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Zea mays Brittle1-1 (ZmBT1-1) is an essential component of the starch biosynthetic

machinery in maize endosperms, enabling ADPglucose transport from cytosol to

amyloplast in exchange for AMP or ADP. Although ZmBT1-1 has been long considered

to be an amyloplast-specific marker, evidence has been provided that ZmBT1-1 is

dually localized to plastids and mitochondria (Bahaji et al., 2011b). The mitochondrial

localization of ZmBT1-1 suggested that this protein may have as-yet unidentified

function(s). To understand the mitochondrial ZmBT1-1 function(s), we produced and

characterized transgenic Zmbt1-1 plants expressing ZmBT1-1 delivered specifically to

mitochondria. Metabolic and differential proteomic analyses showed down-regulation

of sucrose synthase (SuSy)-mediated channeling of sucrose into starch metabolism,

and up-regulation of the conversion of sucrose breakdown products generated by cell

wall invertase (CWI) into ethanol and alanine, in Zmbt1-1 endosperms compared to

wild-type. Electron microscopic analyses of Zmbt1-1 endosperm cells showed gross

alterations in the mitochondrial ultrastructure. Notably, the protein expression pattern,

metabolic profile, and aberrant mitochondrial ultrastructure of Zmbt1-1 endosperms

were rescued by delivering ZmBT1-1 specifically to mitochondria. Results presented

here provide evidence that the reduced starch content in Zmbt1-1 endosperms is at

least partly due to (i) mitochondrial dysfunction, (ii) enhanced CWI-mediated channeling of

sucrose into ethanol and alaninemetabolism, and (iii) reduced SuSy-mediated channeling

of sucrose into starch metabolism due to the lack of mitochondrial ZmBT1-1. Our results

also strongly indicate that (a) mitochondrial ZmBT1-1 is an important determinant of
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the metabolic fate of sucrose entering the endosperm cells, and (b) plastidic ZmBT1-1

is not the sole ADPglucose transporter in maize endosperm amyloplasts. The

possible involvement of mitochondrial ZmBT1-1 in exchange between intramitochondrial

AMP and cytosolic ADP is discussed.

Keywords: ADPglucose, dual targeting, mitochondrial carrier family, mitochondrial retrograde signaling, starch,

sucrose synthase, Zea mays

INTRODUCTION

Mitochondria are the main sites of cellular respiration and ATP
supply. They also play important roles in diverse processes
such as redox homeostasis and provision of molecules that act
as metabolic intermediates in essential biosynthetic pathways
or as specific signals that modulate nuclear-encoded protein
expression (Chandel, 2014). To connect internalmetabolismwith
that of the surrounding cell, mitochondria possess solute carrier
proteins in the inner membrane which, due to their common
basic structure, are classed as members of the mitochondrial
carrier family (MCF) (Haferkamp and Schmitz-Esser, 2012;
Taylor, 2017). In plants, MCF proteins are involved in the
transport of nucleotides, phosphate, di- and tri-carboxylates,
amino acids, and cofactors across the mitochondrial membrane.
They are all presumed to be targeted to the mitochondrial inner
membrane, although some of them have been shown to occur
in peroxisomes, glyoxysomes, plasma membrane, and plastids
(Sullivan and Kaneko, 1995; Fukao et al., 2001; Bedhomme et al.,
2005; Palmieri et al., 2006; Bahaji et al., 2011a,b).

Brittle1 (BT1) proteins are members of the MCF that occur
only in plants. At the transcriptional level, maize plants express
two BT1 homologs: ZmBT1-1 and ZmBT1-2 (Kirchberger et al.,
2007). Whereas ZmBT1-2 shows a ubiquitous expression pattern
in heterotrophic and autotrophic tissues, ZmBT1-1 expression
is developmentally regulated, being high in maize endosperms
12–25 days after pollination (DAP) and undetectable in non-
endosperm tissues and suspension cultures (Sullivan et al., 1991;
Cao et al., 1995; Sullivan and Kaneko, 1995; Cao and Shannon,
1996; Kirchberger et al., 2007). ZmBT1-1 encodes a protein with
a predicted molecular mass of ca. 47 kDa (Sullivan et al., 1991).
In maize endosperms, ZmBT1-1 is present as three 39, 40, and
44 kDa proteins (Cao et al., 1995; Sullivan and Kaneko, 1995),
the former two being processing products generated within the
plastidial compartment (Li et al., 1992).

