and its equation is expressed
as follows:

SANDVI =
NDVI − NDVI

δNDVI
(1)

SAEVA =
(ET/PET) − (ET/PET)

δ(ET/PET)
(2)

SA = SANDVI + SAEVA (3)

DSI =
SA − SA

δSA
(4)

where SANDVI, the standardized anomaly of the NDVI, is
calculated using the long-term mean value of NDVI and the
standard deviation δNDVI during the period 2000–2011; SAEVA,
the standardized anomaly of ET/PET, is calculated as the long-
term mean value of ET/PET and a standard deviation δ(ET/PET);
ET/PET means the ratio of ET to PET; SA is a sum of SANDVI
and SAEVA; the DSI is a standardized anomaly of SA; SA is
the long-term mean value of SANDVI and SA(ET/PET); δSA is the
standardized deviation. The DSI value can be reclassified into
11 categories to indicate different drought conditions, which is
shown in Table 1 (Mu et al., 2013; Zhang and Yamaguchi, 2014).

The new version of MODIS productivity products have been
improved by matching the spatial resolution of metrological
data to that of MODIS pixel, filling the missing value of
FPAR/LAI data due to cloud contamination and malfunction of
MODIS sensor, and updating the biome parameter look-up table
according to the productivity data from flux tower measurements
(Zhao et al., 2005; Gang et al., 2016a). GPP values are calculated
as follows:

GPP = εmax × 0.45× SWrad × FPAR× fVPD× fTmin (5)

where εmax is the maximum light use efficiency under optimal
conditions; SWrad is the incoming short-wave solar radiation, of
which 45% is Photosynthetically Active Radiation (PAR); FPAR
is the fraction of PAR absorbed by the plant canopy; fVPD is

1http://www.ntsg.umt.edu/

TABLE 1 | The categories for drought conditions of the global DSI (Mu et al.,
2013).

Category Description DSI

D5 Extremely drought <−1.50

D4 Severe drought −1.49 to −1.20

D3 Moderate drought −1.99 to −0.9

D2 Mild drought −0.89 to −0.60

D1 Incipient drought −0.59 to −0.30

WD Near normal −0.29 to 0.29

W1 Incipient wet 0.30 to 0.59

W2 Slightly wet 0.60 to 0.89

W3 Moderately wet 0.90 to 1.19

W4 Very wet 1.20 to 1.50

W5 Extremely wet >1.50

vapor pressure deficits scalar, and fTmin is the daily minimum
temperature (Tmin, ◦C) scalar.

NPP is calculated by subtracting the maintenance and growth
respiration from GPP. It is calculated as follows:

NPP =
365∑

1

GPP − Rm_lr − Rm_w − Rg (6)

where Rm_lr is the maintenance respiration from living leaves and
fine roots, and Rm_w is the annual maintenance respiration from
living wood, Rg is annual growth respiration. Detailed description
for modeling MODIS GPP and NPP can be found in Zhao et al.
(2005, 2006). Ecosystem-scale CUE for vegetation was calculated
as the ratio of annual NPP to GPP in each grid.

The ET represents transpiration by vegetation and
evaporation from canopy and soil surfaces. Based on the
Penman-Monteith equation, the new version of MODIS ET
dataset improved in many aspects, including the recalculation of
the fraction of vegetation cover, the soil heat flux, and boundary
layer resistance (Mu et al., 2007a,b, 2011). The ET algorithm is
computed as follows:

λ E = λ Ewet_C + λ Etrans + λ ESOIL (5)

Where λE is the total daily ET, λEwet_C refers to evaporation
from the wet canopy surface, λEtrans means the transpiration
from the dry canopy surface, and λESOIL is the evaporation
from the soil surface (Mu et al., 2007a,b, 2011). The MODIS ET
product has been validated and widely used in regional and global
research (Mu et al., 2011; Gang et al., 2016a). The ecosystem-scale
WUE for vegetation was calculated as the ratio of annual NPP
to ET in each grid. The MODIS GPP, NPP, and ET performed
reliable estimation accuracy on vegetation in northern China
(Wang X. et al., 2013; Xiao, 2014; Liu Z. et al., 2015).

