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The development of new resistant varieties to the oomycete Plasmopara viticola (Berk.&

Curt) is a promising way to combat downy mildew (DM), one of the major diseases

threatening the cultivated grapevine (Vitis vinifera L.). Taking advantage of a segregating

population derived from “Merzling” (a mid-resistant hybrid) and “Teroldego” (a susceptible

landrace), 136 F1 individuals were characterized by combining genetic, phenotypic, and

gene expression data to elucidate the genetic basis of DM resistance and polyphenol

biosynthesis upon P. viticola infection. An improved consensus linkage map was

obtained by scoring 192 microsatellite markers. The progeny were screened for DM

resistance and production of 42 polyphenols. QTL mapping showed that DM resistance

is associated with the herein named Rpv3-3 specific haplotype and it identified 46 novel

metabolic QTLs linked to 30 phenolics-related parameters. A list of the 95 most relevant

candidate genes was generated by specifically exploring the stilbenoid-associated QTLs.

Expression analysis of 11 genes in Rpv3-3+/− genotypes displaying disparity in DM

resistance level and stilbenoid accumulation revealed significant new candidates for the

genetic control of stilbenoid biosynthesis and oligomerization. These overall findings

emphasized that DM resistance is likely mediated by the major Rpv3-3 haplotype and

stilbenoid induction.

Keywords: disease symptom phenotyping, “Merzling” Plasmopara viticola, peroxidase, polyphenols, QTL analysis,

stilbenes, Vitis spp.

INTRODUCTION

Around 68,000 tons of fungicides per year are used in Europe to manage grape diseases, i.e., 65%
of all fungicides used in agriculture although viticulture encompasses only 4% of the EU arable
land (Eurostat, 2007). A useful strategy to reduce the impact of pesticides on humans, animals and
environment is based on genetic improvement, in particular on the introgression of resistance traits
from ancestral species into domesticated varieties. The cultivated grapevine (Vitis vinifera L.) is
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highly susceptible to downy mildew (DM), caused by the
biotrophic oomycete Plasmopara viticola (Berk. & M. A. Curtis)
Berl. & De Toni, the major disease of temperate-humid climate
among various pathogen threats.

A total of 27 Quantitative Trait Loci (QTLs) associated
with DM resistance in different genetic backgrounds are known
and described (VIVC, 2018). In particular, the major Rpv loci
originated from Muscadinia rotundifolia (Merdinoglu et al.,
2003), Vitis riparia (Marguerit et al., 2009; Moreira et al., 2011),
V. amurensis (Blasi et al., 2011; Schwander et al., 2012; Venuti
et al., 2013), V. cinerea (Ochssner et al., 2016), and V. rupestris
(Divilov et al., 2018). To close the list, the Rpv3 locus is a major
determinant of grapevine DM resistance. Seven conserved Rpv3
haplotypes were identified in five descent groups of resistant
varieties and traced back to their founders, which belong to V.
rupestris, V. lincecumii, V. riparia, and V. labrusca (Di Gaspero
et al., 2012). Until now only two haplotypes at this locus were
validated in segregating populations derived from different DM
resistance donors (Welter et al., 2007; Zyprian et al., 2016).

The related resistance mechanisms are partially known and
are due to gene-for-gene recognition, thus signal cascade and
finally defense response. A widespread hot spot of NBS-LRR
genes was identified within the genomic region where the Rpv3
locus resides, providing a distinctive advantage for the adaptation
of native North American grapevines to resist to P. viticola
(Moroldo et al., 2008). The defense response also involves the
synthesis of secondary metabolites including the stilbenoids.
In fact, besides necrosis (e.g., Boso Alonso and Kassemeyer,
2008; Peressotti et al., 2010) and callose deposition (e.g., Gindro
et al., 2003), DM resistance can be accompanied by stilbene
accumulation (e.g., Alonso-Villaverde et al., 2011; Malacarne
et al., 2011; Mattivi et al., 2011) as activated defense mechanisms.
To date no study has investigated the genetic basis of polyphenol,
in particular stilbenoid, synthesis or its variation upon P. viticola
infection. QTLs associated with synthesis of most polyphenols
are not known; only a few research studies on proanthocyanidins,
anthocyanins, and flavonol berry composition have recently been
attempted in grapevine (Fournier-Level et al., 2009, 2011; Huang
et al., 2012, 2013, 2014; Viana et al., 2013; Ban et al., 2014; Azuma
et al., 2015; Costantini et al., 2015; Guo et al., 2015; Malacarne
et al., 2015).

In this work, we aim to characterize the locus conferring
resistance against P. viticola and to identify new polyphenol-
related loci in order to shed light on the DM resistance
mechanisms in an interspecific segregating population derived
from the source “Merzling.’

MATERIALS AND METHODS

Segregating Population
An interspecific segregating population of 136 putative full-sib
individuals derived from the cross between the complex Vitis
hybrid “Merzling,” descending from V. vinifera, V. rupestris, and
V. lincecumii, and the V. vinifera cv “Teroldego” was studied.
This cross between “Merzling,” mid-resistant to DM and high-
stilbenoid producer, and “Teroldego,” susceptible to DM and
low-stilbenoid producer, was performed at FEM (Edmund Mach

Foundation, San Michele all’Adige, Italy) in 1989. During the
2012 growing season the progeny were propagated as grafted
plants in 1L-pots filled with soil:sand:peat:vermiculite (3:1:3:3,
v/v) in a greenhouse at 25/20◦C day/night temperature, with a
16 h photoperiod and relative humidity (RH) of 70 ± 10%. The
propagation of the two parental lines was carried out during 2013.

Phenotyping
DM Resistance Assessment
To collect sufficient fresh inoculum, P. viticola propagation was
performed on leaves of the susceptible V. vinifera cv “Pinot
gris” following the protocol by Vezzulli et al. (2018). Six potted
plants (PP) per each progeny individual were maintained in
two different growth chambers as three biological replicates
for P. viticola- and mock-inoculation, respectively. Firstly, in
June 2012 fully expanded leaves of the 10 week-old PP were
P. viticola-inoculated (PI) by spraying a suspension of 1 ×

105 sporangia/ml onto the abaxial leaf surface and were kept
overnight in the dark in a growth chamber at 24◦C with 80% RH;
mock-inoculated (MI) samples were obtained by analogously
spraying distilled water on PP kept under equal conditions.
Secondly, in August 2012 the 4–5th leaves from the MI-PP
apex of each progeny individual were collected to generate
leaf disks (LD) that were inoculated according to Vezzulli
et al. (2018). In June and August 2013 the same experiments
were respectively repeated on PP and LD of 11 representative
progeny individuals along with “Merzling” and “Teroldego”
parental lines. Finally, the DM response was evaluated at 8 days
post-inoculation (dpi) on PP and at 4, 5, and 6 dpi on LD
by means of three parameters evaluated by visual inspection:
disease severity (percentage of the disc area showing symptoms
of sporulation) and disease incidence (number of discs with
sporulation/total number of discs), according to OEPP/EPPO
(2001), along with the descriptors OIV 452 for PP or OIV452-
1 for LD (overall degree of resistance), recommended by the
Organization Internationale de la Vigne et du Vin (OIV, 2009)
and adapted according to Bellin et al. (2009) (Table S1A). The
latter descriptors, ranking from 1 to 9, are positively correlated
with the magnitude of plant response and inversely correlated
with the severity of DM symptoms. All percentage data were
Arcsin transformed in view of following statistical analysis.

Polyphenol Content Measurement
The 2nd−3rd leaves from the PI- and MI-PP apex were collected
at 6 dpi and analyzed for the content of 42 phenolics (18 different
stilbenoids) by targeted metabolomics (Vrhovsek et al., 2012),
according to Chitarrini et al. (2017) with somemodifications. For
each metabolite, missing values (indicating concentrations below
the quantification limit) were imputed by random sampling
from a uniform distribution taking values in the range from
0 to the metabolite specific detection limit. Genotype specific
levels were estimated as the median value of each metabolite
across three biological replicates. To compensate for the expected
non-normal distribution of metabolite concentration, genotype-
specific data were subjected to logarithmic transformation (ln).
Metabolomic data were used to calculate 22 sum/ratio parameters
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(Table S1B). In all analyses, the difference (delta) between the PI
and MI genotype specific values were considered.

Genotyping and Map Construction
Genomic DNA from the overall 138 studied genotypes was
isolated from young leaves using DNeasy Plant Mini Kit (Qiagen,
The Netherlands). The 136 putative full-sib individuals and
the two parental lines were characterized at the genotypic
level by means of 192 microsatellite (Simple Sequence Repeat,
SSR) markers, corresponding to an average of ca. 10 SSRs
well-scattered along each of the 19 grapevine chromosomes.
The microsatellites were chosen based on their polymorphism
information in “Merzling” and/or “Teroldego” reported by
Salmaso et al. (2008), as well as their unique position and physical
distance along the reference genome (http://www.genoscope.cns.
fr) (Table S2). The applied mid-throughput genotyping strategy
was as reported in Peressotti et al. (2015). Prior to building the
“Merzling” × “Teroldego” (M×T) genetic map, SSR markers
were tested against the expected segregation ratio using a χ2
goodness-of-fit implemented in JoinMap v.4.1 (JM, Van Ooijen,
2006). Highly distorted (p > 0.05) markers were discarded, while
the others (p ≤ 0.05) were used for linkage analysis unless
they affected the order of neighboring loci. Molecular markers
were grouped and ordered along linkage groups (LGs) using
the Kosambi mapping function implemented in JM. Mapping
parameters were set at a logarithm of odds (LOD) value of 8 and
at a recombination frequency of 0.45. LG number was assigned
according to Adam-Blondon et al. (2004) and the linkage map
was visually represented with MapChart v.2.2 (Voorrips, 2002).