The bt1-1 locus of maize was identified in 1926 by mutations
that severely decreased the amount of starch deposition
in the endosperm and resulted in seeds with a collapsed
angular appearance at maturity that germinated slowly and
produced plants of low vigor (Mangelsdorf, 1926). Zmbt1-1
endosperms accumulate high levels of the starch precursor
molecule, ADPglucose (Shannon et al., 1996). Import studies

Abbreviations: AGP, ADPglucose pyrophosphorylase; CWI-2, Cell wall invertase
2; DAP, days after pollination; DEPs, differentially expressed proteins; FK,
fructokinase; G6P, glucose-6-phosphate; MCF, Mitochondrial carrier family; SuSy,
sucrose synthase; SSS, soluble starch synthase; SDH, sorbitol dehydrogenase; TP,
transit peptide; ZmBT1-1, Zea mays Brittle1-1.

using amyloplasts isolated from maize endosperms showed
that amyloplasts can transport ADPglucose in counter-exchange
with AMP and ADP (Shannon et al., 1998). These studies
also showed that the incorporation of externally applied
ADPglucose into starch in Zmbt1-1 amyloplasts was reduced
to about 25% compared with wild type (WT) amyloplasts
(Shannon et al., 1998). Overall, the data indicated that
ZmBT1-1 is an essential component of the starch biosynthetic
machinery in maize endosperms, enabling the transport into the
amyloplast of cytosolic ADPglucose produced by ADPglucose
pyrophosphorylase (AGP) and sucrose synthase (SuSy) (Bahaji
et al., 2014; Boehlein et al., 2018) in exchange with ADP
produced by starch synthase as schematically illustrated in
Supplemental Figure 1 (Kleczkowski, 1996) (Shannon et al.,
1996, 1998).

Although ZmBT1-1 has been long considered to be an
amyloplast-specific marker (Sullivan and Kaneko, 1995; Shannon
et al., 1998; Kirchberger et al., 2007), confocal fluorescence
microscopy studies using plants stably expressing GFP fusions
of ZmBT1-1, and electron microscopic immunocytochemical
analyses of maize endosperms, have provided evidence that
ZmBT1-1 is dually localized to plastids and mitochondria (Bahaji
et al., 2011b). These studies also showed that ZmBT1-1 N-
terminal extensions comprise targeting sequences recognized
exclusively by the plastidial compartment, whereas sequences
targeting to mitochondria are localized within the mature
part of ZmBT1-1. The mitochondrial localization of ZmBT1-
1 suggested that this protein may have as-yet unidentified
function(s). To get insights into the role(s) of mitochondrial
ZmBT1-1, in this work we conducted proteomic, metabolic,
and microscopic characterization of developing endosperms
of Zmbt1-1 plants and transgenic Zmbt1-1 plants expressing
ZmBT1-1 delivered specifically to mitochondria. Our findings
show that mitochondrial ZmBT1-1 is a decisive factor in primary
metabolism and mitochondrial function in developing maize
endosperms and raise important questions regarding the role of
BT1 in cereal endosperms.

MATERIALS AND METHODS

Plants, Growth Conditions, and Sampling
The work was performed using WT plants (the hybrid
W23/M14/W64A), a Zmbt1-1 mutant in a W23/M14/W64A
background provided by the Maize Genetics COOP Stock
Center (bt1-m1::dSpm, ref. 514N), which contains a ca. 3.3
kbp defective Suppressor-mutator (dSpm) in the third exon
of ZmBT1-1 (Sullivan et al., 1991) (Supplemental Figure 2A)
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and a Sh2 mutant in a OH43 background provided by the
Maize Genetics COOP Stock Center (sh2/OH43, ref. 333D).
The indentity of the Zmbt1-1 mutant was confirmed by PCR
using the O1 (5′-CGAGACGCTGAAGCGGCTCTAC-3′)
and O2 (5′-CACGATCCGGAAACACCACATC-3′) ZmBT1-
1 specific primers (the latter hybridizes with a genomic
sequence occurring downstream of the ZmBT1-1 stop codon,
Supplemental Figures 2A,B) as well as the dSpm-specific
O3 primer (5′-GGACTTGAACTTGTATGAATATTG-3′)
(Supplemental Figures 2A,B). We also used Zmbt1-1 plants
transformed with UBI-ZmBT1-1, UBI-1TP-ZmBT1-1, and
UBI-MitTPr-1TP-ZmBT1-1 (designated Zmbt1-1::ZmBT1-1,
Zmbt1-1::1TP-ZmBT1-1, Zmbt1-1::MitTPr-1TP-ZmBT1-1,
respectively) that were generated in two steps:

