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Progression of mitosis and cytokinesis depends on the reorganization of cytoskeleton, 
with microtubules driving the segregation of chromosomes and their partitioning to two 
daughter cells. In dividing plant cells, microtubules undergo global reorganization 
throughout mitosis and cytokinesis, and with the aid of various microtubule-associated 
proteins (MAPs), they form unique systems such as the preprophase band (PPB), the 
acentrosomal mitotic spindle, and the phragmoplast. Such proteins include nucleators 
of de novo microtubule formation, plus end binding proteins involved in the regulation of 
microtubule dynamics, crosslinking proteins underlying microtubule bundle formation and 
members of the kinesin superfamily with microtubule-dependent motor activities. The 
coordinated function of such proteins not only drives the continuous remodeling of 
microtubules during mitosis and cytokinesis but also assists the positioning of the PPB, 
the mitotic spindle, and the phragmoplast, affecting tissue patterning by controlling cell 
division plane (CDP) orientation. The affinity and the function of such proteins is variably 
regulated by reversible phosphorylation of serine and threonine residues within the 
microtubule binding domain through a number of protein kinases and phosphatases 
which are differentially involved throughout cell division. The purpose of the present review 
is to provide an overview of the function of protein kinases and protein phosphatases 
involved in cell division regulation and to identify cytoskeletal substrates relevant to the 
progression of mitosis and cytokinesis and the regulation of CDP orientation.

Keywords: microtubules, microtubule-associated proteins, mitotic spindle, phragmoplast, protein kinase,  
protein phosphatase

INTRODUCTION

Owing to their sedentary life style and their encasement within the barriers of rigid cell walls, 
plant cells adopted unique mechanisms for regulating fundamental eukaryotic processes such 
as cell division and cell division plane (CDP) orientation establishment (reviewed in Buschmann 
and Zachgo, 2016). In this respect, plant cells developed unique microtubule-based cytoskeletal 
structures which underlie the above processes. CDP orientation is marked by a plant-specific 
cortical microtubule ring, the preprophase band (PPB; Pickett-Heaps and Northcote, 1966) 
which determines spindle positioning (Schaefer et  al., 2017) and coincides with the plane 
of  cell  plate  deposition during cytokinesis (cell plate fusion site; CPFS; Marcus et  al., 2005). 
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The PPB exhibits a progressive narrowing and finally it disassembles 
shortly after the mitotic spindle is formed; however, the cortical 
site which was occupied by the PPB is marked by specific 
proteins throughout mitosis in a continuous or intermittent 
manner (e.g., Buschmann et  al., 2006; Walker et  al., 2007).

The plant mitotic spindle starts to assemble before nuclear 
envelope breakdown and in contrast to the mammalian or 
yeast spindle, and it forms in the absence of microtubule 
organizing center (reviewed in Buschmann and Zachgo, 2016).

Cytokinesis is hallmarked by the formation of another plant 
specific microtubule machinery, the phragmoplast. It is formed 
at the end of telophase between the reconstituting daughter 
nuclei. It comprises two sets of antiparallel microtubules, and 
it expands centrifugally toward the cell periphery. During its 
expansion, it guides the deposition of the cell plate until the 

latter merges with the parent cell wall, after which the 
phragmoplast disintegrates (Chen et  al., 2018).

Throughout the cell cycle, precise temporal and spatial 
regulation of microtubule organization and dynamics is required 
for the formation, proper function, and structural transitions 
of these cytoskeletal structures (Dhonukshe and Gadella, 2003). 
Such regulation is achieved via microtubule-associated proteins 
(MAPs) involved in microtubule organization and dynamics. 
Among these proteins belong motor proteins from the kinesin 
(Müller et  al., 2006; Lipka et  al., 2014; Buschmann et  al., 
2015; de Keijzer et  al., 2017) and the myosin superfamilies 
(Wu and Bezanilla, 2014), plus end-binding proteins and 
microtubule crosslinkers (Mao et  al., 2005; Beck et  al., 2010; 
Kohoutová et al., 2015; Lin et al., 2019). Many of such proteins 
exhibit a cell cycle dependent localization to mitotic and 