QTL Analysis and Candidate Gene
Selection
Genetic map data were integrated with phenotypic data and
QTL mapping was performed separately per each experiment
by using the simple Interval Mapping algorithm in MapQTL
v.6.0 (Van Ooijen, 2009). QTLs were declared significant if
the maximum LOD exceeded the LG-specific LOD threshold
(calculated using 1,000 permutations) and mean error rate
was <0.05. Linkage groups and QTLs were visualized with
MapChart2.2 (Voorrips, 2002) and a R ad-hoc script (R Core
Team, 2018). Through the associated markers, each reliable QTL
interval was further anchored and aligned on the assembled
version of the grapevine reference genome (Jaillon et al., 2007).
For the ease of calculation, base pairs (bp) were converted
into centiMorgans (cM) by dividing by 433,989, which is the
mean physical distance corresponding to 1 cM derived in this
mapping work.

In order to characterize these genomic regions, the 12X
PN40024 reference genome (http://genomes.cribi.unipd.it) was
exploited to extract version 2 (V2) of the gene predictions (GPs)
underlying QTLs. The gene annotation adopted was the one
reported by Vitulo et al. (2014) and candidate genes (CGs) were
selected adopting the following criteria:

i. Proximity to LOD peak offset (in case of large
genomic intervals);

ii. Involvement in trait regulation based on literature
(reference genes);

iii. Assignment to significantly over-represented functional
categories. In particular, a Fisher’s exact test was applied
to evaluate the over-representation of specific functional
categories within QTLs controlling a given parameter.
Reference to our analysis was the distribution in the same
categories of 31,922 12Xv2 GPs assigned to chromosomes
(Vitulo et al., 2014). We considered GPs annotated at the
third level, with the exception of GPs annotated at the
first and second level if not characterized at a deeper level
and significantly represented in the genome. Adjusted p-
values by the Benjamini and Hochberg (1995) method for
multiple-testing correction were considered significant when
≤ 0.05. For the functional categories significantly enriched
a fold enrichment (Fold-change), as the ratio between the
frequency of a category in the QTLs controlling a given
parameter vs. the one in the genome, was calculated. The
functional categories that passed the Fisher’s test and having
a Fold-change > 0 were considered as over-represented;

iv. Involvement in functional categories of interest.

Quantitative RT-PCR Expression Analysis
Total RNA was isolated from 60 to 80mg of ground leaves,
collected at 6 dpi from each biological replicate (the same
powder used for biochemical analysis stored at −80◦C), using
Spectrum Plant Total RNA Kit (Sigma-Aldrich) according to
manufacturer’s instructions. cDNAs were synthetized using the
SuperscriptVILOTM cDNA Synthesis Kit from 1.5 µg of DNAseI-
treated RNA (Thermo Fisher Scientific). Primer sequences
were derived from literature or designed on the reference
CG sequence using Primer3 v.4.0 software (http://bioinfo.ut.
ee/primer3-0.4.0/) according to MIQE guidelines suggestions
(Bustin et al., 2009) (Table S3). Due to the high sequence
homology among different family members, it was not always
possible to design gene-specific primers. Each primer pair
was tested by semi-quantitative RT-PCR on cDNAs from
one F1 individual, “Merzling” and “Teroldego” parental lines.
The corresponding amplicons were checked by electrophoresis
and, prior purification by ExoSAP (Euroclone), were Sanger
sequenced to verify the specificity of the primer pair. Forward and
reverse reads were aligned to the reference CG sequences using
Staden Package software (http://staden.sourceforge.net/) in order
to confirm their uniqueness.

Finally, the primer pairs that passed this step were employed
in qRT-PCR analyses, carried out using the Platinum SYBRGreen
qPCR SuperMix-UDG in a ViiATM7 thermocycler (Thermo Fisher
Scientific). The 384-well plates were set up according to the
sample maximization strategy proposed in Hellemans et al.
(2007). Each sample was examined in three technical replicates,
and dissociation curves were analyzed to verify the specificity of
each amplification reaction. Reaction conditions and the analysis
protocol were the same as adopted in Malacarne et al. (2015).
Six housekeeping genes (VvACT, VvATP16, VvEF1α, VvGAPDH,
VvSAND, and VvUBIQ; Table S3) were tested for their stability
using GeNorm software (Vandesompele et al., 2002). Normalized
relative quantities (NRQs) were then calculated by dividing
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the RQ by a normalization factor, based on the expression of
the two most stable reference genes (VvATP16 and VvGAPDH)
(Reid et al., 2006).

Statistical Analysis
Statistical analyses applied to phenotypic data were performed
in R (R Core Team, 2018) equipped with tidyverse (Wickham,
2017) https://CRAN.R-project.org/package=tidyverse and
ggplot2 (Wickham, 2016) packages. The reproducibility between
years was assessed by checking (t-test, p ≤ 0.05) for the presence
of a significant difference in the values of the three phenotypic
parameters in a selected group of genotypes. In the case of the
64 polyphenol-related parameters, the reproducibility between
years was assessed by testing the difference between PI and MI
with a non-parametric Wilcoxon test (p ≤ 0.05, corrected for
multiplicity applying a Bonferroni correction). The same test
was applied to evaluate the presence of a significant induction of
the 64 parameters in the PI vs.MI samples.

Phylogenetic Analysis
A total of 90 GPs, including isoforms, encoding peroxidases
(IPR000823) were identified in the 12Xv2 PN40024 reference
genome (http://genomes.cribi.unipd.it/DATA/V2; Table S6),
while the 76 peroxidases from Arabidopsis (Tognolli et al., 2002)
were downloaded from NCBI (https://www.ncbi.nlm.nih.gov/).
Codon-based alignments of all the coding gene sequences were
made using Macse program (Ranwez et al., 2011). Automatically
produced alignments of individual genes were loaded into
the Seaview alignment editor and manually edited in amino
acid mode to discard obviously misaligned regions. The final
selection of alignment columns was saved to produce a 206 pos.
long curated alignment containing 167 aminoacid peroxidase
sequences. Phylogenetic analyses were performed with the help
of Iq-Tree multicore version 1.6. beta4 (Nguyen et al., 2015).
All sequences in alignment passed χ2 test of compositional
heterogeneity (p < 0.05). The optimal substitution model for
the observed alignment was automatically selected under the
Bayesian Information Criterion (BIC, Schwarz, 1978) among
a set of 468 substitution models. The model assumed LG (Le
and Gascuel, 2008) amino-acid replacement matrix with across
sites rate heterogeneity modeled via FreeRate model (Soubrier
et al., 2012) assuming six rate classes. Branch support values
were inferred based on 1,000 bootstrap replicates employing
an ultrafast bootstrap approximation (Hoang et al., 2018) as
implemented in the IQ-TREE program. Branches were named
as suggested by the Super-Nomenclature Committee for Grape
Gene Annotation (sNCGGa) (Grimplet et al., 2014). A bootstrap
value of 70 (recommended by the Committee) distinguished
the genes within the majority of the classes. Whenever a branch
containing both Vitis and Arabidopsis gene/genes was found
in a subtree, a subclass was defined. The remaining Vitis genes
were named independently. Moreover, different members of
a subclass were distinguished by a letter and different splicing
variants had the same name but followed by a number. In the few
cases in which the direct hortolog from Arabidopsis was found,
both names were retained.

RESULTS

Downy Mildew Resistance and Polyphenol
Content
P. viticola inoculation was performed on the entire progeny
(2012) and on the two parental lines along with 11 repeated
F1 individuals (2013). The reproducibility of both LD and
PP experiments between the 2 years was verified by t-
test on the three phenotypic parameters (Figures S1A,B) and
it confirmed an overall coherence between 2012 and 2013
infection both for LD and PP. Altogether the phenotypic results
indicated an approximately normal distribution of severity,
incidence and OIV452(−1) in the progeny and confirmed
a mid-resistant and susceptible phenotype for “Merzling”
and “Teroldego,” respectively. It is relevant to underline that
several F1 individuals were transgressive with respect to
the resistance donor “Merzling” exhibiting a higher level of
resistance, while none resultedmore susceptible than the parental
“Teroldego” (Figure 1).

Analogously to the DM resistance, the polyphenol-related
data—the measurement of 64 parameters on PP of 11 repeated
F1 individuals (Figure S2)—performed between 2012 and
2013 were found to be reproducible (p ≤ 0.05, corrected
for multiplicity applying a Bonferroni correction). The
differences turned out to be significant (p ≤ 0.05) in 13 out
of 64 cases, exhibiting good reproducibility overall. Moreover,
in many cases (e.g., 2,6-DHBA, fertaric acid, cis-piceid,
cis-resveratrol, pterorostilbene, cis-ε-viniferin) the range
of metabolic content identified in the progeny was greater
than in the parents, suggesting a transgressive segregation
(Figure S3). A significant delta value between PI and MI plants
(p ≤ 0.05, corrected for multiplicity applying a Bonferroni
correction) was detected for 32 different value distributions,
each representing variation in the content of polyphenols:
22 of stilbenoid class, out of which seven monomeric (trans-
resveratrol, piceatannol, pterostilbene, cis-piceid, astringin,
isorhamnetin, and the sum of monomeric stilbenoids), five
dimeric (trans-ε-viniferin, cis/trans ω-viniferin, pallidol,
ampelopsin D+quadrangularin A, and the sum of dimers),
four trimeric (α-viniferin, E-cis-miyabenol C, Z-miyabenol C,
and the sum of trimers), three tetrameric (isohopeaphenol,
ampelopsin H + vaticanol C-like isomer, and the sum of
tetramers), the ratio between tetramers and monomers, the
sum of polymers and all stilbenoids; two of benzoic acid class
(2,6-DHBA and the sum of benzoic acids); the coumarin fraxin;
the t-coutaric hydroxycinnamic acid; the flavanone naringenin;
four flavonols (quercetin-3-glucoside, rutin, quercetin-3-
glucuronide, and the sum of flavonols); and finally the sum of all
polyphenols (Figure 2).

