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Genetic engineering based on Agrobacterium-mediated transformation has been a
desirable tool to manipulate single or multiple genes of existing genotypes of woody
fruit crops, for which conventional breeding is a difficult and lengthy process due to
heterozygosity, sexual incompatibility, juvenility, or a lack of natural sources. To date,
successful transformation has been reported for many fruit crops. We review the major
progress in genetic transformation of these fruit crops made in the past 5 years,
emphasizing reproducible transformation protocols as well as the strategies that have
been tested in fruit crops. While direct transformation of scion cultivars was mostly used
for fruit quality improvement, biotic and abiotic tolerance, and functional gene analysis,
transgrafting on genetically modified (GM) rootstocks showed a potential to produce
non-GM fruit products. More recently, genome editing technology has demonstrated
a potential for gene(s) manipulation of several fruit crops. However, substantial efforts
are still needed to produce plants from gene-edited cells, for which tremendous
challenge remains in the context of either cell’s recalcitrance to regeneration or inefficient
gene-editing due to their polyploidy. We propose that effective transient transformation
and efficient regeneration are the key for future utilization of genome editing technologies
for improvement of fruit crops.

Keywords: Agrobacterium, genome editing, genetic engineering, genetic transformation, woody fruit and
nut crops

INTRODUCTION

Fruits and nuts (F&N) provide essential nutrients for human growth and health. There are 494
culinary fruits (excluding fruit vegetables such as watermelons and tomatoes) and 14 nuts listed
as of submission in Wikipedia. The increasing consumer awareness regarding health benefits and
growing population worldwide are boosting a market for more and higher-quality fruits and nuts.
For example, the total global production of fresh fruit increased from 13.6 million metric tons
in 1996 to 33.3 million metric tons in 2016 (FAO). On the other hand, many adverse impacts,
including emerging diseases (e.g., citrus greening and papaya ringspot virus), abiotic stress (e.g.,
salt, drought, and extreme temperatures) due to global warming, and natural resource depletion
(e.g., land and water) due to the growing population, have threatened fruit yield and quality of
F&N crops (Gottwald, 2010; Castillo et al., 2011; Fiore et al., 2018). Thus, the major task for
F&N breeders is to develop new cultivars with improved resistance to diseases and abiotic stress,
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and higher productivity. Conventional breeding for many
F&N crops often takes a few to over 10 years due to their
long juvenile periods and asexual propagation nature (Janick,
2005). Utilization of biotechnology in breeding is an efficient
alternative allowing for the manipulation of gene(s) of interest
(GOI) through genetic engineering in shorter period of time,
relative to conventional breeding. The efficiency of biotechnology
application in breeding has become evident with the successes
achieved via Agrobacterium-mediated transformation (Figure 1
and Table 1), and carries a great potential with increased
availability of sequenced genomes of F&N crops that can be
used by technical advances such as gene editing for trait
improvement (Table 2).

New biotechnological tools revolutionized plant breeding
and offered new and effective ways for plant breeders to
manipulate traits at the levels of individual gene(s) or
gene blocks (Gelvin, 2012; Hiei et al., 2014; Nester, 2014).
Except for the widely commercialized virus-resistant papaya
produced in 1992 through biolistic-mediated transformation
(Fitch et al., 1992), virus-resistant plum (Ravelonandro et al.,
1997; Scorza et al., 2001, 2007) and non-browning apples (Waltz,
2015) have been both produced by Agrobacterium-mediated
transformation. The transgenic plum is on the horizon to be
commercially released and the non-browning apples are in
the stores. Agrobacterium-mediated transformation protocols for
stable and transient expression remain a major platform for
gene editing technologies in F&N species (Table 1). In this
review, we summarize the availability of reliable transformation
protocols and discuss recent progress, current constraints, and
future perspectives of application of Agrobacterium-mediated
transformation for the improvement of woody F&N crops.