FIGURE 1 | MAPs, kinases, and phosphatases regulating mitotic MT structures. Mitosis begins with preprophase, in which cortical MTs reorganize in preprophase 
band (PPB). PPB disassembles at the onset of metaphase, during which spindle forms. At this time, the former site of PPB remains marked as a future cell plate 
fusion site (CPFS) by various MAPs. After segregation of chromatids, at the late anaphase, phragmoplast begins to form at the center of cell. Phragmoplast serves 
as a scaffold for building cell plate and as the construction continues, phragmoplast expands until it reaches CPFS. At the end, in two daughter cells, MTs rearrange 
into cortical microarrays. Abbreviations: AIR9, auxin-induced root cultures; AUR, aurora kinase; CDKA, cell division kinase A; CLASP, cytoplasmic linker associated 
protein; CPFS, cell plate fusion site; KAT, katanin; MAP65, microtubule-associated protein 65; MOR1, microtubule organization 1; MPK, mitogen-activated protein 
kinase; MT, microtubule; NEK, never in a mitosis A-related kinase; PP2A, protein phosphatase type 2A; POK, phragmoplast orienting kinesin; PPB, preprophase 
band; RanGAP1, Ran GTPase activating protein; TAN, tangled.
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cytokinetic microtubule systems (Figure 1), and at large this 
is differentially regulated by protein kinases and phosphatases 
which become activated/deactivated in a similar cell cycle 
dependent manner.

Many kinases were directly shown to associate with cytoskeletal 
systems (Weingartner et  al., 2001; Samaj et  al., 2002, 2004; 
Lee et  al., 2003; Oh et  al., 2005, 2012) and indirect 
pharmacological (e.g., Binarova et  al., 1996; Ayaydin et  al., 
2000) and subsequently more targeted studies (e.g., Mao et  al., 
2005; Brumbarova and Ivanov, 2016), establishing the functional 
reciprocity between protein kinases and cytoskeletal components. 
Plant microtubule systems can be targeted for phosphorylation-
pendant regulation of their components after environmental 
stimulation (e.g., Ban et  al., 2013; Bhaskara et  al., 2017), or 
in a developmental context, which is the aim of this review.

INVOLVEMENT OF MAPS IN THE 
ORGANIZATION OF MITOTIC 
STRUCTURES

From numerous plant proteins related to the regulation of 
microtubule organization and dynamics, some have been 
inadvertently associated with the progress of mitotic and 
cytokinetic microtubule arrays and were shown to be regulated 
by reversible phosphorylation. These proteins are involved in 
all aspects of microtubule organization and dynamics.

Microtubule nucleation factors such as γ-tubulin and TPX2 
(targeting protein for Xklp2) are essential for spindle formation 
and the establishment of spindle bipolarity (Petrovská et  al., 
2013), and it was suggested that they are regulated by mitogen-
activated protein kinase (MAPK, MPK) and/or Aurora kinase 
(AUR) phosphorylation (Petrovská et al., 2012; https://string-db.
org/cgi/network.pl?taskId=f13kHLYXYV1W). It is likely that 
γ-tubulin interacts with the FASS B″ subunit of protein 
phosphatase 2A (https://string-db.org/network/3702.AT5G18580.1; 
Figure 2). Notably, fass mutants exhibit altered geometry of 
microtubule nucleation at least in interphase microtubule arrays 
(Kirik et  al., 2012).

Microtubule dynamics are largely controlled by plus end 
binding proteins, including end-binding protein 1 isoforms 
(EB1a, b, and c; Komaki et  al., 2010), SPIRAL1 (Sedbrook 
et  al., 2004), CLASP (Ambrose et  al., 2007), and GPT1 and 
2 (growing plus-end tracking 1 and 2; Wong and Hashimoto, 
2017). The plant-specific isoform EB1c was shown to 
be phosphorylated by MPK6 (Figure 2; Kohoutová et al., 2015), 
however, without apparent functional implications. Similarly, 
phosphorylation of CLASP was demonstrated only in the context 
of conditional signaling (Brumbarova and Ivanov, 2016).