QTL Mapping
The M×T Linkage Map
Out of 136 initial putative full-sib individuals, 129 resulted to
be true-to-type F1 individuals upon the genotyping analysis.
Of these, three were discarded because they presented >20%
missing data (progeny information in Table S4). Out of the 192
scored, 181 markers were ordered into 19 LGs allowing the
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FIGURE 1 | Phenotypic distribution of the three different parameters associated with resistance to P. viticola in the M×T progeny. Severity and incidence are

expressed in percentage while the OIV descriptor follows a discrete scale from 1 to 9. These parameters were scored at 6 days post-inoculation (dpi) for leaf disks

(LD) and at 8 dpi for potted plants (PP). The data were collected in June and August 2012 for the segregating population and in June and August 2013 for the two

parental lines. The reproducibility of the two experiments was tested (p ≤ 0.05) on data collected in August 2012 and 2013 for the same genotypes as shown in

Figure S1. M, “Merzling”; T, “Teroldego”.

construction of the M×T consensus map. Marker order was
generally consistent between parental and consensus homolog
LGs, with local inversion of tightly linked markers, and reflected
the backbone of previous published maps (Salmaso et al., 2008;
Vezzulli et al., 2008). The remaining 11 markers consisted of
one unlinked and 10 showing distorted segregation ratios with
a probability p ≤ 0.05. The distribution of the 181 mapped
markers into different segregation types showed that 91.1%
allowed discrimination between paternal and maternal inherited
allele. The total length of the consensus map was 1,162.7 cM
with a mean distance between adjacent markers of 6.4 cM
(Figure S4). The overall linkage map statistics are reported in
Table S4. This map was finally employed in a QTL mapping
survey to identify putative genomic regions involved in the
genetic control of DM resistance and polyphenol variation
upon P. viticola inoculation; a total of 49 significant QTLs
associated with 33 different parameters were detected on 12 LGs
(Figure 3, Table 1).

The DM Resistance QTLs
Regarding the phenotypic data associated with DM resistance
recorded on PP at 6 dpi, the first QTL identified was related

to the severity parameter, showing a maximum LOD value of
7.12 (22.9% of explained variance), and located along the distal
arm of chromosome 18 (88.3 cM). A co-localized QTL resulted
associated with the OIV 452 descriptor with an LOD peak of
5.99 (19.7% of explained variance). Concerning the incidence
parameter, the detected QTL was slightly shifted and showed
a maximum LOD value of 3.18 (11% of explained variance).
These results based on PP phenotypic data were confirmed
by the results obtained on LD where a lower LOD peak was
calculated per each parameter, except for disease incidence,
which is more sensitive to the intra-plant leaf variability
(Table 1, Figure 3). This overall genomic interval, ranging
from 22.6 to 27.8Mb of LG 18, co-localizes with the known
Rpv3 locus which is characterized by the flanking UDV305
and UDV737 SSR markers (Di Gaspero et al., 2012). Given
their genetic profile in this work, the haplotype Rpv3 null−271

was identified as associated with DM resistance in “Merzling”
and named Rpv3-3, according to the rules established by the
international grapevine research community (www.vitaceae.org;
http://www.vivc.de/). Not reliable, confirmed twice between PP
and LD experiments, minor QTLs were also identified (data
not show).
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FIGURE 2 | Distribution of the difference between P. viticola-inoculated (PI) and mock-inoculated (MI) values (delta) associated with 64 polyphenol-related parameters

recorded in the M×T progeny. Black distributions highlight significantly modulated compounds. The meaning of the parameter abbreviations is reported in Table S1B.

The Polyphenol-Related QTLs
As concerning polyphenol variation, significant QTLs were newly
detected for a total of 30 parameters, including both the original
and the derived ones. LOD peak values spanned from 2.52 to 4.28
(Table 1, Figure 3).

Overall, considering the QTL physical distribution,
four clusters were located on LGs 18, 17, 16, and 15 by
abundance order. In particular, a comprehensive cluster of QTLs
positioned on LG 18 was associated with caffeic acid+catechin
condensation, five parameters related to monomeric stilbenoids,
cis-ε-viniferin, epicatechin gallate and procyanidin B1, and did
not result overlapping with the distal region associated with DM
resistance (Figure 3).

Regarding hydroxycinnamic acids, one QTL associated with
fertaric acid (LOD peak value of 3.68) and one to caffeic
acid+catechin condensation (LOD peak value of 2.64) were
located on LGs 2 and 18, explaining, respectively 13.2 and 9.6%
of the total phenotypic variance. In terms of benzoic acids, gallic

acid, and 2,6-DHBA were correspondingly mapped on LGs 12
and 16, with 9.8 and 10.1% of explained variance.

Within the group of monomeric stilbenoids, three QTLs were
found to be associated with cis-resveratrol on LGs 5, 9, and
3, explaining 10.8, 9.8, and 9.4% of total variance, respectively.
A QTL for pterostilbene was located on LG 16 with a LOD
peak value of 3.89, which corresponded to 13.9% of explained
variance. Two QTLs, positioned on LGs 16 and 18, were related
to the cis-piceid content (11.8 and 12.5% of explained variance),
while trans-piceid was mapped only on the LG 18 region which
explained a similar variance. Astringin was under control of three
genomic regions (LGs 16, 4, and 18) which corresponded to
a range from 10.1 to 12.7% of the total phenotypic variance.
Two QTLs associated with isorhapontin were positioned on LGs
18 and 17, with 13.2 and 11.8% of explained variance. Finally,
a QTL corresponding to the region controlling the content
of all the monomeric stilbenoids mentioned above was found
on LG 18 for the sum of monomeric stilbenoids. Concerning
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FIGURE 3 | QTL distribution across the 19 M×T LGs. The meaning of the parameter abbreviations is reported in Table S1.

polymeric stilbenoids, cis-ε-viniferin was mapped on LG 18,
in a region upstream to the one associated with monomeric
stilbenoids and encompassing 10.9% of the total phenotypic
variance; indeed, a QTL related to the trans-ε-viniferin content,
explaining a highly similar variance, was detected on LG 16
in a region far from the one associated with the monomeric
stilbenoids and coincident with the one explaining the 9.7% of the
variance of E-cis-miyabenol content described below. Cis+trans-
ω-viniferin was under control of two genomic regions (LGs 16
and 14) which corresponded to the 11.5 and 10.7% of the total
phenotypic variance. In particular, 85% of the LG 16 region
was specifically associated with this specific dimer. Two genomic
regions associated with ampelopsin D+quadrangularin A were
identified on LGs 14 and 17; these QTLs showed a LOD peak
value of 3.66 and 3.42, with 13.1 and 12.3% of explained variance,
respectively. Two QTLs, positioned on LGs 16 and 14, were
related to the E-cis-miyabenol content (9.7 and 9.6% of explained
variance), while Z-miyabenol C was mapped only on the LG 14
region which explained 12.6% of the total phenotypic variance.
Considering derived parameters, two QTLs were identified on
LGs 17 and 14 for the sum of dimeric stilbenoids (a mean of 10%
of explained variance), whereas the sum of trimeric stilbenoids
was associated only with the QTL on LG 14, explaining 11.2%
of the total phenotypic variance. For total polymeric stilbenoids,
including tetrameric stilbenoids, the two QTLs identified on LGs

14 and 17 were confirmed, with 10.7 and 9.9% of explained
variance. Finally, a QTL was detected as associated with the ratio
of dimeric to monomeric stilbenoids on a different region of LG
17, explaining 9.6% of the total variance. This region was also
controlling the isorhapontin content as previously highlighted.
Contrary to LG17, on LG14 the region associated with all the
parameters previously described was coincident.

Within the flavanon group, two QTLs related to the
naringenin content were found on LGs 17 and 19 (LOD peak
value of 3.64 for the major QTL), with 13 and 11.1% of explained
variance, respectively. The 56% of the first and the 100% of
the second region were specifically associated with naringenin.
Indeed, naringenin-7-glucoside was mapped on LGs 15 and 3
(LOD peak value of 4.28 for the major QTL), which respectively
explained 15.2 and 9.7 of the total phenotypic variance. In
particular, the 72% of the region on LG 13 was specific for this
flavanon. For total flavanones, only the QTL located on LG 15
was shared, with 10.8% of explained variance. Regarding flavan-
3-ol monomers and dimers, for catechin two QTLs were detected
on LGs 5 and 15—of which the first one was private—explaining
10.1 and 9.1% of the total phenotypic variance, respectively. Two
QTLs, the first one positioned on LGs 15 coincidently with the
region associated with catechin and the second one on LG 3,
were respectively related to the epicatechin and epigallocatechin
gallate content, explaining a similar percentage of the total
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TABLE 1 | List of the 49 identified significant QTLs associated to three DM resistance and 30 polyphenol-related parameters.