Climate Factor Data
Meteorological data, including temperature and precipitation,
from 2000 to 2011 were obtained from the China Meteorological
Data Service Center2. The monthly data, interpolated by using
ANUSPLIN, were used to generate the gridded MAT and MAP.

2http://data.cma.cn/
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Analysis of Temporal Dynamic
Equation 6 was used to quantify the linear trend of variables
(including DSI, CUE, WUE, NPP, GPP, ET, MAT, and MAP) via
the ordinary least square estimation:

Slope =
n×

n∑
i=1

i× Vai −

( n∑
i=1

i
)( n∑

i=1
Vai

)
n×

n∑
i=1

i2 −
( n∑

i=1
i
)2 (6)

where i starts 1 for the year 2000, 2 for year 2001, and goes up to
12 for 2011; and Vai refers to the annual value of variable at time
i, i = 1,. . ..n, n = 12. The positive value of Slope in Eq. (6) indicates
an increasing trend of variable, while the negative value connotes
a decreasing trend during the 12-year period.

Correlation Analysis of Climate Variables
With Vegetation CUE and WUE
The correlations of vegetation CUE and WUE with climate
variables, including DSI, MAP, and MAT, were calculated to
reveal the controlling of climate variables that impact CUE
and WUE. If the correlation coefficient passes the significance
test, then an extremely significant (at 99% confidence level)
or significant (at 95% confidence level) linear correlation
is indicated.

RESULTS

Drought Characteristics of Forest and
Grassland in the NWIM Region
During the period of 2000–2011, the area of regions that
became increasingly dry accounted for 49.90% of the total
area of forest and grassland. These areas were mainly located
in eastern Inner Mongolia and northern Xinjiang. The total
area of regions that exhibited increasingly wetness was a little
larger than the area exhibiting aridity. There regions with
increasing wetness were mainly distributed within the 30–40◦N,
including the northern Shaanxi, Ningxia, Gansu, and Qinghai
(Figure 2A). Nearly 3.73 × 104 km2 of the forest regions
that were dry in 2000 became wet in 2011. The areas under
near normal conditions underwent the most obvious changes.
Meanwhile, the forest regions that changed from wet to dry
conditions reached an area of 15.56 × 104 km2. This is far
larger than the regions that became wet over the same period
(Figure 2B). In contrast, 86.08 × 104 km2 of the dry regions
of grassland became wet during the 12-year period. Regions
under D3 conditions were the largest contribution to this
trend. The wet grassland area that became dry was relatively
smaller, with the D2 condition making the largest contribution
to such change.

In 2001, 62.66% of forest regions were under dry conditions,
and 38.90% were under extremely dry conditions (Figure 3).
Meanwhile, 71.61% of grassland regions experienced drought,
in which 32.51% were under D4 and D5 conditions. Most of
forest and grassland regions were under wet conditions between

2002 and 2005. Both forest and grassland regions experienced
an obvious drought in 2006. During 2006, 78.59% of the forest
area and 55.49% of the grassland area were under dry conditions.
Despite the widespread of dry conditions in 2006, most of regions
were under D1-D3 conditions. After 2006, most of the forest
regions were in wet conditions except in 2008 and 2011. Different
drought levels occurred in most of the grassland regions until
2010. Overall, regions under wet conditions expanded gradually
during the first half of the study period, and the dry spells
expanded gradually in the grassland regions thereafter.

The Spatiotemporal Dynamics of
Vegetation CUE and WUE
The spatial dynamics of CUE and WUE for forest and grassland
were firstly evaluated. 53.74% of forest and grassland regions
showed an overall increasing trend of CUE over the entire
study period, which mainly distributed in eastern Mongolia,
and southern Shaanxi. Regions showing decreased CUE mainly
occurred in the mid-west of Inner Mongolia, northern Shaanxi,
and Tianshan Mountains region. In contrast, WUE increased
in 85.98% of forest and grassland regions. Regions showing
a decreased WUE mainly distributed in southern Gansu and
northwestern Qinghai (Figure 4).