Microtubule bundling via the MAP65 proteins is essential 
for the formation of the central spindle, its subsequent 
reorganization into phragmoplast and for support of its centrifugal 
expansion (Chang et  al., 2005; Smertenko et  al., 2008, 2018; 
Herrmann et al., 2018). From the nine members of the Arabidopsis 
MAP65 family, only MAP65-1, -2, -3, and -4 have been associated 
with the progression of mitosis and cytokinesis (Chang-Jie and 
Sonobe, 1993; Chan et al., 1999; Caillaud et al., 2008). MAP65-1 

and MAP65-2 are nonessential as proven by the absence of 
cytokinetic phenotypes of single or double mutants (Lucas and 
Shaw, 2012). On the other hand, MAP65-3 and MAP65-4 
appear to be  essential for cytokinesis, in an additive manner 
(Müller et  al., 2004; Li et  al., 2017). MAP65-1 and MAP65-2 
proteins differentially colocalize with microtubules and mediate 
their bundling during interphase and preprophase (Murata 
et  al., 2013; Zhou et  al., 2017). However, they are excluded 
from the mitotic spindle until telophase. This suggests that 
their colocalization with microtubule structures is subjected 
to temporal control during cell division (Gaillard et  al., 2008). 
One possible mechanism controlling the differential localization 
of MAP65 proteins with mitotic microtubule systems is proteolytic 
degradation, since several map65 genes harbor a “destruction 
box” motif, which is a target for the ubiquitin degradation 
pathway. More importantly, at least MAP65-1, -2, and -3 are 
targeted for phosphorylation in their C-terminal microtubule 
binding domains by several kinases with cell cycle functions, 
such as cyclin-dependent kinases [CDKs (Smertenko et  al., 
2006), MAPKs (Kosetsu et  al., 2010; Smékalová et  al., 2014), 
and AURs (Boruc et  al., 2017)]. Generally, phosphorylation 
downregulates microtubule binding of MAP65s; therefore, it 
may represent the means to abolish their localization from 
the mitotic spindle. This is supported by mutagenesis studies, 
showing that change of the consensus CDK-targeted site of 
MAP65-1 causes its localization at the mitotic spindle (Mao 
et  al., 2005). As mentioned earlier, MAP65-1 and presumably 
MAP65-2 are nonessential for the mitotic and cytokinetic 
progress (Lucas and Shaw, 2012), and they may affect spindle 
and phragmoplast formation only when artificially overexpressed 
(Mao et  al., 2005). MAP65-3, on the other hand, is essential 
for cell plate formation, since its genetic depletion results in 
the formation of giant, multinucleated cells with incomplete 
cell walls. Similar cytokinetic phenotypes have been observed 
in anp2anp3 and mpk4 mutants, which are related to MAPK 
signaling. The above mutants show reduced but not abolished 
MAP65-3 expression (Beck et  al., 2010). In this case, it is 
speculated that the cytokinetic phenotype of anp2anp3 and 
mpk4 mutants maybe partially attributed to reduced 
phosphorylation of MAP65-3 (Beck et  al., 2010). MAP65-4 
alone has negligible cytokinetic phenotypes when depleted but 
contributes to the map65-3/pleiade phenotype in double mutants 
(Li et  al., 2017). Its spatial localization coincides with that of 
MAP65-3 at the PPB and the phragmoplast midzone. However, 
MAP65-4 exhibits persistent localization at the cortical division 
zone throughout mitosis, unlike MAP65-3 (Li et  al., 2017). 
Although the cytokinetic role of MAP65-4 was just recently 
described, it is also likely to be  regulated by phosphorylation. 
Its carboxyl-terminal region harbors proline-directed serine or 
threonine residues, which are predicted targets of CDKs and 
MAPKs (based on prediction using GPS2.1.2; Xue et al., 2008). 
It is also predicted to interact with AUR (https://string-db.org/
cgi/network.pl?taskId=qRfSrQ0dHJdK; Figure 2).