Trait Class Parameter Experiment LG LOD

threshold

(α = 5)

LOD

peak

LOD peak

position

(cM)

LOD peak

offset (bp)

% Expl

Var

Close-to-

QTL-start

SSR

Close-to-

QTL-end

SSR

Downy

mildew

resistance

– Severity Leaf Disks 18 2.7 5.73 89.312 26483989 19.9 UDV737 UDV737

Potted Plants 18 2.8 7.12 88.312 24699030 22.9 VVIN16 UDV737

Incidence Leaf Disks 18 2.8 4.33 89.312 26483989 15.4 UDV737 UDV737

Potted Plants 18 2.8 3.18 88.312 24699030 11.0 VVIN16 UDV737

OIV 452-1 Leaf Disks 18 2.7 4.17 89.312 26483989 14.9 UDV737 UDV737

OIV 452 Potted Plants 18 2.7 5.99 88.312 24699030 19.7 VVIN16 UDV305

Polyphenol

content

Hydroxycinnamic

acids

ferac Potted Plants 2 2.4 3.68 0.000 2349171 13.2 VVIB01 VMC6F1

cafaccat Potted Plants 18 2.6 2.64 50.020 10721189 9.6 VVCS1H VVCS1H

Benzoic acids galac Potted Plants 12 2.5 2.69 22.593 6174660 9.8 VCHR12A VCHR12A

26oh-benac Potted Plants 16 2.5 2.78 6.388 9994586 10.1 UDV104 UDV009

Flavanones narin Potted Plants 17 2.6 3.64 23.182 3562640 13 VVIQ22-2 VMC9G4

19 2.6 3.07 14.411 2124093 11.1 UDV023 UDV023

narin7-gl Potted Plants 15 2.5 4.28 30.709 16280816 15.2 VMC5G8 VMC8G3-2

3 2.5 2.65 14.000 1817755 9.7 VMC8F10 VMC8F10

S_flavanon Potted Plants 15 2.4 2.99 30.709 16292317 10.8 VVIV24 VMC4D9-2

Flavan-3-ol

monomers and

dimers

cat Potted Plants 5 2.7 2.79 50.351 20620536 10.1 VMC9B5 VMC9B5

15 2.4 2.52 30.709 15943274 9.2 VVIM42-2 VMC4D9-2

epicat Potted Plants 15 2.4 2.57 30.709 16292317 9.4 VVIV24 VMC4D9-2

epigalcatgal Potted Plants 3 2.5 2.70 30.471 4136318 9.9 UDV021 VMC1A5

epicatgal Potted Plants 17 2.5 4.02 44.395 8038301 14.3 VVIB09 VVIP16

18 2.7 2.80 93.424 24868000 10.2 UDV305 UDV305

2 2.5 2.68 0.000 2349171 9.8 VVIB01 VVIB01

procyanb1 Potted Plants 18 2.9 2.99 53.134 12072631 10.9 VVCS1H VVIM10

Flavonol rutin Potted Plants 17 2.5 3.10 2.000 3033023 11.2 VMC3C11-1 VMC2H3

Monomeric

stilbenoids

c-resv Potted Plants 5 2.6 2.99 55.224 24864769 10.8 VMC4C6 VMC4C6

[-10pt] 9 2.5 2.69 34.482 15302997 9.8 VCHR9A VCHR9A

3 2.5 2.57 47.034 11617504 9.4 VVMD28 VVMD28

ptero Potted Plants 16 2.5 3.89 16.522 9583955 13.9 UDV013 SC80189026

t-pice Potted Plants 18 2.8 3.37 56.134 13374598 12.1 VVCS1H VVIP08

c-pice Potted Plants 18 2.9 3.48 55.134 12175152 12.5 VVIM10 VVIP08

16 2.5 3.28 6.388 4092596 11.8 UDV104 SC80189026

astrin Potted Plants 18 2.8 3.53 57.134 12138633 12.7 VVIP08 VVIP08

4 2.6 3.26 88.528 23105311 11.8 VMC6G10 VMC6G10

16 2.4 2.78 6.000 9826198 10.1 UDV104 UDV009

isorh Potted Plants 18 2.8 3.69 49.020 9521743 13.2 VCHR18A VVIM10

17 2.5 3.29 39.977 9113940 11.8 VVIB09 VVIB09

S_monstil Potted Plants 18 2.8 3.58 54.134 12506620 12.8 VVCS1H VVIM10

Polymeric

stilbenoids

ce-vin Potted Plants 18 2.8 3.02 5.715 3362208 10.9 VMC8B5 VMC8B5

te-vin Potted Plants 16 2.6 2.74 55.429 21844881 10 SCU14 SCU14

cto-vin Potted Plants 16 2.6 3.18 51.154 21027861 11.5 VMC5A1 SCU14

14 2.8 2.94 0.000 1413666 10.7 VMCNG1E1 VMCNG1E1

ampd+qua Potted Plants 14 2.7 3.66 0.000 1413666 13.1 VMCNG1E1 VMCNG1E1

17 2.6 3.42 0.000 2165045 12.3 VMC3C11-1 SCU06

(Continued)
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TABLE 1 | Continued

Trait Class Parameter Experiment LG LOD

threshold

(α = 5)

LOD

peak

LOD peak

position

(cM)

LOD peak

offset (bp)

% Expl

Var

Close-to-

QTL-start

SSR

Close-to-

QTL-end

SSR

ec-miy Potted Plants 16 2.5 2.65 55.429 21844881 9.7 SCU14 SCU14

14 2.6 2.64 0.000 1413666 9.6 VMCNG1E1 VMCNG1E1

z-miyc Potted Plants 14 2.8 3.52 0.000 1413666 12.6 VMCNG1E1 VMCNG1E1

S_dimstil Potted Plants 17 2.4 2.79 0.000 2165045 10.2 VMC3C11-1 VMC3C11-1

14 2.7 2.69 0.000 1413666 9.8 VMCNG1E1 VMCNG1E1

S_trimstil Potted Plants 14 2.7 3.09 0.000 1413666 11.2 VMCNG1E1 VMCNG1E1

S_polstil Potted Plants 14 2.6 2.95 0.000 1413666 10.7 VMCNG1E1 VMCNG1E1

17 2.7 2.73 0.000 2165045 9.9 VMC3C11-1 VMC3C11-1

R_dim-

monstil

Potted Plants 17 2.1 2.64 45.395 8472290 9.6 VMC9G4 VVIP16

phenotypic variance. Three genomic regions associated with
epicatechin gallate were identified on LGs 17, 18, and 2; these
QTLs spanned from a LOD peak value of 4.02 to 2.68, with
a corresponding range of explained phenotypic variance from
14.3 to 9.8%. Procyanidin B1 was mapped on LG 18 with
10.9% of explained variance. Finally, a QTL was associated with
the flavonol rutin on LG 17, which explain 11.2% of the total
phenotypic variance.

Relationship Among Genetic Background,
Resistance Level, and Polyphenol
Induction
Of the 30 polyphenolic compounds with an associated QTL,
infection significantly affected production of 23. Out of these,
synthesis of four compounds was induced in Rpv3-3+ genotypes
only, synthesis of another four significantly decreased in Rpv3-
3− genotypes only, and one (ampelopsin D+quadrangularin A)
was significantly induced and repressed in both Rpv3-3+ and
Rpv3-3− genotypes, respectively (Figure 4A).

Considering the Rpv3-3 haplotype, the OIV 452 parameter
and the polyphenol delta values, a relationship was highlighted
exclusively for the stilbenoids. For instance, cis/trans-ω-viniferin
and polymeric stilbenoids, on average induced in the progeny,
resulted significantly induced in Rpv3-3+ genotypes showing a
high OIV 452 value. By contrast, ampelopsin D+quadrangularin
A, on average induced in the progeny as well, showed an opposite
profile between Rpv3-3+ and Rpv3-3− genotypes with high OIV
452 values. In addition, the induction of 2,6-DHBA, observed
on average in the progeny, was very low in Rpv3-3− genotypes
with a high OIV 452 value (Figure 4B). In the Rpv3-3− resistant
genotypes no compound synthesis was significantly induced by
the fungus (data not shown).

Candidate Gene Identification and
Characterization
Candidate Genes Underlying DM Resistance and

Polyphenol-Related QTLs
The number of genes identified within each QTL region was
extremely variable from a minimum of 5 (LG 18) to a maximum
of 984 (LG 16). Due to the high number of GPs underlying

the QTLs associated with the 33 assessed parameters, four
different main criteria were adopted to select CGs for trait
regulation (e.g., Figure S5 for enrichment analysis results). Upon
this selection (Table S5), a refined list of the 95 most relevant
unique CGs was generated, of which a few were previously
characterized as involved in DM response and in the regulation
of polyphenol synthesis (the so called “reference genes”), while
the majority were newly identified. CGs mainly referred to
the functional categories of signaling, secondary metabolism,
regulation of transcription, and response to abiotic and biotic
stimulus (Table 2).

Besides disease-related (NBS-LRR) genes alone representing
a significant part of the grapevine genome (Malacarne et al.,
2012) and found also in high numbers within the major
QTL on LG 18 associated with DM resistance parameters,
four laccases (VIT_218s0117g00590, VIT_218s0117g00600,
VIT_218s0117g00610, VIT_218s0117g00625), which can be part
of the defense response due to pathogen recognition mediated
by the LRR domain, drew our attention (Table S5).

Regarding the polyphenol content trait, we focused on
CGs (i) underlying QTLs associated with polyphenols induced
by infection and (ii) showing disparity between Rpv3-3+

and Rpv3-3− genotypes characterized by a different level
of DM resistance. Within the category of signaling, many
selected genes belong to the kinase protein family, as well
as to ethylene, ABA and JA signaling pathways. Two genes
appear to be of special interest, one coding for the LRK10
Receptor kinase homolog (VIT_216s0013g01390) and the
other encoding CLL1B clavata1-like receptor S/T protein
kinase (VIT_216s0013g01990) located within the QTL
region on LG16 linked to 2,6-DHBA and to pterostilbene.
In addition, a gene coding for a Receptor serine/threonine
kinase (VIT_216s0148g00300) resulted associated with
cis-ω viniferin, as well as two genes encoding the Ethylene-
responsive transcription factor ERF105 (VIT_16s0013g00900 and
VIT_16s0013g01070) were linked to 2,6-DHBA, pterostilene, and
cis-piceid content. In addition, five genes (VIT_203s0132g00040,
VIT_203s0132g00050, VIT_203s0132g00080, VIT_203s0132g0
0090, VIT_203s0132g00100), coding for a cluster of
HVA22-like abscisic acid-induced proteins, were linked
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FIGURE 4 | (A) Summary of univariate analysis performed on the 30 polyphenol-related parameters—with a QTL region associated—measured in the M×T progeny.