HISTORY OF GENETIC
TRANSFORMATION OF F&N CROPS
(FIGURE 1)

Phase I (1985–2000)
Development of transformation protocols. After success in
Agrobacterium tumefaciens-mediated stable transformation of
tobacco plants (Horsch et al., 1985), substantial effort was made
to develop A. tumefaciens-mediated transformation protocols for
F&N crops (Kole and Hall, 2008), such as apple (Yao et al., 1995),
pear (Mourgues et al., 1996), plum (Mante et al., 1991), cherry
rootstock (Gutierrez-Pesce et al., 1998), grapes (Mullins et al.,
1990), walnuts (Mcgranahan et al., 1988), kiwifruits (Uematsu
et al., 1991), citrus (Cervera et al., 1998), and European chestnuts
(Seabra and Pais, 1998).

Phase II (2001–2015)
RNA interference (RNAi) technologies. The efforts to
develop/improve transformation protocols for more F&N
crops or cultivars continued and as a result blueberry (Song
and Sink, 2004) and sour cherry (Song and Sink, 2006) were
transformed. RNAi was used to suppress either virus RNAs or
plant endogenous RNAs in plum (Scorza et al., 2004, 2013),

cherry (Song et al., 2013), and apple (Saurabh et al., 2014; Waltz,
2015). On the other hand, driven by advances in sequencing,
cloning, and RNAi technologies, functional gene analysis became
the major focus for the F&N crops, and workable transformation
protocols had been developed, including transient expression
systems (Scorza et al., 2013). The recombination/excision
systems [e.g., Cre/LoxP and Flp-FRT (flippase recognition
target)] have been demonstrated to be effective in producing
selectable marker gene (SMG)-free apple (Kost et al., 2015; Krens
et al., 2015), apricot (Petri et al., 2012), and citrus (Zou et al.,
2013). The most significant progress at this stage include: (1)
Deregulation of transgenic plum with plum pox virus (PPV)
resistance (Scorza et al., 2007, 2013); and (2) Commercialization
of non-browning apples (Waltz, 2015).

Phase III (2015–Present)
Precision breeding. Gene editing technologies have become
powerful tools to precisely manipulate nucleic acids in a plant cell.
The very first attempts of these technologies in apple (Nishitani
et al., 2016), grape (Ren et al., 2016; Nakajima et al., 2017;
Wang X.H. et al., 2018), sweet orange and grapefruit (Jia and
Wang, 2014; Zhang F. et al., 2017), and kiwifruit (Wang Z. et al.,
2018) have relied on the use of Agrobacterium to produce stable
transgenic plants expressing either editing reagents or small
RNAs inducers. Ideally, transient expression of editing reagents
leading to stable editing of a GOI or a regulatory DNA sequence,
similar to those demonstrated in annual crops (Svitashev et al.,
2016; Liang et al., 2018), will be the next step for F&N plants.

TRANSFORMATION PROTOCOLS FOR
WOODY FRUIT AND NUT CROPS

The current transformation protocols rely on procedures mainly
developed between 1990 and 2000. Within the group of
F&N species, the majority (over 95%) are still recalcitrant for
transformation, and most of the transgenic F&N crops were
produced using A. tumefaciens-mediated transformation (Singh
and Sansavini, 1998; Kole and Hall, 2008). The scarce availability
of regenerable explant sources and the time required to produce
transgenic individuals are the major constraints (Figure 2).
For example, only 16 papers on developing or optimizing
Agrobacterium-mediated transformation of F&N crops have
been published since 2014, but regardless of these excellent
efforts, little break-through in terms of transformed species and
transformation frequency has been made (Table 1).

KEY LIMITATIONS FOR
TRANSFORMATION OF F&N CROPS

Efficient protocols for transformation rely on effective gene
delivery, easy but accurate selection, and prolific regeneration
from treated explants (Figure 2).

Agrobacterium-mediated gene transfer is a powerful tool for
delivery of transgenes although optimal conditions for efficient
gene delivery vary for different species, genotypes and strains of
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FIGURE 1 | Milestones in genetic transformation of F&N crops.

TABLE 1 | Recent successes (2014-present) in Agrobacterium tumefaciens-mediated transformation of F&N crops for transformation technology development.