The annual CUE, WUE, and DSI during this period were
plotted against time. The average CUE of grassland during
the 12-year period was 0.60, higher than that of forest (0.41)
for the same period (Figure 5). The value of grassland CUE
remained steady over the past 12 years. WUE of forest exhibited
fluctuating increase from 2000 to 2011, and the minimum and
maximum values exhibited in 2001 and 2009, respectively. The
range of change for grassland WUE was less drastic than that
for forest. The WUE of grassland also peaked in 2009. The
overall variation in forest and grassland DSI can be divided
into three stages: the wetting trend from 2000 to 2004, the
drying trend from 2004 to 2009, and the wet recovery from
2009 to 2011. The most severe drought occurred in 2001.
Averagely, the forest and grassland experienced wet conditions
in 3 years, while drought occurred in forest and grassland
areas in 2001, 2006, and 2008. In all other years, forest and
grassland regions were under near normal conditions. The
spatiotemporal dynamics of GPP, NPP, and ET were presented
in the Supplementary Material.

The Controlling of Climatic Variables on
Vegetation CUE and WUE
The correlations of vegetation CUE and WUE with DSI,
MAP, and MAT were calculated to reveal the sensitivity of
the vegetation carbon and water use to drought and climate
variables. Regions with significant correlations (at 95 and
99% confidence level) between CUE and DSI amounted to
17.24% of the total study area. Area of forest regions that
showed significant correlations (at 95 and 99% confidence
level) between CUE and DSI reached 29.68% of the total
forest regions, and 28.96% of this area exhibited positive
correlations. For grassland, regions presenting significant positive
and negative correlations between CUE and DSI accounted
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FIGURE 2 | The spatial pattern of Drought Severity Index (DSI) dynamic (A), the wetting and drying trend (B) of vegetation in the NWIM region from 2000 to 2011.

for 5.23 and 3.04% of total grassland area, respectively.
Regions showing significant correlations (at 95 and 99%
confidence level) between CUE and MAP accounted for
10.52% of the total area. These regions were mainly located
in eastern Inner Mongolia, southern Shaanxi, and Qinghai
(Figure 6). For forest, 15.20% of the area showed significant
correlations between CUE and MAP, with 11.09% exhibiting

positive correlations and 4.11% exhibiting negative correlation.
In contrast, 17.47% of grassland regions showed significant
correlations (at 95 and 99% confidence level) between CUE
and MAP, in which 7.85% were positive correlations and 9.62%
were negatively correlations. There were significant correlations
between CUE and MAT in 7.79% of forest regions and 9.92% of
grassland regions (at 95 and 99% confidence level), respectively.
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FIGURE 3 | The percentage change of dry, wet, near normal conditions for forest and grassland during 2000–2011.

Grassland regions showing significant positive and negative
correlations (at 95 and 99% confidence level) between CUE
and MAT accounted for 5.99 and 3.94% of total grassland
areas, respectively.

Regions with significant correlations (at 95 and 99%
confidence level) between WUE and DSI, MAP, and MAT
accounted for 10.37, 12.48, and 8.67% of the total study area,
respectively. These regions were mainly located in eastern
Inner Mongolia, Ningxia, and southern Qinghai (Figure 7).
Regions that showed a significant correlation (at 95 and
99% confidence level) between WUE and DSI accounted
for 15.89% of the forest area and 9.70% of the grassland
area. The forest area with significant positive correlations
(at 95 and 99% confidence level) between WUE and DSI
was larger than the area with significant negative correlations
(11.33% vs. 4.56%). Forest WUE was more correlated with
MAP. Regions with significant correlations (at 95 and 99%
confidence level) between WUE and MAP amounted to 35.68%
of the total forest area, and 34.17% of these regions exhibited
positive correlation. Forest WUE exhibited significant negative
correlation (at 95 and 99% confidence level) with MAT over
4.23% of the forest area, and 1.02% of the forest region exhibited
significant positive correlation. For grassland, regions showing
significant positive correlations (at 95 and 99% confidence
level) between WUE and DSI, MAP, and MAT were larger