The plot summarizes the outcomes of a series of regression analyses performed to assess the presence of a significant induction (p ≤ 0.05) and its dependence upon

the resistance level (measured with the OIV 452 descriptor) for Rpv3-3+ and Rpv3-3− genotypes. Orange and violet colors highlight up and down regulation,

respectively. The first column (Mean) indicates the average value of the parameter distribution in the M×T progeny. (B) Examples of the univariate regression analyses.

The meaning of the parameter abbreviations is reported in Table S1B.

to cis-resveratrol content and the gene encoding the
bZIP factor VvAREB/ABF2 (VIT_218s0001g10450)
was exclusively associated to isorhapontin. Three JA
O-methyltransferases (VIT_204s0023g03790, VIT_204s0023
g03800, VIT_204s0023g03810) were associated with
astringin, an additional JA O-methyltransferase
(VIT_218s0001g12900) was related to astringin and isorhapontin,

five genes (VIT_217s0000g07370, VIT_217s0000g07375,
VIT_217s0000g07400, VIT_217s0000g07420, VIT_217s0000g0
7560) coding for EDS1 were linked to isorhapontin and
the ratio between dimeric and monomeric stilbenoids, and
finally one gene (VIT_216s0098g00330) encoding ORG1
was associated with the regulation of cis+trans-ω-viniferin
content (Table 2).
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TABLE 2 | List of the 95 most relevant candidate genes associated with DM resistance and polyphenol content.

Gene ID Description Functional category Criteria of selection Reference Gene name

Severity (LG 18)

1 VIT_218s0117g00590 Laccase Single reactions Enriched This work

2 VIT_218s0117g00600 Laccase Single reactions Enriched This work

3 VIT_218s0117g00610 low quality protein:

laccase-14-like

Single reactions Enriched This work

4 VIT_218s0117g00625 low quality protein:

laccase-14-like

Single reactions Enriched This work

Incidence (LG 18)

5 VIT_218s0041g01620 R protein L6 (TMV resistance

protein N-like)

Biotic stress response LOD max peak This work

2,6-diOH-benzoic acid (LG 16)

6 VIT_216s0013g01920 Ser/Thr protein kinase Protein kinase Enriched, closed to LOD max

offset

This work

7 VIT_216s0013g01940 Kinase-like protein TMKL1 Protein kinase Enriched, closed to LOD max

offset

This work

8 VIT_216s0013g01990 CLL1B clavata1-like receptor like

K (RLK)

Protein kinase Enriched, closed to LOD max

offset, reference gene

This work

9 VIT_216s0013g02130 Protein kinase Protein kinase Enriched, closed to LOD max

offset

This work

10 VIT_216s0013g02170 Protein kinase Protein kinase Enriched, closed to LOD max

offset

This work

11 VIT_216s0013g01390 Receptor kinase homolog LRK10 Protein kinase Enriched, closed to LOD max

offset

This work

12 VIT_216s0013g00900 Ethylene-responsive TF ERF105 Ethylene Signaling Enriched, reference gene This work

13 VIT_216s0013g01070 Ethylene-responsive TF ERF105 Ethylene Signaling Enriched, reference gene This work

14 VIT_216s0013g01570 Myb domain protein 92 Regulation of transcription Category of interest This work VvMYB194

Rutin

15 VIT_217s0000g02660 MYBC2-L2 Regulation of transcription Category of interest, reference

gene

Cavallini et al.,

2015

VvMYBC2-L2

16 VIT_217s0000g02710 Myb domain protein 4R1 Regulation of transcription Category of interest This work

17 VIT_217s0000g02730 Myb domain protein 4R1 Regulation of transcription Category of interest This work

Cis-resveratrol

18 VIT_205s0094g00480 Ethylene-responsive protein Ethylene Signaling Category of interest

19 VIT_209s0018g00240 WRKY40 like Regulation of transcription Category of interest Corso et al., 2015 VvWRKY28

20 VIT_209s0018g00300 N-acetyltransferase hookless1

HLS1

Ethylene Signaling Category of interest

21 VIT_203s0132g00040 ATHVA22A ABA Signaling Enriched

22 VIT_203s0132g00050 ATHVA22A ABA Signaling Enriched

23 VIT_203s0132g00080 ATHVA22A ABA Signaling Enriched

24 VIT_203s0132g00090 ATHVA22A ABA Signaling Enriched

25 VIT_203s0132g00100 ATHVA22A ABA Signaling Enriched

26 VIT_203s0097g00700 Pathogenesis-related protein 1

(PRP 1)

Jasmonate salicylate

signaling

Category of interest

Cis-piceid (LG=16)

12 VIT_216s0013g00900 Ethylene-responsive TF ERF105 Ethylene Signaling Enriched, reference gene This work

13 VIT_216s0013g01070 Ethylene-responsive TF ERF105 Ethylene Signaling Enriched, reference gene This work

27 VIT_216s0100g00750 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS7

28 VIT_216s0100g00760 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS8

29 VIT_216s0100g00770 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS9

30 VIT_216s0100g00780 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS10

(Continued)
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TABLE 2 | Continued

Gene ID Description Functional category Criteria of selection Reference Gene name

31 VIT_216s0100g00800 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS12

32 VIT_216s0100g00810 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS13

33 VIT_216s0100g00830 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS15

34 VIT_216s0100g00840 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS16

35 VIT_216s0100g00850 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS17

36 VIT_216s0100g00860 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS18

37 VIT_216s0100g00880 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS19

38 VIT_216s0100g00900 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS20

39 VIT_216s0100g00910 Stilbene synthase Phenylpropanoid

metabolism

Enriched, reference gene Höll et al., 2013 VvSTS21

40 VIT_216s0100g00920 Stilbene synthase Phenylpropanoid

metabolism

Enriched, reference gene Höll et al., 2013 VvSTS22

41 VIT_216s0100g00930 Stilbene synthase Phenylpropanoid

metabolism

Enriched this work VvSTS23

42 VIT_216s0100g00940 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS24

43 VIT_216s0100g00950 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS25

44 VIT_216s0100g00960 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS26

45 VIT_216s0100g00990 Stilbene synthase Phenylpropanoid

metabolism

Enriched, reference gene Höll et al., 2013 VvSTS27

46 VIT_216s0100g01000 Stilbene synthase Phenylpropanoid

metabolism

Enriched, reference gene Höll et al., 2013 VvSTS28

47 VIT_216s0100g01010 Stilbene synthase Phenylpropanoid

metabolism

Enriched, reference gene Höll et al., 2013 VvSTS29

48 VIT_216s0100g01020 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS30

48 VIT_216s0100g01020 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS31

49 VIT_216s0100g01040 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS32

50 VIT_216s0100g01060 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS33

51 VIT_216s0100g01070 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS35

52 VIT_216s0100g01100 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS36

53 VIT_216s0100g01110 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS37

54 VIT_216s0100g01120 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS39

55 VIT_216s0100g01130 Stilbene synthase Phenylpropanoid

metabolism

Enriched, reference gene Höll et al., 2013 VvSTS41

56 VIT_216s0100g01140 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS42

57 VIT_216s0100g01150 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS43

(Continued)
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TABLE 2 | Continued

Gene ID Description Functional category Criteria of selection Reference Gene name

58 VIT_216s0100g01160 Stilbene synthase Phenylpropanoid

metabolism

Enriched, reference gene Höll et al., 2013 VvSTS45

59 VIT_216s0100g01170 Stilbene synthase Phenylpropanoid

metabolism

Enriched, reference gene Vannozzi et al.,

2012

VvSTS46-

VvSTS47-

VvSTS48

Trans-piceid (LG=18)

60 VIT_218s0001g12900 JA O-methyltransferase Amino acid metabolism JA signaling This work

61 VIT_218s0001g13110 Peroxidase Amino acid metabolism Involved in oligomerization This work VviPrxIII34a

62 VIT_218s0001g15390 Gaiacol peroxidase Amino acid metabolism Involved in oligomerization This work VviPrxIII21a

Pterostilbene (LG=16)

6 VIT_216s0013g01920 Ser/Thr protein kinase (PK) Protein kinase Enriched, closed to LOD max

offset

This work

7 VIT_216s0013g01940 Kinase-like protein TMKL1 Protein kinase Enriched, closed to LOD max

offset

This work

8 VIT_216s0013g01990 CLL1B clavata1-like receptor like

K (RLK)