Step one: Production of HiII plants (Armstrong et al., 1991)
transformed with UBI-ZmBT1-1, UBI-1TP-ZmBT1-1 and
UBI-MitTPr-1TP-ZmBT1-1. To achieve this, HiII immature
embryo-derived callus cultures were transformed using the
biolistic gun-mediated method (Wang and Frame, 2009) and
the pAHC25-ZmBT1-1, pAHC25-1TP-ZmBT1-1 and pAHC25-
MiTPr-1TP-ZmBT1-1 plasmids (Supplemental Figure 3).
These plasmids were produced from the pAHC25 plasmid
(Christensen and Quail, 1996) by Gateway technology
(Invitrogen), and their identities confirmed by sequencing.
They contain, respectively, the ZmBT1-1, 1TP-ZmBT1-1, and
MitTPr-1TP-ZmBT1-1 genes, each under the transcriptional
control of the Ubi-1 promoter, and a selectable (bar) gene
(Supplemental Figure 3). Plantlets regenerated in medium
containing the herbicide glufosinate were transplanted into pots,
and further selected by spraying with the herbicide glufosinate
(0.1%). Herbicide selection and PCR analyses (see below) were
conducted for every generation, and the herbicide-resistant
and PCR-positive plants were self-pollinated until homozygous
transgenic HiII lines were generated. PCR-confirmation
of the integration of UBI-ZmBT1-1, UBI-1TP-ZmBT1-1,
and UBI-MitTPr-1TP-ZmBT1-1 into the plant genome was
conducted using the Ubi-1 promoter-specific O4 primer
(5′-GCATATGCAGCAGCTATATGTG-3′) and the ZmBT1-1-
specific O5 primer (5′-GGTGCGGGTTGGCGATCTTG-3′)
(Supplemental Figures 2C,D). Transformation with UBI-1TP-
ZmBT1-1 was further confirmed by PCR using O4 and the O6
primer (5′-GGGACCTGCAATGACGACCA-3′) specific for the
ZmBT1-1 TP encoding sequence (Supplemental Figures 2C,E).
Transformation with UBI-MitTPr-1TP-ZmBT1-1 was
further PCR-confirmed using O5 and the O7 primer (5′-
ATGGCTATGGCTGTTTTCCGC-3′) specific for the MitTPr
encoding sequence (Supplemental Figures 2C,F). All the
transformations were further confirmed by sequencing of the
amplicons obtained by PCR.

Step two: Crossing Zmbt1-1 plants with the transgenic
HiII plants generated as above. The seeds obtained were
germinated and plants selected by spraying with glufosinate.
Herbicide selection and PCR analyses were conducted, and
herbicide-resistant and PCR-positive plants were self-pollinated,
backcrossed to Zmbt1-1 for a total of three generations,
and self-pollinated until homozygous Zmbt1-1::ZmBT1-1,
Zmbt1-1::1TP-ZmBT1-1, and Zmbt1-1::MitTPr-1TP-ZmBT1-1
plants were generated.

For subcellular localization of GFP-tagged proteins, we
produced HiII plants transformed with UBI-1TP-ZmBT1-
1-GFP, UBI-MiTPr-GFP, and UBI-MitTPr-1TP-ZmBT1-
1-GFP (designated as 1TP-ZmBT1-1-GFP, MiTPr-GFP,
and MitTPr-1TP-ZmBT1-1-GFP, respectively) using
the pAHC25-1TP-ZmBT1-1-GFP, pAHC25-MiTPr-
GFP, and pAHC25MiTPr-1TP-ZmBT1-1-GFP plasmids
(Supplemental Figure 3).

Ten plants per line were grown in 35 L pots in greenhouse
conditions. For biochemical and proteomic analyses, seeds
were collected at the indicated developmental stage, and
endosperms immediately extracted, freeze-clamped, and
ground to a fine powder in liquid nitrogen with a pestle
and mortar.