Species Agrobacterium
strain

Source explants Transformation
frequency

Reference

Citrus maximma EHA105 In planta transformation of 3–4-week old seedlings 3.2–20.4% Zhang Y.Y. et al., 2017

Citrus spp. EHA105 Microshoots cultured in temporary immersion bioreactor (TIB) 0.25% Zhang Y.Y. et al., 2017

EHA105 Internodal stem segments from 30-day old in vitro seedlings 3–15-fold increase
by expressing of
the maize knotted1
gene

Hu et al., 2016

EHA101 or
EHA105

Mature explants (stems) from bud-grafted mother plant NA Orbovic et al., 2015

Diospyros kaki GV3101 Leaves (3–7-week old) NA Mo et al., 2015

Malus micromalus EHA105 Cotyledons 11.7% Dai et al., 2014

Malus spp. GV3101 Young leaves from plantlets NA Zhang et al., 2016

Persea americana AGL1 Somatic embryos (globular stage) NA Palomo-Rios et al., 2017

Prunus avium EHA105 Leaves from in vitro plants 1.2% Zong et al., 2018

EHA105 Young leaves 6.4% Sgamma et al., 2015

Prunus serotina EHA105 Leaf explants 21.7% Wang and Pijut, 2014

Prunus domestica CBE21 Leaf explants 1.4% Sidorova et al., 2017

Pyrus ussuriensis EHA105 Buds-leaves from one-year old branches 11.7% Yang et al., 2017

Rubus fruticosus LBA4404 Cut ends of petioles 5.7–32.4%, results
based on PCR
analysis of four
plants

Sidorova et al., 2017

Rubus fruticosus GV3101 Somatic embryos from whole flower cultures NA Dai et al., 2015

Agrobacterium (Wang, 2015). Transfer DNA (T-DNA) has been
shown to be a consistent carrier for a considerable variety of
cargoes ranging from conventional expression cassettes used for
GOIs, to the current RNA hairpin inducers (Song et al., 2013) or
shuttle vectors for secondary DNA-replicons used in gene editing
(Baltes et al., 2014). A. tumefaciens is preferable to biolistic guns
for stable transformation of F&N crops due mainly to its low cost
in operation and the high potential in producing transformations
with a low-copy number of the inserted sequence (such as GOI)

(Gelvin, 2012). A. tumefaciens with ACC deaminase activity has
been developed to improve transformation frequency of annual
plants through reducing ethylene levels in plants (Nonaka and
Ezura, 2014), although it has not been tested in F&N crops. Up
to now, gene delivery is not a key limitation for transformation of
F&N crops, A. tumefaciens-mediated transformation remains the
major approach (Tables 1–3).

Within the protocols for transformation of F&N crops,
the effective selection is achieved mainly by using a SMG
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TABLE 2 | Application of CRISPR-Cas9 gene editing technologies for F&N crops.

Traits Crop Gene description Principle results Reference

Stable gene
transformation-mediated
genome editing

Apple Analysis of four separated gRNAs
targeting apple phytoene desaturase
gene (PDS)

31.8% of regenerated transgenic plants
for one gRNA induced targeted
mutation by Cas9

Nishitani et al., 2016

Grape Targeting grape L-idonate
dehydrogenase gene (IdnDH)

Three of six transgenic plants
regenerated from 21 stable transgenic
cell lines showed targeted mutation

Ren et al., 2016

Grape Targeting grape PDS Stable transgenic (T0) plants showed
targeted mutation in the VvPDS gene
although chimeric phenotype was
observed

Nakajima et al., 2017

Grape Targeting grape transcription factor
WRKY52

22 targeted mutants were obtained
from 72 stable transgenic plants

Wang X.H. et al., 2018

Kiwifruit Targeting kiwifruit PDS gene (AcPDS) A demonstration of Cas9-mediated
genome editing using paired gRNAs
approach for gene fragment deletion in
the AcPDS gene

Wang Z. et al., 2018

Citrus Targeting the promoter region of the
susceptibility gene CsLOB1 and the
gene itself for citrus canker resistance

11.5–64.7% mutation rates for five
Cas9-constructs (orange), 23.8–89-4%
mutation rate for a single Cas-9
construct (grapefruit)