Several Arabidopsis microtubule motors of the kinesin 
superfamily, namely those related to the progress of mitosis and 
cytokinesis were shown to be regulated by phosphorylation. One 
example is the kinesin-like calmodulin-binding protein  (KCBP), 
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which is involved in the tethering of phragmoplast margins 
to the CPFS (Buschmann et al., 2015; Buschmann and Zachgo, 
2016). KCBP was shown to be  regulated by phosphorylation 
(Day et al., 2000; Humphrey et al., 2015). The mitotic kinesin 
NACK1 (NPK1-activating kinesin-like protein 1) is an activator 
of the NPK1-NQK1-NRK1 MAPK pathway in tobacco 
(similarly, its Arabidopsis homologue HINKEL also activates 
the ANP-MKK6-MPK4 MAPK pathway; Nishihama et  al., 
2002), which is involved in the regulation of cytokinesis. 
The interaction between NACK1 and NPK1 is negatively 
regulated by CDK phosphorylation in residues of both the 
motor domain and the stalk region of NACK1. CDKs also 
target the carboxyl-terminal regulatory domain of NPK1, 
which is engaged in NACK1-NPK1 interactions (Sasabe et al., 
2011a). Interruption of NACK1-NPK1 interaction by 
CDK-mediated phosphorylation abolishes the recruitment of 
the NPK1-NQK1-NRK1 module to the mitotic spindle. When 

CDK activity declines during late anaphase, then the NPK1-
NQK1-NRK1 module becomes localized to the phragmoplast 
(Sasabe et  al., 2011a).

Interactions of kinesin motors with protein kinases may 
be  reciprocal and may convey targeted transport or activity 
regulation to the kinase counterpart. For example, never in a 
mitosis (NIMA)-related kinase 6 (NEK6) is negatively regulated 
by the armadillo-repeat kinesin 1 (Eng et  al., 2017). Also, 
NACK1 (and its Arabidopsis homologue HINKEL) directly 
activates the NPK1 MAPKKK (and its Arabidopsis homologues 
ANP1, 2, and 3; Nishihama et al., 2002; Takahashi et al., 2010).

Microtubule severing by the Arabidopsis KATANIN1 (Komis 
et al., 2017; Panteris et al., 2018) has not been shown to be regulated 
by phosphorylation yet. Moreover, the p60 catalytic subunit of 
the katanin holoenzyme is suspected to interact with FASS (https://
string-db.org/cgi/network.pl?taskId=jBYrCeTF9nPv; Figure 2). In 
animals, phosphorylation is a major mechanism for the exclusion 

FIGURE 2 | A speculative network of protein kinases (green), phosphatases (red), and targeted cytoskeletal proteins (blue) based on either published interaction 
studies (full arrows) or in silico predictions (dashed arrows; see text for more details). Lower panel shows mitotic stages which are regulated by the above network of 
interactions.
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of katanin activity from the mitotic spindle and connected to 
spindle sizing (Loughlin et  al., 2011; Whitehead et  al., 2013).

Apart from several MAPs that have been proven or predicted 
to be  regulated by phosphorylation, tubulin has also been 
identified as a target of the atypical kinase domain of the 
protein phosphatase PROPYZAMIDE HYPERSENSITIVE 1 
(PHS1; Fujita et  al., 2013). So far, tubulin phosphorylation is 
related to conditional microtubule depolymerization (Ban et al., 
2013), but it will be of interest to identify tubulin phosphorylation 
as a regulator of mitotic microtubule transitions.

KINASES REGULATING MAP ACTIVITY

Since MAPs play a role in microtubule dynamics while being 
regulated by reversible phosphorylation, kinases and phosphatases 
are master regulators of microtubule reorganization throughout 
cell cycle. Several kinases were implicated in phosphorylating 
MAPs, namely CDKs, AURs, MAPKs, and NEKs.