Analytical Procedures
For measurement of glucose-6-phosphate (G6P), fructose-6-
phosphate, glucose-1-phosphate, UDPglucose and ADPglucose,
a 0.5 g aliquot of the frozen powdered endosperm (see above)
was resuspended in 1ml of 1M HClO4, left at 4◦C for 2 h
and centrifuged at 10,000 × g for 5min. The supernatant was
neutralized with K2CO3 and centrifuged at 10,000 × g. G6P,
fructose-6-phosphate, and glucose-1-phosphate in supernatants
were determined by HPLC with pulsed amperometric detection
on a DX-500 Dionex system with a CarboPac 10 column
according to the gradient separation application method
suggested by the supplier (100mM NaOH/100mM sodium
acetate to 100mM NaOH/500mM sodium acetate over 40min).
UDPglucose and ADPglucose were measured as described in
Li et al. (2013), by HPLC on a system obtained from Waters
Associates fitted with a Partisil-10-SAX column. Alanine and
GABA contents were measured as described by Loiret et al.
(2009). Ethanol was measured as described by Licausi et al.
(2010). Recovery experiments were carried out by adding
known amounts of metabolite standards to the frozen tissue
slurry immediately after the addition of extraction solutions.
The difference between the measurements from samples with
and without added standards was used as an estimate of the
percentage of recovery. All data were corrected for losses during
extraction. Starch from 24 DAP endosperms and dry seeds was
measured with an amyloglucosidase–based test kit (Boehringer
Mannheim, Germany).

Assays for Total Invertase and Sucrose
Synthase Activites
One g of the frozen powder (see above) was resuspended at 4◦C
in 5ml of 100mM HEPES (pH 7.5), 2mM EDTA, and 5mM
dithiothreitol (extraction buffer). The suspension was desalted,
resuspended in 5ml extraction buffer, and assayed for enzymatic
activities. We verified that this procedure did not result in
loss of enzymatic activity by comparing activity in extracts
prepared from the frozen powder with extracts prepared by
homogenizing fresh tissue in extraction medium. Total invertase
and SuSy activities were measured as described by Baroja-
Fernández et al. (2009). One unit (U) is defined as the amount
of enzyme that catalyzes the production of 1 µmol of product
per min.
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Western Blot Analyses
For immunoblot analyses, 100mg of the fine frozen endosperm
powder was resuspended in 300µl of 50mMHepes pH 7.0, 2mM
EDTA, and 10mM dithiothreitol, incubated 30min at 4◦C, and
centrifuged at 10,000 × g for 15min. Proteins occurring in the
supernatant were then separated on 15% SDS-PAGE, transferred
to PVDF filters, and immunodetected using the antisera raised
against recombinant ZmBT1-1 (Bahaji et al., 2011a), and a goat
anti-rabbit IgG alkaline phosphatase conjugate as secondary
antibody (Sigma).

Iodine Starch Staining
Thirty DAP seeds were stained in iodine solution [KI 2% (w/v),
I2 1% (w/v)] for 30min, rinsed briefly in deionized water
and photographed.

Isobaric Labeling-Based Differential
Proteomic Analyses
These analyses were conducted essentially as decribed in
Sánchez-López et al. (2016) for Arabidopsis leaves but with
the following modifications. For protein sample preparation
samples were prepared by grinding 200mg of endosperm
material from 24 DAP developing seeds into a fine powder
under liquid nitrogen using a pre-cooled mortar and pestle.
For the data analyses, MS/MS spectra were exported to
MGF format using Peak View v1.2.0.3 (Sciex, Redwood City,
CA) and searched using Mascot Server 2.5.1, OMSSA 2.1.9,
X!TANDEM 2013.02.01.1 and MyriMatch 2.2.140 against a
composite target/decoy database for maize built from the
85,535 sequences from UniProt Knowledgebase, together with
commonly occurring contaminants. The cut-off for differentially
regulated proteins was set at a FDR ≤ 5%. Functional
characterization of the differentially expessed proteins was
performed using theMapMan tool (https://mapman.gabipd.org/)
(Thimm et al., 2004).

Confocal Microscopy
Subcellular localization of GFP in 1TP-ZmBT1-1-GFP, MiTPr-
GFP, and MitTPr-1TP-ZmBT1-1-GFP plants was performed
using D-Eclipse C1 confocal microscope (Nikon, Japan)
equipped with standard Ar 488 laser excitation, BA515/30 filter
for green emission, and a BA650LP filter for red emission.