Jia et al., 2017b;
Peng et al., 2017

Non-transgene -involved
genome editing

Apple and grape Targeting MLO-7, a susceptible gene
(S-gene) in order to increase resistance
to powdery mildew (PM) in grape
cultivar and DIPM-1, DIPM-2 and
DIPM-4 in the apple to increase
resistance to fire blight disease

PEG-mediated delivery of
preassembled Cas9-gRNA reagents
resulted targeted mutagenesis in
protoplast cells, but no plants with
targeted gene editing was obtained

Malnoy et al., 2016

conferring resistance to the plant against either an antibiotic or
an herbicide (Miki and McHugh, 2004). Three major SMG for
plant transformation include the neomycin phosphotransferase
II (nptII) gene that confers kanamycin resistance, the
hygromycin-B-phosphotransferase gene (hph) conferring
hygromycin B resistance, and the bar gene conferring resistance
to phosphinothricin, a glutamine synthetase inhibitor produced
by plants from the herbicide bialophos (Miki and McHugh,
2004). The nptII is, to date, the most widely used SMG for the
transformation of F&N crops (Kole and Hall, 2008). However,
effective selection of transformed cells without assistance of
SMGs remains a key limitation for plant transformation.

In general, plants with high regeneration capability from
non-meristem containing explants are amenable for genetic
transformation. Unlike annual crops (e.g., wheat, maize, rice,
and soybean), the cultivated F&N crops, for example, blueberries
(Song and Hancock, 2012) and cherries (Song, 2014; Zong
et al., 2018), are often clonally propagated; to maintain genetic
stability, regeneration from explants of clonally propagated
tissues is preferable. Lack of available explants sources (e.g.,
seedlings) makes plant regeneration studies for F&N crops
a lengthy process (Figure 3), because in many instances an
efficient micropropagation system has to be established for
obtaining regenerable explants (e.g., leaves and petioles) prior to
regeneration studies (Kole and Hall, 2008). Optimal conditions

for both micropropagation and regeneration are determined by
many factors (e.g., blueberries) (Liu et al., 2010; Figure 3). In
addition, little has been documented on the potential impacts of
plant-Agrobacterium interaction on plant regeneration. Finally,
for some extremely recalcitrant species in the group (e.g.,
Prunus persica) species, regeneration can be achieved mostly
on the basis of the use of seed explants (Song, 2014; Petri
et al., 2018; Zong et al., 2018). In terms of using transgenes
to improve regeneration efficiency, one report demonstrated
that constitutive expression of the class I KNOX gene of maize
increased production of adventitious shoots from leaf explants
of plum (Srinivasan et al., 2011). More recently, overexpression
of morphogenic regulators, i.e., maize Baby boom and maize
Wuschel2, has been demonstrated to be effective in improving
monocot transformation (Artlip et al., 2016); and the potential for
use of these genes for F&N crops has been recently demonstrated
in citrus (Miki and McHugh, 2004).

RECENT DEVELOPMENTS IN GENETIC
ENGINEERING OF F&N CROPS

Genetic transformation of F&N crops might be necessary
when a breeding goal is not easily achievable through
traditional breeding approaches (Singh and Sansavini, 1998).

Frontiers in Plant Science | www.frontiersin.org 4 March 2019 | Volume 10 | Article 226

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00226 February 28, 2019 Time: 17:24 # 5

Song et al. Genetic Engineering of Tree Fruit Crops

FIGURE 2 | General protocols for Agrobacterium tumefaciens-mediated
transformation of F&N crops (e.g., blueberry) (Song, 2015).

Of many approaches developed, gene addition and gene
subtraction are two basic strategies for GM trait development
(Pena and Seguin, 2001).