Protein kinase Enriched, closed to LOD max

offset, reference gene

This work

9 VIT_216s0013g02130 Protein kinase (PK) Protein kinase Enriched, closed to LOD max

offset

This work

10 VIT_216s0013g02170 Protein kinase (PK) Protein kinase Enriched, closed to LOD max

offset

This work

11 VIT_216s0013g01390 Receptor kinase homolog LRK10 Protein kinase Enriched, closed to LOD max

offset

This work

12 VIT_216s0013g00900 Ethylene-responsive TF ERF105 Ethylene Signaling Enriched, reference gene This work

13 VIT_216s0013g01070 Ethylene-responsive TF ERF105 Ethylene Signaling Enriched, reference gene This work

27 VIT_216s0100g00750 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS7

28 VIT_216s0100g00760 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS8

29 VIT_216s0100g00770 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS9

30 VIT_216s0100g00780 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS10

31 VIT_216s0100g00800 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS12

32 VIT_216s0100g00810 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS13

33 VIT_216s0100g00830 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS15

34 VIT_216s0100g00840 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS16

35 VIT_216s0100g00850 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS17

36 VIT_216s0100g00860 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS18

37 VIT_216s0100g00880 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS19

38 VIT_216s0100g00900 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS20

39 VIT_216s0100g00910 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS21

40 VIT_216s0100g00920 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS22

41 VIT_216s0100g00930 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS23

42 VIT_216s0100g00940 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS24

(Continued)
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TABLE 2 | Continued

Gene ID Description Functional category Criteria of selection Reference Gene name

43 VIT_216s0100g00950 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS25

44 VIT_216s0100g00960 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS26

45 VIT_216s0100g00990 Stilbene synthase Phenylpropanoid

metabolism

Enriched, reference gene Höll et al., 2013 VvSTS27

46 VIT_216s0100g01000 Stilbene synthase Phenylpropanoid

metabolism

Enriched, reference gene Höll et al., 2013 VvSTS28

47 VIT_216s0100g01010 Stilbene synthase Phenylpropanoid

metabolism

Enriched, reference gene Höll et al., 2013 VvSTS29

48 VIT_216s0100g01020 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS30

48 VIT_216s0100g01020 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS31

49 VIT_216s0100g01040 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS32

50 VIT_216s0100g01060 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS33

51 VIT_216s0100g01070 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS35

52 VIT_216s0100g01100 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS36

53 VIT_216s0100g01110 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS37

54 VIT_216s0100g01120 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS39

55 VIT_216s0100g01130 Stilbene synthase Phenylpropanoid

metabolism

Enriched, reference gene Höll et al., 2013 VvSTS41

56 VIT_216s0100g01140 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS42

57 VIT_216s0100g01150 Stilbene synthase Phenylpropanoid

metabolism

Enriched This work VvSTS43

58 VIT_216s0100g01160 Stilbene synthase Phenylpropanoid

metabolism

Enriched, reference gene Höll et al., 2013 VvSTS45

59 VIT_216s0100g01170 Stilbene synthase Phenylpropanoid

metabolism

Enriched Vannozzi et al.,

2012

VvSTS46-

VvSTS47-

VvSTS48

63 VIT_216s0022g02470 Cationic peroxidase Amino acid metabolism Involved in oligomerization This work VviPrxIII08a

64 VIT_216s0100g00090 Cationic peroxidase Amino acid metabolism Involved in oligomerization This work VviPrxIII08b

65 VIT_216s0022g01690 Band 7 family (Hrp_c) Auxiliary transport proteins Casagrande et al.,

2011

66 VIT_216s0022g02040 PBS2 (PPHB susceptible 2) Biotic stress response Casagrande et al.,

2011

Astringin (LGs=18, 16, 4)

60 VIT_218s0001g12900 JA O-methyltransferase Amino acid metabolism JA signaling This work

61 VIT_218s0001g13110 Peroxidase Amino acid metabolism Involved in oligomerization This work VviPrxIII34a

67 VIT_216s0013g01560 Myb domain protein 92 Regulation of transcription Regulator This work VvMYB193

14 VIT_216s0013g01570 Myb domain protein 92 Regulation of transcription Regulator This work VvMYB194

68 VIT_204s0023g03790 Jasmonate methyltransferase Lipid metabolism JA signaling This work

69 VIT_204s0023g03800 Jasmonate methyltransferase Lipid metabolism JA signaling This work

70 VIT_204s0023g03810 Jasmonate O-methyltransferase Lipid metabolism JA signaling This work

71 VIT_204s0044g01510 Histone deacetylase HDA14 Cell growth and death LOD max peak This work

72 VIT_204s0044g01205 chitinase 1 Biotic stress response Defense response This work

73 VIT_204s0023g03710 Myb domain protein 4B Regulation of transcription Regulator, reference gene Cavallini et al.,

2015

VvMYB4B

74 VIT_204s0044g01380 Myb domain protein 52 Regulation of transcription Regulator This work

(Continued)
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TABLE 2 | Continued

Gene ID Description Functional category Criteria of selection Reference Gene name

Isorhapontin (LGs=18, 17)

75 VIT_218s0001g10450 VvAREB/ABF2 ABA Signaling Category of interest Nicolas et al.,

2014

VvbZIP045

76 VIT_218s0001g11630 Allene oxide synthase Lipid metabolism reference gene Casagrande et al.,

2011

60 VIT_218s0001g12900 JA O-methyltransferase (JMT) Amino acid metabolism Reference gene Casagrande et al.,

2011

61 VIT_218s0001g13110 Peroxidase Amino acid metabolism Involved in oligomerization This work VviPrxIII34a

77 VIT_217s0000g07750 Peroxidase 65 Amino acid metabolism Involved in oligomerization This work VviPrxIII15a

78 VIT_217s0000g07370 EDS1 Jasmonate salicylate

signaling

Enriched Casagrande et al.,

2011

79 VIT_217s0000g07375 EDS1 Jasmonate salicylate

signaling

Enriched Casagrande et al.,

2011

80 VIT_217s0000g07400 EDS1 Jasmonate salicylate

signaling

Enriched Casagrande et al.,

2011

81 VIT_217s0000g07420 EDS1 Jasmonate salicylate

signaling

Enriched Casagrande et al.,

2011

82 VIT_217s0000g07560 EDS1 Jasmonate salicylate

signaling

Enriched Casagrande et al.,

2011

Cis-ε-viniferin (LG=18)

83 VIT_218s0001g02400 Laccase 14 Single reactions Involved in oligomerization This work

84 VIT_218s0001g02410 Laccase/Diphenol oxidase family

protein

Single reactions Involved in oligomerization This work

Cis+trans-ω-viniferin (LG=16)

85 VIT_216s0148g00300 Receptor serine/threonine kinase Protein kinase Enriched, reference gene This work

86 VIT_216s0098g00820 Peroxidase 3 Amino acid metabolism Involved in oligomerization This work VviPrxIII23a

87 VIT_216s0098g00330 ORG1 (OBP3-responsive gene 1) Jasmonate salicylate

signaling

JA signaling This work

Ampelopsin D+quadrangularin A (LG=17)

88 VIT_217s0000g02650 MYBC2-L4 Regulation of transcription Regulator Cavallini et al.,

2015

VvMYBC2-L4

15 VIT_217s0000g02660 MYBC2-L2 Regulation of transcription Regulator, reference gene Cavallini et al.,

2015

VvMYBC2-L2

16 VIT_217s0000g02710 Myb domain protein 4R1 Regulation of transcription Regulator This work

17 VIT_217s0000g02730 Myb domain protein 4R1 Regulation of transcription Regulator This work

S_monomeric stilbenoids (LG=18)

61 VIT_218s0001g13110 Peroxidase Amino acid metabolism Involved in oligomerization This work VviPrxIII34a

62 VIT_218s0001g15390 Gaiacol peroxidase Amino acid metabolism Involved in oligomerization This work VviPrxIII21a

S_dimeric stilbenoids

8 VIT_217s0000g02650 MYBC2-L4 Regulation of transcription Regulator Cavallini et al.,

2015

VvMYBC2-L4

15 VIT_217s0000g02660 MYBC2-L2 Regulation of transcription Regulator, reference gene Cavallini et al.,

2015

VvMYBC2-L2

16 VIT_217s0000g02710 Myb domain protein 4R1 Regulation of transcription Regulator This work

17 VIT_217s0000g02730 Myb domain protein 4R1 Regulation of transcription Regulator This work

R_dimeric-monomeric stilbenoids (LG=17)

77 VIT_217s0000g07370 EDS1 Jasmonate salicylate

signaling

Enriched Casagrande et al.,

2011

78 VIT_217s0000g07375 EDS1 Jasmonate salicylate

signaling

Enriched Casagrande et al.,

2011

79 VIT_217s0000g07400 EDS1 Jasmonate salicylate

signaling

Enriched Casagrande et al.,

2011

80 VIT_217s0000g07420 EDS1 Jasmonate salicylate

signaling

Enriched Casagrande et al.,

2011

(Continued)
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TABLE 2 | Continued

Gene ID Description Functional category Criteria of selection Reference Gene name

81 VIT_217s0000g07560 EDS1 Jasmonate salicylate

signaling

Enriched Casagrande et al.,

2011

89 VIT_217s0000g09070 Histone deacetylase HDA6 Jasmonate salicylate

signaling

Enriched This work

77 VIT_217s0000g07750 Peroxidase 65 Amino acid metabolism Involved in oligomerization This work VviPrxIII15a

S_trimeric stilbenoids (LG=14)

90 VIT_214s0060g02280 C3HC4-type ring finger Regulation of transcription Regulator This work

Z-miyabenol C (LG=14)

91 VIT_214s0060g01710 Ribosomal protein L18 Protein metabolism and

modification

LOD max peak This work

S_polymeric stilbenoids (LG=14)

92 VIT_214s0060g02420 JmjC domain-containing protein Regulation of transcription Regulator This work

93 VIT_214s0060g02440 Indeterminate(ID)-domain 2 Regulation of transcription Regulator This work

94 VIT_214s0060g02640 Myb family Regulation of transcription Regulator This work

95 VIT_214s0060g02660 Nuclear transcription factor Y

subunit B-5

Regulation of transcription Regulator This work

(i) The gray background indicates the genes for which expression was evaluated in 12 F1 individuals of the M×T progeny by qRT-PCR; (ii) genes associated with different parameters are

repeated in the Table; (iii) Gene ID, code of 12Xv2 gene predictions as retrieved by CRIBI database (http://genomes.cribi.unipd.it/DATA/V2/); functional category: functional category at

the second or third level of description.