Transmission Electron Microscopy
We characterized samples from leaves and 24 DAP endosperms
of WT, Zmbt1-1, Sh2, and Zmbt1-1::MitTPr-1TP-ZmBT1-1
plants. Once excised, samples were immediately transferred to
aluminum sample holders, cryoprotected with 150mM sucrose,
frozen in a Leica electron microscopic HPM-100 high-pressure
freezer (Leica Microsystems, Vienna), transferred to liquid
nitrogen, and processed according to Seguí-Simarro (2015). In
brief, samples were freeze substituted with anhydrous acetone
+2% OsO4 at −80◦C for 4 days, followed by slow warming to
room temperature over a period of 24 h. After rinsing several
times in acetone, they were removed from the holders and
embedded with increasing concentrations of Spurr resin in
acetone according to the following schedule: 3 h in 2% resin, 3 h

in 5% resin, 15 h in 10% resin, 8 h in 25% resin, 15 h in 50% resin,
8 h in 75% resin, and 40 h in 100% resin. Resin polymerization
was performed at 70◦C for 30 h. Ultrathin (∼80 nm) sections
were then obtained using a Leica UC6 ultramicrotome, mounted
on formvar-coated, 150 mesh copper grids, stained with 2%
uranyl acetate for 6min and with lead citrate prepared as
described in Reynolds (1963) for 4min, and observed in a Jeol
JEM 1010 transmission electron microscope.

Statistical Analysis
The data are presented as the means of four independent
experiments, with 3–5 replicates for each experiment
(means ± SE). The significance of differences between WT,
Zmbt1-1::ZmBT1-1, Zmbt1-1::1TP-ZmBT1-1, and Zmbt1-
1::MitTPr-1TP-ZmBT1-1 endosperms was statistically evaluated
by Student’s t-test using the SPSS software. Differences were
considered significant at a probability level of P < 0.05.

RESULTS

Generation of Transgenic Zmbt1-1 Plants
Expressing ZmBT1-1 Delivered Specifically
to Mitochondria
We generated transgenic homozygous Zmbt1-1 maize plants
transformed with either UBI-ZmBT1-1 or UBI-1TP-ZmBT1-
1 as described in Methods. These plants express, respectively,
ZmBT1-1 and 1TP-ZmBT1-1 under the control of the Ubi-
1 promoter; the latter construct encodes a ca. 44 kDa
truncated form of ZmBT1-1 (designated as 1TP-ZmBT1-1) that
lacks 24 amino acids from the N-terminal extension which
potentially acts as a plastidial transit peptide (TP). We also
generated Zmbt1-1 plants transformed with UBI-MitTPr-1TP-
ZmBT1-1, which express a mitochondria-targeting pre-sequence
[the N-terminus of the F1-ATPase γ-subunit (Niwa et al.,
1999)] fused to 1TP-ZmBT1-1. The identities of the Zmbt1-1
mutant, and the homozygous Zmbt1-1maize plants transformed
with UBI-ZmBT1-1, UBI-1TP-ZmBT1-1, or UBI-MitTPr-1TP-
ZmBT1-1 (designated as Zmbt1-1::ZmBT1-1, Zmbt1-1::1TP-
ZmBT1-1, and Zmbt1-1::MitTPr-1TP-ZmBT1-1, respectively)
were confirmed by PCR and sequencing of the amplicons
obtained (Supplemental Figure 2).

Western blot analyses of ZmBT1-1 revealed bands of ca.
39, 40, and 44 kDa in WT endosperms (Figure 1), which is
consistent with previous reports (Cao et al., 1995; Sullivan and
Kaneko, 1995). As expected, no polypeptides cross-reacting with
the ZmBT1-1 antisera could be detected in Zmbt1-1 endosperms
(Figure 1). Similar to WT endosperms, Zmbt1-1::ZmBT1-1
endosperms expressed three proteins of ca. 39, 40, and 44 kDa
that cross-reacted with ZmBT1-1 antisera (Figure 1). In contrast,
Zmbt1-1::1TP-ZmBT1-1 and Zmbt1-1::MitTPr-1TP-ZmBT1-1
endosperms accumulated a single ca. 44 kDa protein that cross-
reacted with the ZmBT1-1 antisera (Figure 1). No plastidial
ZmBT1-1 processing product (e.g., 39 and 40 kDa proteins; Li
et al., 1992) could be detected in Zmbt1-1::1TP-ZmBT1-1 and
Zmbt1-1::MitTPr-1TP-ZmBT1-1 endosperms (Figure 1).
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FIGURE 1 | Western blot analysis of ZmBT1-1 in proteins extracted from 24

DAP WT (W23/M14/W64A), Zmbt1-1::ZmBT1-1, Zmbt1-1::1TP-ZmBT1-1,
Zmbt1-1::MitTPr-1TP-ZmBT1-1, and Zmbt1-1 endosperms. The gel was

loaded with 30 µg protein per lane.