Transgrafting
Grafting by artificially conjoining different vascular systems (i.e.,
rootstock and scion) is a widely used agricultural practice with
over 3000-year history for horticultural crops, especially for F&N
crops (Jensen et al., 2012; Nawaz et al., 2016; Chitarra et al.,
2017). Traditionally, grafting is used to produce plants for asexual
propagation, altered plant vigor and architecture, increased
tolerance to biotic/abiotic stresses, precocity, and higher yield.
The term transgrafting was introduced when GE rootstocks were
used in grafting in 1990 (Haroldsen et al., 2012; Figure 4).
To date, long-distance transportation of transgene-derived small
interfering RNAs (siRNA) from rootstock to non-transgenic
sweet cherry scions have been verified by small RNA sequencing
(Zhao and Song, 2014). For large mRNA molecules, qRT-PCR
analysis detected short-distance transported mRNAs of the
reporter of the red fluorescent protein gene (DsRED) from
transgenic rootstock to non-transgenic scion of walnut (Juglans
regia) (Liu et al., 2017); in contrast, for long-distance (>1 m)
transportation, the transgene (e.g., the SMG nptII gene) was
not detected in non-transgenic sweet cherry scions grafted on
transgenic rootstock through RT-PCR (Zhao and Song, 2014).
More recently, a new study has suggested that cell-to-cell
movement of mRNAs is selective (Luo et al., 2018). In fact,

interaction of transgenic rootstocks and non-transgenic scions in
transgrafted plants through either the mobile transgenic products
or immobile transgenic products has been demonstrated to be
effective in facilitating changes in non-transgenic scions directly
or indirectly (Smolka et al., 2010; Song et al., 2015; Artlip et al.,
2016); this is also well-supported by recent studies of grafting
in non-transgenic rootstocks and scions (Jensen et al., 2012;
Chitarra et al., 2017). Using transgenic apple rootstock expressing
the root-inducing rolB gene of Agrobacterium rhizogenes T-DNA
reduced the vegetative growth of nontransgenic scions (Smolka
et al., 2010). Thus, transgenic rootstocks have the potential to
expand the use of transgenesis for production of non-transgenic
F&N crops (Haroldsen et al., 2012).

FastTrack Breeding
The long juvenile phase exhibited by several F&N crops
can severely limit the traditional breeding efforts which are
dependent on the ability to make genetic crosses (Janick,
2005). “FastTrack breeding” as demonstrated in many recent
publications is done through the manipulation of flowering
pathway genes to hasten flowering (Figure 5 and Table 3;
Petri et al., 2018). Stable transformation of elite cultivars
by either overexpression of flower promoting genes (e.g.,
FLOWERING LOCUS T, SUPPRESSOR OF OVEREXPRESSION
OF CONSTANS 1, LEAFY, and APETALA1) or repression of
flower repressing genes (e.g., TERMINAL FLOWER 1) is an
effective approach to enable a fast introduction of genes of
interest from wild germplasm through the early flowering
seedlings from both crosses and backcrosses (Figure 5A). This
approach relies on efficient transformation systems for elite
cultivars and low cross-incompatibility between the transformed
elite cultivars and donor plants. Transgrafting on transgenic
rootstocks can affect flowering in non-transgenic scions (Artlip
et al., 2016), suggesting that there is a potential to use a rootstock
overexpressing FT to promote early flowering of the scions from
juvenile seedlings, although this potential has not yet successful
been demonstrated for trees (Zhang et al., 2010; Srinivasan et al.,
2012; Figure 5B). Alternatively, transient transformation using
virus vectors either to enhance expression of flower promoting
genes expression or to repress flower repressing genes has showed
a potential in promoting flowering of juvenile plants (Yamagishi
et al., 2014; Velazquez et al., 2016).

Selectable Marker Gene-Free Plants and
Intragenesis
The negative perception of transgenic plants by consumers
spurred research to develop either plants modified with plant
derived sequences (intragenesis) or transgenic plants from which
the SMG was removed (Figure 6). While these strategies have the
potential to allay consumer fears, both approaches are currently
regulated as transgenic plants worldwide (Holme et al., 2013).