A cluster of stilbene synthase genes, mostly not specifically
related to DM response previously, was found in the QTL
intervals associated with cis-piceid and pterostilbene. In addition,
six peroxidase genes (herein named VviPrxIII08a, VviPrxIII08b,
VviPrxIII15a, VviPrxIII21a, VviPrxIII23a, VviPrxIII34a,
Figure 6) underlied monomeric and oligomeric stilbenoid-
related QTL regions and two laccase genes (VIT_218s0001g02400
and VIT_218s0001g02410) were associated
with ε-viniferin.

Two of the genes recently identified as encoding a set of
R2R3-MYB C2 repressors of phenylpropanoid levels (Cavallini
et al., 2015) were linked to the regulation of ampelopsin
D+quadrangularin A, the sum of dimeric stilbenoids and
rutin (VvMYBC2-L2) and to the regulation of trans-piceid and
astringin content (VvMYB4B). Another seven MYB genes were
identified: VIT_216s0013g01560 (VvMYB193 in Wong et al.,
2016) and VIT_216s0013g01570 (VvMYB194 in Wong et al.,
2016) in the region controlling both 2,6-DHBA and astringin
content, VIT_204s0044g01380 in the region controlling astringin
content, VIT_217s0000g02710 and VIT_217s0000g02730
as associated with ampelopsin D+quadrangularin A, the
sum of dimeric stilbenoids and rutin content, and finally
VIT_214s0060g02640 related to the sum of polymeric stilbenoids.
Finally, a WRKY factor (precisely VvWRKY28 in Wang et al.,
2014) was associated to cis-resveratrol content.

Newly Identified Genes Candidate to Stilbenoid

Oligomerization
Among all CGs, further investigation was dedicated to a set
of 11 genes by assessing their transcript level in a set of 12 F1
individuals. The objective was to get further evidence of the
association between the identified genomic regions and the
traits under investigation. These genotypes exhibited disparity
in pathogen resistance level, stilbenoid-related parameters with

an mQTL associated and haplotype status at the Rpv3 locus
(Figure S6). These genes encoded: (i) five out of six peroxidases
identified within monomeric and oligomeric stilbenoid-
related QTL regions (VviPrxIII08a, VviPrxIII08b, VviPrxIII15a,
VviPrxIII21a, VviPrxIII23a); (ii) two of the six laccases described
above (VIT_218s0117g00590 and VIT_218s0001g02400), the
first associated with disease severity and the other with ε-
viniferin and therefore putatively involved in its oligomerization;
(iii) three stilbene synthases (VvSTS27-8-9, VvSTS41, and
VvSTS48) already associated with DM response (Vannozzi et al.,
2012; Höll et al., 2013) and here related to the regulation of
pterostilbene and cis-piceid content; (iv) one Histone deacetylase
HDA14 (VIT_204s0044g01510) found in correspondence
of the LOD peak offset of the QTL on LG 4 associated
with astringin.

The gene expression study revealed a significant correlation
between (i) the content of cis-piceid and pterostilbene and the
expression level both of VviPrxIII08a and VviPrxIII08b, (ii) the
content of ω-viniferin and the expression level of VviPrxIII23a,
and finally (iii) the content of cis-piceid and pterostilbene
and the expression level both of VvSTS41 and VvSTS48 at 6
dpi (Figure 5).

In order to gather additional information about the
peroxidases found in the QTL and correlated with stilbenoid
induction upon P. viticola infection we performed a phylogenetic
analysis of the whole grapevine peroxidase gene family,
which allowed us to attribute the 90 GPs to 45 different
classes. The six peroxidases herein associated to stilbenoid
metabolism are part of different classes: VviPrxIII08a and
VviPrxIII08b belong to class 08 and are the putative orthologs
of AtPrx66, VviPrxIII15a and VviPrxIII21a are the unique
members of class 15 and 23, respectively, VviPrxIII23a has
three different isoforms which belong to class 23 together
with another four members, and finally VviPrxIII34a
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belongs to class 34 and is the putative ortholog of AtPrx09
(Figure 6; Table S6).

DISCUSSION

Characterization of the Rpv3-3 haplotype
The M×T genetic map built in this study is an improved version
in terms of progeny individuals and LG number as well as
marker number/order compared to the one by Salmaso et al.
(2008). The high percentage of markers (68%) that was mapped
in both parents is close to the 62% of markers positioned
into the reference grapevine genetic map, while the 5% of
distorted markers is about half of the value previously observed
(Adam-Blondon et al., 2004). This upgrading should result in
visible improvement in the parental and consensus genetic maps
to be suitable for further applications as the association to
new phenotypes.

Herein, at the hypervariable microsatellite markers UDV305
and UDV737, we identified the haplotype null-271 as conferring
resistance against P. viticola; this genetic variant is located
on chromosome 18 and it derives on the “Merzling” side
from the grand-parent “Seyval.” This haplotype was named
Rpv3-3 according to the VIVC nomenclature, given its co-
localization with the Rpv3 locus, which was subjected to
selective sweep during grapevine breeding activities. In fact,
a seminal study identified seven conserved haplotypes, which
are overrepresented in grapevine breeding lines historically
selected for DM resistance compared to their wild relatives,
and are absent from the susceptible V. vinifera varieties (Di
Gaspero et al., 2012). These genetic variants may carry Rpv3
alleles or adjacent Rpv3 paralogs that constantly remained linked
with the diagnostic markers. Upon this reported association
analysis, nowadays only two wild relative Rpv3 haplotypes
have been characterized in segregating populations. The Rpv3-
1 haplotype—preserved in the “Seibel 4614” lineage—was firstly
identified in the German hybrid “Regent” (Welter et al.,
2007; van Heerden et al., 2014) and in the Hungarian hybrid
“Bianca” (Bellin et al., 2009) through QTL analyses. The
second of these resistance haplotypes—named Rpv3-2, conserved
in the “Munson” lineage—has recently been confirmed by
QTL mapping (Zyprian et al., 2016). In this work, we have
validated the Rpv3-3 haplotype—derived from the descent
group founder “Noah”—by means of a QTL analysis on the
M×T progeny.

Given this outcome, we attempted the characterization of
several genotypes related to Merzling (data not shown). Unlike
the comprehensive Rpv3 survey reported by Di Gaspero et al.
(2012), we detected the Rpv3-3 haplotype also in the “Merzling”
offspring “Solaris,” so far known to carry only the Rpv10 locus
derived from V. amurensis. This was due to the masking
effect of a different Rpv3 haplotype (Rpv3-1) derived from
the second resistance donor Gf.Ga-52-42 in the QTL study
(Schwander et al., 2012). Analogously, besides the Rpv 10 locus,
we found that “Bronner” and “Cabernet Cortis” unexpectedly
inherited the Rpv3-3 haplotype from their parent “Merzling”
and “Solaris,” respectively; all these genotypes used as parental
lines demonstrated to transmit this acquired haplotype to their

FIGURE 5 | Regression analysis which highlights the association between

metabolic induction and normalized relative expression of selected candidate

genes in Rpv3-3+ and Rpv3-3− selected genotypes. c-pice, cis-piceide;

ptero, pterostilbene; cto-vin, cis + trans-ω-viniferin.
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FIGURE 6 | Phylogenetic analysis of the grapevine peroxidase gene family.

respective progenies (Vezzulli S., personal communication).
Finally, herein this specific genetic variant was detected also in
the related Baron, Prior, and Cabernet Cantor (data not shown).
These findings confirmed that grapevine breeders traditionally
selected genotypes with a certain degree of pyramiding, namely
accumulation of more than one R-locus (Töpfer et al., 2011),
suggesting a reinforcement role of the Rpv3-3 haplotype on
other R-locus effects. For this reason our investigation can be
considered a “genetic” upgrade of the pioneer Rpv3 study by Di
Gaspero et al. (2012).

Genes belonging to the NBS-LRR superfamily were detected
in the regions underlying QTLs associated with all disease
resistance parameters, in agreement with the first studied
Rpv3 resistance haplotype encoding NB-LRR and LRR-kinase
receptors (Di Gaspero and Foria, 2015). According to the
Effector-Triggered Immunity model, R gene products sense the
pathogen effectors and activate signal transduction pathways
(Cui et al., 2015). In grapevine, Rpv3-dependent resistance
follows this model of gene-for-gene interaction (Casagrande
et al., 2011). In previous studies, the resistance haplotype was
revealed to be necessary and sufficient to trigger a hypersensitive
response (HR) leading to cell death in the proximity of sites
infected by P. viticola (Bellin et al., 2009; Zyprian et al.,
2016). In the current study, weakened or delayed HR was
observed on LD of Rpv3-3+ genotypes (data not shown)
with lower OIV452-1 values; this overall phenomenon can be
due to the combination of different factors—high inoculum
concentration and RH—leading to shorter incubation time,
more infection sites and faster hyphal growth under highly
conducive conditions (Gessler et al., 2011). In addition, it is
relevant to highlight that the phenotypic distribution (ranges:
OIV 452 from 1.6 to 9, Severity from 0 to 33.3%, Incidence
from 0 to 100%) on PP revealed an average mid-resistance
level of Rpv3-3+ genotypes, in agreement with the recent
study by Foria et al. (2018) which shed light on various
Rpv3 haplotypes responsible for different disease resistance
degrees. Finally, unlike the expectation in the case of an R-
locus, the non-binomial distribution of each DM resistance
parameter suggests that this trait is controlled by multiple
factors in this genetic background. The M×T QTL study
refers to the concept of Advanced Backcross-QTL (AB-QTL)—
recently recovered in grapevine—which combines QTL analysis
and variety development by designing a mapping/breeding
scheme for the simultaneous identification and introgression of
wild haplotypes. AB-QTL relies on segregating populations in
which most of the wild-parent genome that donates the trait
of interest has been purged in early segregating generations
by phenotypic selection (Tanksley and Nelson, 1996). This
is relevant to guarantee QTL stability once the associated
markers are screened in derived breeding materials. In fact,
favorable QTL alleles identified in early generations often
disappear in later back-cross generations, once the modifier
genes that have epistatic interactions with the beneficial
QTL alleles are removed from highly V. vinifera genetic
backgrounds (Di Gaspero and Foria, 2015). Herein, we did
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not actually face cases of susceptible individuals carrying
the Rpv3-3+ haplotype, whereas we found a few Rpv3-3−

individuals displaying DM resistance. Since unreliable minor
QTLs were identified in both the M×T consensus and the
maternal genetic map (data not shown), and no intra-locus
recombination was detected, this phenomenon has still to
be elucidated.