TargetP (http://www.cbs.dtu.dk/services/TargetP/)
(Emanuelsson et al., 2000) predicts mitochondrial localization for
both 1TP-ZmBT1-1 and MitTPr-1TP-ZmBT1-1. To confirm
that 1TP-ZmBT1-1 was specifically targeted to mitochondria in
Zmbt1-1::1TP-ZmBT1-1 and Zmbt1-1::MitTPr-1TP-ZmBT1-1
endosperms we carried out confocal fluorescence microscopy
analyses of WT maize plants expressing 1TP-ZmBT1-1-GFP
and MitTPr-1TP-ZmBT1-1-GFP. We also analyzed fluorescence
distribution in plants expressing the mitochondrial-targeting
pre-sequence MitTPr fused with GFP (MitTPr-GFP). These
analyses revealed that the GFP fluorescence distribution and
motility patterns in 1TP-ZmBT1-1-GFP- and MitTPr-1TP-
ZmBT1-1-GFP- expressing plants were identical to those of
plants expressing the mitochondrial marker MitTPr-GFP (see
movies in Supplemental Videos 1–3), which is consistent with
previous studies using 1TP-ZmBT1-1-GFP- and MitTPr-
1TP-ZmBT1-1-GFP- expressing Arabidopsis plants (cf.
Figure 4, Bahaji et al., 2011b). These findings confirm that
1TP-ZmBT1-1-GFP has a mitochondrial localization in 1TP-
ZmBT1-1-GFP- and MitTPr-1TP-ZmBT1-1-GFP- expressing
maize plants.

Delivery of ZmBT1-1 Specifically to
Mitochondria Complements the Low
Starch Content Phenotype of
Zmbt1-1 Seeds
Zmbt1-1 seeds showed a collapsed, angular appearance at
maturity (Figure 2A) and were of reduced weight (Figure 2B)
and starch content (Figure 2C), a finding which is consistent
with previous reports (Mangelsdorf, 1926; Sullivan et al.,
1991). As expected, these phenotypes could be reverted to
WT by ectopic expression of ZmBT1-1 (Figure 2). Notably,
Zmbt1-1::1TP-ZmBT1-1 and Zmbt1-1::MitTPr-1TP-ZmBT1-1
seeds displayed a normal external appearance (Figure 2A),
and their weights and starch contents were like those of WT

seeds (Figures 2B,C). Iodine staining for starch localization in
excised 30 DAP seeds showed an even distribution of starch in
WT, Zmbt1-1::ZmBT1-1, Zmbt1-1::1TP-ZmBT1-1, and Zmbt1-
1::MitTPr-1TP-ZmBT1-1 endosperms, whereas in Zmbt1-1 seeds
starch accumulated exclusively in the upper part of the
endosperm (Figure 2D).

Zmbt1-1 seeds germinated slowly when compared with
WT seeds (Supplemental Figure 4A), which is consistent
with the findings of Mangelsdorf (1926). Slow germination
resulted in delayed growth of Zmbt1-1 plants when
compared with WT plants of various genetic backgrounds
(Supplemental Figure 4B). As expected, the slow germination
and delayed growth phenotype of Zmbt1-1 plants could
be complemented by the ectopic expression of ZmBT1-1
(Supplemental Figure 4). Zmbt1-1::1TP-ZmBT1-1 and Zmbt1-
1::MitTPr-1TP-ZmBT1-1 seeds displayed WT germination and
growth phenotypes (Supplemental Figure 4).

Delivery of ZmBT1-1 Specifically to
Mitochondria Restores the High
ADPglucose Content of Developing
Zmbt1-1 Endosperms to Wild Type Values
WT, Zmbt1-1, Zmbt1-1::ZmBT1-1, Zmbt1-1::1TP-ZmBT1-
1, and Zmbt1-1::MitTPr-1TP-ZmBT1-1 developing (24
DAP) endosperms were analyzed for contents of metabolic
intermediates of the sucrose-to-starch conversion process. As
expected, the starch content of Zmbt1-1 endosperms was lower
than that of WT endosperms. Levels of hexose-phosphates
(e.g., fructose-6-phosphate, G6P and glucose-1-phosphate)
in Zmbt1-1 endosperms were higher than those in WT
endosperms. UDPglucose and ADPglucose contents of Zmbt1-1
endosperms were ca. 2- and 12-fold higher, respectively, than
those of WT endosperms (Figure 3), an observation which
is consistent with Shannon et al. (1996). Notably, the low
starch content, and the high hexose-phosphate and nucleotide-
sugar contents of developing Zmbt1-1 endosperms could
be reverted to WT levels not only by ectopic expression of
ZmBT1-1, but also through expression of 1TP-ZmBT1-1 and
MitTPr-1TP-ZmBT1-1 (Figure 3).