than those showing the negative correlations. WUE exhibited
positive correlations with DSI, MAP, and MAT in 5.91, 5.53,
and 7.58% of total grassland area, respectively, and showed
negative correlations in 3.78, 4.13 and 1.52% of total grassland
area, respectively.

DISCUSSION

In this study, the drought status and its impacts on dryland
vegetation in northern China was evaluated by exploring the
satellite-based data. Drought severity in forest and grassland
as well as its influence on CUE and WUE at the ecosystem
scale were investigated. During the period of 2000–2011, most
of the forest and grassland in the NWIM region were in
near normal and wet conditions. The widespread droughts
mainly occurred in 2001 and 2006, and the drought in 2001
was the most severe across the entire study period. Previous
studies have demonstrated that widespread and large droughts
were frequently recorded in northern China since the late
1990s, and they intensified after 2000. The 2001 drought is
considered to be one of the most severe droughts in terms of
distribution and duration, which led to extensive agricultural
and economical losses (Zhang et al., 2016). The strength of the
East Asian summer monsoon in the developing and decaying
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FIGURE 4 | The spatial dynamics of CUE and WUE for forest and grassland from 2000 to 2011.

phases of El Niño and La Niña events is probably one of the
reasons that precipitated the recent drought in northern China
(Yu et al., 2014).

Drought affects the vegetation carbon and water utilization
mainly through influencing the photosynthesis and ET processes,
particularly in regions where water supply is limited (Gang
et al., 2016a). In this study, both the NPP and GPP

for grassland increased during the 2000–2011 period. This
synchronic changing pattern led to a steady state of grassland
CUE during this period. In contrast, forest CUE was more
sensitive to drought. The forest CUE presented a weak increasing
trend with a curve similar to that of NPP. This was probably
caused by the different sensitivities of forest NPP and GPP
to the drought conditions (Zhang et al., 2014). In contrast,
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FIGURE 5 | The temporal dynamics of CUE, WUE, and DSI for forest and grassland from 2000 to 2011.

the rising NPP and decreasing ET both contributed to the
overall ascending trend of WUE for forest and grassland. The
WUE increased obviously in the Tianshan Mountains region

and northern Shaanxi (Figure 4). The revegetation due to the
“Grain for Green” project in the Loess Plateau has significantly
increased the vegetation NPP during the past several decades
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FIGURE 6 | The correlations between grassland CUE and DSI, MAP, and MAT. ESN, extremely significant negative; SN, significant negative; NSN, non-significant
negative; NSP, non-significant positive; SP, significant positive; ESP, extremely significant positive.
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FIGURE 7 | The correlations between grassland WUE and DSI, MAP, and MAT. ESN, extremely significant negative; SN, significant negative; NSN, non-significant
negative; NSP, non-significant positive; SP, significant positive; ESP, extremely significant positive.
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FIGURE 8 | The spatial dynamics of MAP and MAT for forest and grassland from 2000 to 2011.

(Xiao, 2014; Deng et al., 2017). The Tianshan Mountains region
experienced a cooling trend, which probably is the leading
reason for the WUE increase (Figure 8) (Guan et al., 2015).
The canopy transpiration, net photosynthesis, and CO2 exchange
were constrained by soil moisture (Mu et al., 2013). Soil moisture
status affects the responses of heterotrophic respiration and
photosynthesis to temperature. When experiencing a slight

drought, the net photosynthesis rate of plants would decreases
due to the reduced activity of ribulose diphosphate carboxylase
and reduced photosynthetic capacity of mesophyll cells (Zhou
et al., 2009). The widespread drought that occurred in 2006
did not lead to sudden drops in CUE and WUE values in
2006. However, there were drops in 2007. This indicates that
the effects of drought might accumulate and appear in the
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following years. However, the photosynthetic organs of plants
would be damaged under severe drought conditions. This would
reduce plant water loss and photosynthesis (Arneth et al., 1998;
Tian et al., 2009). This effect explains the obvious decreases of
CUE and WUE in the 2001, when a widespread severe drought
was recorded.