Since CDKs are master regulators of cell cycle progression, 
they are also implicated cell cycle-dependent cytoskeletal 
reorganizations (Costa, 2017). The mode of action on CDKs 
on the microtubule cytoskeleton of dividing cells is not well 
understood, since the only known cytoskeletal CDK substrate 
is NACK1 kinesin (Sasabe et  al., 2011a), while MAP65-1 was 
only shown in vitro to be phosphorylated by CDK (Smertenko 
et  al., 2006). Localization observations and pharmacological 
and genetic evidence favor the implication of CDK in regulating 
microtubules. For example, Arabidopsis CDK was shown to 
colocalize with PPB, spindle, and phragmoplast (Stals et  al., 
1997). Second, plant CDKs were found to participate in 
regulating mitotic microtubule structures (Weingartner et  al., 
2001). Third, CDKs are known to regulate microtubule dynamics 
by phosphorylating animal homologues of plant MAPs (Ookata 
et  al., 1997; Vasquez et  al., 1999). Last, several plant MAPs 
contain a CDK phosphorylation site (Hussey et  al., 2002; 
Smertenko et  al., 2006). CDKs may be  also involved in 
CDP  orientation through the phosphorylation of cytoskeletal 
markers of the cell division zone such as the microtubule 
binding protein TANGLED1 (https://string-db.org/cgi/network.
pl?taskId=4lbkQFdWZfbv; Figure 2).

Apart from CDKs, Aurora kinases are another component 
of cell cycle progression machinery. These Ser/Thr kinases are 
on lower hierarchical position than CDKs (Schecher et  al., 
2017). They themselves are regulated by phosphorylation and 
ubiquitin-dependent proteolysis (Castro et  al., 2002a,b). 
Therefore, they are known to play a more direct role in 
cytoskeleton rearrangements than CDKs (Ritchey and 
Chakrabarti, 2014). In plants, not only do they associate with 
mitotic structures (Demidov et al., 2005) but also they interact 
with MAPs (Boruc et  al., 2017). Since AUR does not possess 
microtubule-binding domains, its colocalization with mitotic 
structures is most likely related to its functional interactions 
with MAPs (Petrovská et  al., 2012; Tomaštíková et  al., 2015). 
Out of three members of Aurora kinase family in Arabidopsis 
(Kawabe et  al., 2005), two of them, AUR1 and AUR2, are 
essential for regulating the orientation of formative cell divisions 

throughout plant ontogenesis (Van Damme et  al., 2011). AUR 
phosphorylates MAP65-1 during metaphase (Boruc et al., 2017); 
however, the strength of AUR control over MAP65-1 is 
significantly weaker compared with the effect of another kinase, 
MAPK. Therefore, a hypothesis was presented, according to 
which the direct control of AUR over MAP65-1 is mild, yet 
the phosphorylation of MAP65-1 by AUR promotes 
phosphorylation by other kinases. This is in line with the 
observation that regulation of many eukaryotic proteins depends 
on multisite phosphorylation (Cohen, 2000; Repetto et  al., 
2018). Prediction studies show that other cytoskeletal regulators 
of mitosis and especially of CDP orientation like POK2 may 
interact and become regulated by Aurora kinases (https://
string-db.org/cgi/network.pl?taskId=f13kHLYXYV1W; Figure 2).

MAPKs are well known to phosphorylate MAPs (Hoshi 
et  al., 1992; Shiina et  al., 1992). In Arabidopsis, MPK4 and 
MPK6 phosphorylate proteins from MAP65 family (Smertenko 
et  al., 2006; Sasabe et  al., 2011b; Smékalová et  al., 2014; 
Zhou et  al., 2017), and MPK6 also phosphorylates EB1c 
(Kohoutová et  al., 2015). MAPKs are governed by MAPK 
kinases (MAPKKs), which, in turn, are regulated by MAPKK 
kinases (MAPKKKs). In plants, two MAPK signaling cascades 
were implicated in regulating microtubule dynamics during 
cell division and described in detail as follows. A third 
pathway which involves the MAPK MPK18 and the MAPK 
phosphatase PROPYZAMIDE HYPERSENSITIVE 1 (PHS1) 
is somehow elusive without knowledge on microtubule-
associated substrates which may justify their role in microtubule 
regulation (Naoi and Hashimoto, 2004; Walia et  al., 2009; 
Fujita et al., 2013). However, the role of PHS1 may be broader 
since it is presumably interacting and deactivating other 
MAPKs as well, including MPK3 and MPK6 (https://string-db.
org/cgi/network.pl?taskId=j8pmY8S1UlbB; Figure 2).