Knocking Out ZmBT1-1 Promotes
Changes in the Proteome of Maize
Endosperms, Some of Which Can Be
Reverted by the Delivery of ZmBT1-1
Specifically to Mitochondria
The results presented above provided evidence that
mitochondrial ZmBT1-1 plays an important role in the
sucrose-to-starch conversion process in maize endosperms.
To obtain insights into the mechanisms influenced by the
mitochondrial ZmBT1-1, we carried out high-throughput,
isobaric labeling-based differential proteomic analyses of 24
DAP Zmbt1-1 and WT endosperms, and 24 DAP Zmbt1-1 and
Zmbt1-1::MitTPr-1TP-ZmBT1-1 endosperms.
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FIGURE 2 | Delivery of ZmBT1-1 specifically to mitochondria complements the collapsed angular appearance and the low endosperm starch content of Zmbt1-1
seeds. External appearance (A), weight (B), and starch content (C) of WT, Zmbt1-1, Zmbt1-1::ZmBT1-1, Zmbt1-1::1TP-ZmBT1-1, and
Zmbt1-1::MitTPr-1TP-ZmBT1-1 dry seeds. (D) Iodine staining of 30 DAP WT, Zmbt1-1, Zmbt1-1::ZmBT1-1, Zmbt1-1::1TP-ZmBT1-1, and
Zmbt1-1::MitTPr-1TP-ZmBT1-1 seeds. In (B,C), values represent the mean ± SD of determinations on four independent samples from three independent lines each

of Zmbt1-1::ZmBT1-1, Zmbt1-1::1TP-ZmBT1-1, and Zmbt1-1::MitTPr-1TP-ZmBT1-1. Asterisks indicate significant differences based on Student’s t-tests. (P <

0.05, Zmbt1-1 mutants vs. WT).

Differential Proteomic Analysis of Zmbt1-1 and

WT Endosperms

As shown in Supplemental Tables 1, 2, 414 out of the 2183
proteins identified were differentially expressed in Zmbt1-
1 and WT endosperms, 35 of them being annotated as
“uncharacterized proteins.” Among the population of 379
differentially expressed proteins (DEPs) with known functions,
191 were up-regulated, and 188 were down-regulated in Zmbt1-1

(Supplemental Table 1). By using the broad classifications
outlined byMapMan, the 379 proteins with known functions that
were differentially expressed in Zmbt1-1 and WT endosperms
were assembled into 25 functional groups (Figure 4). The
absence of ZmBT1-1 resulted in the down-regulation of the
expression of several soluble starch synthase (SSS) isoforms and
the major endosperm SuSy isoform, SH1 (Supplemental Table 1,
Figure 4), and up-regulation of the expression of the major
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FIGURE 3 | Delivery of ZmBT1-1 specifically to mitochondria reverts to WT the content of ADPglucose and other sucrose-to-starch biosynthetic intermediates in

developing Zmbt1-1 endosperms. The graphics represent the amounts of the metabolites indicated in 24 DAP endosperms from WT, Zmbt1-1,
Zmbt1-1::ZmBT1-1(1), Zmbt1-1::1TP-ZmBT1-1(1), and Zmbt1-1::MitTPr-1TP-ZmBT1-1(1) seeds. Values represent the mean ± SD of determinations on four

independent samples. Asterisks indicate significant differences based on Student’s t-tests. (P < 0.05, Zmbt1-1 mutants vs. WT).
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endosperm invertase isoform, the cell wall invertase 2 (CWI-
2), sorbitol dehydrogenase (SDH), fructokinase (FK), glycolytic
enzymes, and enzymes of the ethanolic fermentation pathway
and the TCA cycle (Supplemental Table 1, Figure 4).