The correlation between vegetation WUE and DSI was
relatively lower than the correlation between CUE and DSI.
This implies that WUE was less sensitive to droughts than CUE
for dryland vegetation in northern China. Drought affects the
vegetation CUE mainly via the photosynthesis process (Gang
et al., 2016b). Regions in eastern Inner Mongolia that are
primarily vegetated by meadow showed significant negative
correlations between CUE and DSI. The CUE increased in
these regions despite a drying trend that was observed during
2000–2011. This increasing trend of CUE was probably caused
by human interference, such as fencing or irrigation (Zhang
et al., 2015; Yan et al., 2018). Regions showing significant
positive correlations between CUE and DSI were mainly
located in the northern fringe of Qinghai where became wet
during the 12 years. The rising precipitation promotes the
increase of both NPP and GPP in these regions (Bai et al.,
2013). WUE can be affected by both the photosynthesis and
ET process (Tian et al., 2010). Under slight and moderate
drought conditions, the vegetation WUE would increase to
mitigate the negative effects of water loss to some extent.
This study found that area with significant positive correlations
between WUE with MAP was larger than the area exhibiting
significant positive correlations between WUE and DSI. This
implies that rainfall more directly affected the vegetation
WUE. Regions presenting the significant positive correlations
between WUE and MAP were mainly distributed in eastern
Inner Mongolia, Greater Khingan regions, where coniferous
forests were mostly vegetated. Trees, such as Larix gmelinii,
Pinus tabulaeformis, and Abiescephalonica, have higher WUE
values because of low photosynthesis rates, ET rates, and
stomatal conductance values (Lefi et al., 2004; Otieno et al.,
2005). The photosynthesis ability can be maintained at a
certain level even when a severe drought occurred (Maroco
et al., 2000; Ogaya and Peñuelas, 2003; Lefi et al., 2004).
Regions with a significant positive correlation between WUE
and MAT were mainly distributed in the Three Rivers
Source regions. This region is primarily characterized by
alpine meadow. Temperature is reported as the primary factor
affecting the growth of plants in this region (Xu et al., 2011;
Guo et al., 2016).

CONCLUSION

The dryland vegetation in northern China was deeply influenced
by the drought during the 2000–2011 period, and forest and
grassland reacted differently to drought conditions. Nearly half
of the NWIM region became dry in 2000–2011. The areas of
forest that experienced a drying trend was more than four times
larger than the areas that became wet, whereas the area of
grassland regions presenting a drying trend was closer to the

area showing a wetting trend. The most widespread droughts
occurred in 2001 and 2006, and the drought severity was higher
in 2001 than 2006. In general, most of the vegetation was under
wet conditions during the first half of the study period, and
grassland subsequently experienced more frequent drought than
forest. The forest CUE increased slightly, whereas the CUE of
grassland remained steady over the 12-year period. Meanwhile,
the decreased ET values of forest and grassland led to the overall
increases in WUE values for forest and grassland. The DSI
variation adequately explains the temporal dynamics of forest
CUE and WUE over this period. In contrast, the CUE and WUE
values for grassland were less sensitive to the recent drought
conditions. Although there are a few uncertainties, our results
suggest that the carbon and water use of forest in northern China
suffered more from the recent droughts than that of grassland.
Due to the data availability, only the 12 years of DSI and CUE,
and WUE data were evaluated in this study. Given the complexity
of drought events and the warming climate, it is important to
continuously monitor various drought impacts on ecosystem-
scale carbon and water use in dryland vegetation under future
climate change.
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