Transgenesis without a SMG or with a plant-derived SMG
is preferable to SMG-containing transgenic products by the
public (Miki and McHugh, 2004). To date, plant-derived
reporters, for example, the genes regulating anthocyanin
biosynthesis have been successfully used as alternative to
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FIGURE 3 | Factors affecting regeneration of plant cells [An example of shoot
organogenesis from leaf explants of blueberries (Song and Sink, 2004; Liu
et al., 2010)]. We hypothesize that regeneration capability is determined by
endogenous phytohormone levels, which are genetically controlled (I) and can
be affected by II–IV.

non-plant-derived reporters [i.e., green fluorescent protein
(GFP), β-glucuronidase (GUS)] for transformation (Krens et al.,
2015; Kandel et al., 2016; Dutt et al., 2018). Co-transformation
enables production of SMG-free GM crops through the crosses
for the segregation of SMG-removal transformants in next
generation, but this is not desirable for asexually propagated F&N
crops. The recombination/excision systems [e.g., Cre/LoxP and
Flp-FRT (flippase recognition target)] are effective in generating
SMG-free apple (Kost et al., 2015; Krens et al., 2015), apricot
(Petri et al., 2012), grape (Dalla Costa et al., 2016), and
citrus (Zou et al., 2013).

Intragenesis is desirable for food crops because it relies on the
gene pool for conventional breeding. Technically, intragenesis
is more challenging than SMG-assisted transgenesis (Figure 6).
Previous studies have demonstrated the potential of production
of intragenic apples and citrus (An et al., 2013; Kost et al., 2015;
Krens et al., 2015).

Genome Editing
Genome editing technologies provide powerful tools for
precise manipulation of targeted genome sequence(s) for crop
improvement (Arora and Narula, 2017; Limera et al., 2017).
Remarkably, these technologies make it possible to edit or excise a
specific gene in a genome without introduction of any extra DNA.

Programmable DNA binding proteins such zinc finger (ZF)
and transcription activator-like effector (TALE) emerged as
the first generation engineered nucleases to create targeted
mutagenesis, which is an alternative to classical protocols
for random mutagenesis. These tools have a recognition

FIGURE 4 | Transgrafting of F&N crops. GE, genetic engineering; SRNAs,
small RNAs; miRNAs, micro RNAs. ∗Selective targeting
movement (Luo et al., 2018).

capability of specific target DNA sequences based on customized
arrangements of one (TALE) or three (ZF) nucleotides, and
in such way bringing to these places a nuclease (for instance
C-terminal domain of FokI) which disrupts DNA adjacent
to the recognition zones. Both ZF- and TALE-nucleases,
require two effectors (left and right) in order to define the
nuclease cutting site (Gaj et al., 2013). Prior to the wide
application of these technologies for F&N crops, a more
powerful gene editing tool -The clustered regularly interspaced
short palindromic repeat (CRISPR)/Cas9 mediated gene editing
technology was developed (Jinek et al., 2012). The CRISPR/Cas9
has been a revolutionary molecular tool since its discovery as
an adaptive line of defense against viral infection in Archaea
(Mojica et al., 2000). This system operates through guide RNAs
(gRNAs) that contain specific sequences designed according
to their targets in the genome. The Cas nuclease (commonly
Cas9), when directed by the gRNA generates a double strand
break adjacent to the gRNA’s annealing location allowing for
a target-specific mutagenesis. More recently, CRISPR/Cpf1,
another CRISPR/Cas system that overcomes some of the
CRISPR/Cas9 system limitations, has been found more efficient
at DNA editing (Ledford, 2015; Zetsche et al., 2015; Fonfara et al.,
2016; Jia et al., 2017a).

Delivery of CRISPR/Cas9 components into the plant cell has
been achieved by either transgenic or non-transgenic approaches
(Table 2). To date, as proof-of-concept, CRISPR/Cas9
guided DNA editing through stable transformation has
been demonstrated in four major fruit crops [i.e., apple
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FIGURE 5 | Different approaches for FastTrack breeding – an example for blueberries. (A) Stable gene transformation into elite cultivars for overexpression of
flower-promoting genes (e.g., FT, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, LEAFY, and APETALA1) or repression of flower-repressing genes (e.g.,
TERMINAL FLOWER 1). The early flowering seedlings enable blueberry to skip 2–3 years of juvenile period for each cross. (B) Transgrafting on FT-overexpressing
rootstock promotes early flowering of the scion.