The first MAPK cascade described to play a role in 
microtubule reorganization was the NACK-PQR pathway 
(Calderini et  al., 1998, 2001; Bögre et  al., 1999; Nishihama, 
2001). In Arabidopsis, this pathway consists of ANP2/ANP3 
(Arabidopsis nucleus and phragmoplast-localized kinase, 
MAP3K), MKK6, and MPK4/MPK6 (Krysan et  al., 2002; 
Strompen et  al., 2002), and it plays a crucial role during 
phragmoplast and cell plate formation (Takahashi et al., 2010). 
It affects the organization of mitotic structures via reversible 
phosphorylation of MAP65 proteins (Beck et  al., 2010). 
Interestingly, activation of this MAP3K is negatively regulated 
by CDKs (Sasabe et al., 2011a). Moreover, CDKs also interfere 
with MAPK phosphorylating MAP65-1, since the single MAPK 
targeting motif in MAP65-1 overlaps with a CDK targeting 
site (Smertenko et al., 2006). In conclusion, this MAPK cascade 
controls microtubule organization and dynamics during 
phragmoplast and cell plate formation, and the temporal 
regulation of this module is facilitated by CDKs.

The other plant MAPK pathway, which is integral to cell 
division directionality, consists of YODA (YDA, MAP3K), 
MKK4/MKK5, and MPK3/MPK6. YODA is implicated in 
several types of asymmetrical divisions, e.g., first division of 
zygote and stomatal development (Lukowitz et  al., 2004; 
Bergmann et al., 2004). However, the characterization of YODA 
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mutants revealed its function in CDP orientation of regular 
cell divisions underlying tissue patterning of vegetative organs 
such as the root (Müller et al., 2010; López-Bucio et al., 2014). 
These observations are further supported by microscopic studies, 
which proved MPK6 colocalization with mitotic microtubule 
structures (Müller et  al., 2010; Smékalová et  al., 2014; Komis 
et  al., 2018). Interaction studies showed that MAP65-1 is 
interacting with MPK6 and possibly phosphorylated by it 
(Smékalová et  al., 2014). Interestingly, knockout mutants of 
YDA have deregulated transcript levels of CPFS markers 
(specifically TAN and phragmoplast orienting kinesin 1). 
Therefore, YODA may be  involved at multiple levels of CPFS 
orientation (Smékalová et  al., 2014).

The last family of kinases involved in regulation of mitotic 
microtubule structures is NEKs. This family of Ser/Thr protein 
kinases is highly conserved in eukaryotes, where it supervises 
crucial points in mitosis and cell division (O’Connell et  al., 
2003; Brieño-Enríquez et  al., 2017). In plants, NEKs were 
shown to regulate cortical microtubules and, in turn, to affect 
cell expansion, organ growth, and stress responses (Vigneault 
et  al., 2007; Agueci et  al., 2012; Takatani et  al., 2017). As 
for their role in rearrangement of microtubules during mitosis, 
NEK6 is known to associate with spindle and phragmoplast 
(Motose et  al., 2011), but its function remains obscure.

PROTEIN PHOSPHATASES REGULATING 
MAP ACTIVITY

The reversibility of phosphorylation is ensured by cooperation 
between kinases and phosphatases. Numerous protein 
phosphatases were found in plants, with Ser/Thr specific 
phosphoprotein phosphatases (PPPs) being a prominent group 
among them. PPPs encompass large number of proteins, which 
can be  grouped in several protein families. Three of these 
families were implicated to regulate microtubule dynamics 
during cytokinesis (Samofalova et  al., 2017).

Type one protein phosphatases (TOPPs, also called PP1s) 
were predicted to be part of cell cycle regulation (Farkas et  al., 
2007; Boyer and Simon, 2015), which is supported by finding 
putative CDK recognition sites (Kwon et  al., 1997) as well as 
noting crucial role of animal PP1s in cell cycle progression 
(Rodrigues et al., 2015). However, the functions of these proteins 
were not comprehensively studied to this date.