Survey of Stilbenoid-Associated Regions
Among the Discovered
Polyphenol-Related QTLs
In the present study 46 novel metabolic (m)QTLs associated
with 30 phenolics-related parameters were discovered. Among
the new mQTLs, more than half were associated with stilbenoid-
related parameters (monomers, dimers, and trimers), two
with hydroxycinnamic acids, two with benzoic acids, five
with flavanones, and eight with flavan-3-ol monomers and
dimers. Pleiotropic effects, i.e., single gene producing multiple
effects on various traits, were recorded. Except for few cases
encompassing different classes (e.g., ratio between dimeric
and monomeric stilbenoids and naringenin), pleiotropy was
detected along genomic intervals associated with parameters
falling into the same class, such as monomeric stilbenoids
and flavanones. Moreover, epistatic effects have recently been
considered in many studies as relevant for complex traits, such
as polyphenol biosynthesis. Epistasis, i.e., an additive-by-additive
interaction between QTLs, assayed in populations segregating
for an entire genome, has been found at a frequency close to
that expected by chance alone (Bocianowski, 2013). Therefore,
we cannot exclude epistatic effects in the case of characters
controlled by more than one region, such as cis-piceid, astringin,
and naringenin.

Although few research studies on proanthocyanidin and
flavonol berry composition have recently been attempted
in grapevine (Huang et al., 2012; Malacarne et al., 2015),
most polyphenols do not have a known QTL associated. The
mQTLs here identified fill this gap and reveal polyphenols
with central role in P. viticola-grapevine interaction.
In particular, this analysis allowed the identification of
mQTLs associated with 17 different stilbenoid-related
parameters, therefore representing a thorough characterization
of stilbenoid regulation upon P. viticola infection
on leaves.

A cluster of stilbene synthase genes, mostly not specifically
related to DM response previously, was identified in the QTL
intervals associated with cis-piceid and pterostilbene. Previous
works revealed different patterns of transcript accumulation
between the different VvSTS family members (Dai et al., 2012;
Vannozzi et al., 2012; Höll et al., 2013; Shi et al., 2014)
depending on the high variability in their regulatory regions
(Chialva et al., 2018). Moreover, six interesting peroxidase
and two laccase genes were identified as associated with
stilbenoids therefore representing good candidates for ROS-
mediated stilbene oligomerization (Calderón et al., 1994; Barceló
et al., 2003; Pezet et al., 2004b). Indeed, there is some evidence
supporting the enzymatic biotransformation of stilbenes by plant

peroxidases (Takaya et al., 2005; Wan et al., 2011) and/or
fungal laccases (e.g., Pezet et al., 1991; Breuil et al., 1998,
1999). It is still a debate if the oligomerization is driven by
plant or fungal laccases, which catalyze the degradation of
stilbene monomers allowing the fungus to escape from the
action of grapevine phytoalexins. By phylogenetic reconstruction
of the entire grapevine peroxidase gene family, we determined
that VviPrxIII08a and VviPrxIII08b are the putative orthologs
of AtPrx66 involved in lignification (Tokunaga et al., 2009),
VviPrxIII34a is the putative ortholog of AtPrx09 which is
closed to Arabidopsis members involved in lignin biosynthesis
(Tognolli et al., 2002; Herrero et al., 2013), while VviPrxIII15a,
VviPrxIII21a, andVviPrxIII23a have no orthologs in Arabidopsis.
A validation of the results obtained at the metabolic level came
from a transcriptional investigation in a set of 12 F1 individuals of
the progeny, which highlighted a significant association between
some monomeric and dimeric stilbenoids and the transcript
level of three newly identified peroxidases besides known
stilbene synthases.

The time dependent regulation of different inducible stilbenes
upon abiotic and biotic stresses was reported to be at least
transcriptional (e.g., Vannozzi et al., 2012; Höll et al., 2013;Wong
et al., 2016) and coordinated by the action of both MYB and
WRKY transcription factors (Malacarne et al., 2018; Vannozzi
et al., 2018; Jeandet et al., 2019; Jiang et al., 2019). In the present
work additional MYB genes were associated with stilbenoid
formation; in particular, the known R2R3-MYB C2 repressors of
phenylpropanoid levels (Cavallini et al., 2015) were located along
the regions on LG4 and LG17 controlling some monomeric and
dimeric stilbenoids, respectively. In addition, it is worth noting
that the WRKY factor VvWRKY28 already found co-expressed
with VvSTS transcripts in root and leaves (Corso et al., 2015)
was here associated with cis-resveratrol content extending the
list of WRKY factors identified as involved in the regulation
of stilbenoid metabolism. It has recently been shown that the
expression level of several members of the stilbene synthase gene
family and genes responsible of the oxidative polymerization of
phenolic compounds in the phenylpropanoid pathway is highly
influenced by the “location” variable in a G×E interaction study
(Dal Santo et al., 2018).

Our results showed that ABA and SA/JA signaling play an
important role in the regulation of 2,6-DHBA, reported to be
the de-activated form of SA (Bellés et al., 2006; Campos et al.,
2014; Nawrocka et al., 2018), and of stilbenoid synthesis. A
cluster of five genes encoding HVA22-like abscisic acid-induced
proteins, belonging to a class of ABA- and stress-inducible
proteins (Chen et al., 2002), was identified on LG3 associated
with cis-resveratrol. Moreover, the transcriptional regulator
VvbZIP045, recently characterized by Nicolas et al. (2014)
as a key factor activating down-stream genes of the ABA
signaling cascade during the grape berry ripening process, was
here associated with the regulation of isorhapontin content.
It should be noted that (Wang et al., 2018) have recently
showed that Muscadinia rotundifolia “Noble” defense response
to P. viticola infection is mediated by stilbene accumulation
induced by ABA and SA phytohormones. Moreover, two genes
(VIT_216s0013g00900 and VIT_216s0013g01070) encoding
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Ethylene-responsive transcription factor ERF105, known to
regulate the plant response to abiotic and biotic stress (Mizoi
et al., 2012; Mishra et al., 2015), were selected within the
2,6 DHBA, cis-piceid, and pterostilbene associated regions.
Remarkable was also the significant enrichment of protein
kinases in the region on LG16 associated both with 2,6 DHBA
and pterostilbene: two genes encoding respectively for CLV1
and LRK10, which are receptor-like kinases (RLK) previously
related to plant-microbe interaction and stress responses (Shiu
and Bleecker, 2001), and four calcium-dependent protein kinases
involved in the translation of pathogen signal-induced changes
in the Ca2+ concentration during plant defense reactions
(Schulz et al., 2013).

Combination of Rpv3-3 Haplotype,
Stilbenoid Induction, and DM Resistance
In our previous study we found evidence of a putative
involvement of stilbenoids in conferring DM resistance in the
M×T segregating population (Malacarne et al., 2011), without
taking into account the genetic background. To shed light into
the found Rpv3-mediated DM resistance mechanism we have
investigated the genetic bases of this mechanism. Although
no overalapping QTLs controlling both DM resistance and
stilbenoid-related traits were detected, we could highlight a
significant induction of most stilbenoids, especially the polymeric
ones, in a high fraction of the individuals. To date several
studies have reported on (i) stilbenoid induction upon P. viticola
infection (e.g., Langcake and Pryce, 1976; Alonso-Villaverde
et al., 2011), (ii) a more rapid and extensive accumulation of
stilbenoids in DM-resistant vs. DM-susceptible genotypes (V.
vinifera cultivars) (Chitarrini et al., 2017), (iii) an antifungal
activity carried out by stilbenoids on P. viticola and other fungi
(e.g., Pezet et al., 2004a; Adrian and Jeandet, 2012; Gabaston
et al., 2017). What still remains to be elucidated is the defense
mechanism underlying DM resistance conferred by different
Rpv loci. This is crucial for pyramiding various DM resistance
mechanisms, derived from different sources, in the process of
genetic improvement.

A deeper look into the Rpv3-3 haplotype within the
M×T population highlighted a clear link among genetic
background, DM resistance, and stilbenoid induction upon
P. viticola infection. Unlike the Rpv3-3− genotypes, the
Rpv3-3+ showed on average a significant induction of two

dimeric and one trimeric stilbenoids and a positive correlation
between the extent of induction and DM resistance. A clear
explanation of the resistance in the Rpv3-3− individuals
should be further elucidated, since in the present work we
could not find any minor reliable DM resistance QTLs, as
well as any metabolite exclusively induced in this group
of genotypes.
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