FIGURE 6 | Transgenesis without a SMG and intragenesis. A strategy to obtain SMG free and backbone free transgenic and intragenic F&N crops. The T-DNA
region is drawn according to the construct used for intragenic apple (De Paepe et al., 2009; Kost et al., 2015; Collier et al., 2018). This construct allows production
of SMG-free T0 transformants. RB: right T-DNA border. LB: left T-DNA border. P: promoter. T: terminator. CDS: coding sequence. GOI: gene of interest. Green boxes
show plant-derived intragenic/cisgenic components. ∗Cisgenesis has not been demonstrated in A. tumefaciens-mediated transformation of plants because RB and
LB are difficult to replace or remove.

(Nishitani et al., 2016), grape (Ren et al., 2016; Nakajima et al.,
2017; Wang X.H. et al., 2018), sweet orange and grapefruit
(Jia and Wang, 2014; Zhang F. et al., 2017), and kiwifruit
(Wang Z. et al., 2018)], suggesting that the CRISPR/Cas9
is suitable for precise gene knockout. The main constraint
using stable transformation is that unlike annual crops, from

which gene editing associated transgenes can be effectively
segregated post editing through traditional crosses, breeding out
the transgenes through crosses for F&N crops is undesirable
and will eliminate the identity of the clonally propagated
variety. Transient transformation without stable integration
of the CRISPR/Cas9 components is possible and desirable for
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gene editing (Chen et al., 2018); whereas technically it is very
challenging to identify the targeted mutant cells caused by the
CRISPR/Cas9 due to the lack of SMG for transformed plant
cells (Table 2). Non-transgene-involved gene editing by using
guide gRNA-Cas9/Cpf1 ribonucleoprotein (RNP) complex is
ideal for protoplasts of F&N crops and has been demonstrated
in apple and grape cells (Malnoy et al., 2016). An alternative
approach has been the use of DNA-replicon strategy (Baltes
et al., 2014), based on the Bean yellow dwarf virus (BeYDV)
genome structure in the absence of proteins required for its
infection and mobility (i.e., disarmed virus). This allowed a high
copy number in the cell without the insertion of the replicon
into the plant genome (Gil-Humanes et al., 2017). Despite these
improvements in the genetic engineering area, it is extremely
challenging to induce plant regeneration from protoplast cells in
F&N species (Table 2). Again, the main challenge for using gene
editing technologies to improve the F&N crops remains the lack
of efficient regeneration systems.

Genes and Traits
Regardless of the approach, genetic engineering of the F&N
crops aims to modify selected traits through manipulation of
targeted gene(s) or gene regulatory sequence(s). The progress
made in genetic engineering for fruit crops prior to 2013 has been
well-documented (Rai and Shekhawat, 2014).

More recently (2014-present), progress has been made for
A. tumefaciens-mediated transformation of nine F&N crops
using 24 genes for improving seven traits (Table 2). This progress
has demonstrated thatA. tumefaciens-mediated transformation is
a powerful tool and remains a major approach for improvement
of F&N crops. In this regard, the availability of genome drafts in
several F&N species allow for the advance toward improved and
safer application of techniques such as RNAi and CRISPR/Cas
editing. Interference of target mRNAs using artificial microRNAs,
or editing of on-target and effect over off-target loci can be
assessed by ex-ante analyses using dedicated designers which
predict these activities in an efficient rate (Doench et al., 2014;
Castro et al., 2016). For instance, computing of protospacer
adjacent motifs (PAMs) for Cas9 over a target genome allows
for a first-dimension analysis of the putative cut sites for the
nuclease upon gRNA leadership. In that way, Wang et al. (Peng

et al., 2017) described the occurrence of more than 35 million
PAMs in the grapevine genome and similar developments for
other species are becoming available tools (Wang Y. et al., 2016;
Pulido-Quetglas et al., 2017).

CONCLUDING REMARKS

Low success rate and recalcitrance of some species to
transformation remain as major challenges for adoption
of the new breeding techniques to fruit crops. As those
challenges are overcome, several new technologies based on
Agrobacterium-mediated transformation, such as transgrafting,
fast-track breeding, intragenesis, and genome editing will be
employed more frequently for solving problems facing tree fruit
industry worldwide.
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