More progress was achieved in solving the function of protein 
phosphatase type 2A (PP2A). These PPs consist of three subunits—
scaffolding (A), regulatory (B), and catalytic (C). They were 
characterized in both monocots (Wright et  al., 2009) and dicots 
(Camilleri et  al., 2002). Moreover, their animal homologs were 
found to be  essential for regulating microtubule structures in both 
meiosis and mitosis (Tang et  al., 2016; Enos et  al., 2017; Varadkar 
et  al., 2017). In plants, PP2A controls organization and dynamics 
of both cortical and mitotic microtubules (Figure 1; Camilleri et al., 
2002; Yoon et  al., 2018). This view is supported by observing 
knockout mutants displaying abnormal arrangement of cortical 
microtubules and severe problems with PPB formation and cell 
division plane orientation (Torres-Ruiz and Jurgens, 1994; Traas 

et  al., 1995; McClinton and Sung, 1997). During mitosis, PP2A 
forms a complex with tonneau 1 (TON1) and TON1 recruiting 
motif proteins (TRMs) (Spinner et  al., 2013). TON1 and TRMs 
recruit this complex to site where PPB forms (Drevensek et  al., 
2012), and there the complex governs PPB development. As it 
remains at this site even after PPB disassembly, it is possibly involved 
in CPFS maintenance (Wright et al., 2009). Targets of PP2A-driven 
dephosphorylation could be  MAPs marking cytokinetic structures 
(specifically MOR1, TON1, and CLASP; Twell et al., 2002; Kawamura, 
2005; Xu et al., 2008; Ambrose et al., 2011). PP2A could temporally 
and spatially restrict common MAP activities and this would allow 
microtubule stabilization and formation of PPB (Walker et al., 2007; 
Wright and Smith, 2007; Lipka et  al., 2015).

Metallo-dependent protein phosphatases (PP2C) might be part 
of cell division machinery as well, since knockout mutants 
display improper cell division orientation (Song et  al., 2006). 
These phosphatases are also implicated in regulating MAPKs 
and CDK (Meskiene et  al., 1998; Umbrasaite et  al., 2010). 
Currently, their role in cortical microtubule rearrangement in 
response to environmental stimuli has been explored (Bhaskara 
et  al., 2017; Qu et  al., 2018). However, details on how PP2C 
is integrated into the regulatory network of cytokinesis 
remain undisclosed.

Although plenty of research has been done in elucidating 
the role of kinases in microtubule reorganization during cell 
cycle, phosphatases involved in these events remain largely 
understudied. The cause of this lies mainly in the fact that 
these phosphatases form multiprotein complexes, which is a 
serious challenge for both analysis and evaluation. Nevertheless, 
the current advances in understanding the role of PP2A in 
regulating microtubule dynamics shows it is not an 
impossible task.

CONCLUSIONS/FUTURE DIRECTIONS

In summary, reversible phosphorylation of several different 
MAPs is essential for regulating microtubule dynamics and 
organization during the plant cell division. The affinity of MAPs 
for microtubules can be  downregulated or restored pending 
on their phosphorylation status. To this extend, several protein 
kinases and phosphatases have been shown to target cytoskeletal 
proteins with various roles in the regulation of mitotic spindle 
and phragmoplast assembly and progression. However, many 
questions remain unanswered and are expected to be addressed 
in the near future:

 1. How phosphorylation may affect microtubule nucleation 
during acentrosomal mitotic spindle formation?

 2. Is phosphorylation related to the transition from PPB to 
mitotic spindle?

 3. How phosphorylation really controls microtubule bundling 
during phragmoplast expansion?

 4. Which phosphatases are reinstating microtubule binding of 
MAP65 proteins?

 5. Which mechanisms allow the regulation of the same 
cytoskeletal proteins (e.g., MAP65-1, -2, and -3) by different 
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protein kinases (e.g., MPK4 and MPK6 or auroras) with a 
different biological outcome (i.e., progression of cytokinesis 
and CDP orientation, respectively)?

 6. How global phosphoproteomics analyses will help to decipher 
reversibly phosphorylatable cytoskeletal substrates in model 
cell suspension systems that can be  synchronized?

 7. How differential (phospho)proteomics comparing wild types 
with protein kinase/phosphatase mutants will advance our 
knowledge in the identification of cytoskeletal substrates?
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