Differential Proteomic Analysis of Zmbt1-1 and

Zmbt1-1::MitTPr-1TP-ZmBT1-1 Endosperms

One hundred and twenty-five out of the 2,152 proteins identified
were differentially expressed in Zmbt1-1 and Zmbt1-1::MitTPr-
1TP-ZmBT1-1 endosperms, 7 of them being annotated as
“uncharacterized proteins” (Supplemental Tables 3, 4). Among
the population of 118 DEPs with known functions, 60 were up-
regulated, and 58 were down-regulated in Zmbt1-1 endosperms.
When comparing the DEPs in Zmbt1-1 and Zmbt1-1::MitTPr-
1TP-ZmBT1-1 endosperms (Supplemental Table 3) with those
of Zmbt1-1 and WT endosperms (Supplemental Table 1) we
found that 53% of the proteins that were differentially
expressed in the Zmbt1-1 and Zmbt1-1::MitTPr-1TP-ZmBT1-
1 endosperms were also differentially expressed in the Zmbt1-
1 and WT endosperms (Supplemental Table 3). This indicates
that the absence of mitochondrial ZmBT1-1 largely accounts for
the differences in protein expression observed in ZmBT1-1 and
WT endosperms.

The 118 DEPs with known functions that were
differentially expressed in Zmbt1-1 and Zmbt1-1::MitTPr-1TP

-ZmBT1-1 endosperms were assembled into 17 functional
groups (Figure 5). Notably, mitochondrial delivery of ZmBT1-
1 in Zmbt1-1 strongly up-regulated the expression of SH1
and xylose isomerase, and down-regulated the expresions
of CWI-2, SDH, FK, glycolytic, and TCA cycle enzymes
(Supplemental Table 3, Figure 5). Also, mitochondrial-specific
delivery of ZmBT1-1 in Zmbt1-1 up-regulated the expression
of numerous starch metabolism enzymes [e.g., granule-bound
starch synthase, several SSS isoforms, starch phosphorylase,
and the small and large subunits of AGP (BT2a and SH2,
respectively)] (Supplemental Table 3, Figure 5).

Lack of Mitochondrial ZmBT1-1 Impedes
Down-Regulation of CWI-2 Expression and
Up-Regulation of SH1 Expression During
Endosperm Development
In maize, the level of expression of CWI-2 is greatest early during
seed development and it then drops from the 12 DAP stage
(Cheng et al., 1996; Prioul et al., 2008) whereas SH1 expression
increases from the 14 DAP developmental stage (Doehlert et al.,
1988; Méchin et al., 2007; Prioul et al., 2008; Li et al., 2013).
The results of the differential proteomic analyses described above
suggested that a lack of mitochondrial ZmBT1-1 could result in
impairment of the transition from CWI-2- to SH1- mediated
sucrose breakdown during endosperm development. To test
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FIGURE 5 | Functional categorization of the proteins differentially expressed in endosperms of Zmbt1-1::MitTPr-1TP-ZmBT1-1 and Zmbt1-1 seeds. The number of
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this hypothesis we measured total invertase and SuSy activities
during the development of WT, Zmbt1-1 and Zmbt1-1::MitTPr-
1TP-ZmBT1-1 endosperms. As shown in Figure 6 these analyses
revealed that, unlike WT and Zmbt1-1::MitTPr-1TP-ZmBT1-1
endosperms, total invertase and SuSy activities did not varymuch
during development of Zmbt1-1 endosperms.

Lack of Mitochondrial ZmBT1-1 Promotes
the Accumulation of High Levels of Ethanol
and Alanine
The proteomic analyses suggested that a lack of ZmBT1-1
could promote the accumulation of ethanol and alanine from
glycolytically produced pyruvate, as expression of glycolytic
and ethanolic fermentation enzymes, and TCA cycle enzymes
involved in GABA shunt-mediated alanine production, were
higher in Zmbt1-1 endosperms than in WT endosperms. This
inference was corroborated by the analysis of the ethanol, GABA
and alanine contents of 24 DAP WT, Zmbt1-1, and Zmbt1-
1::ZmBT1-1 endosperms. As shown in Figure 7, the levels of these

compounds were higher in Zmbt1-1 endosperms than in WT
and Zmbt1-1::ZmBT1-1 endosperms. To test the possibility that
the absence of mitochondrial ZmBT1-1 causes ethanol, GABA,
and alanine over-accumulation in Zmbt1-1 endosperms we
characterized Zmbt1-1::MitTPr-1TP-ZmBT1-1 endosperms. We
observed that delivering ZmBT1-1 specifically to mitochondria
rescues the WT levels of ethanol, GABA, and alanine in Zmbt1-1
endosperms (Figure 7).

Lack of Mitochondrial ZmBT1-1 Is
Associated With Aberrant Ultrastructural
Development in the Mitochondria of
Maize Endosperms
Down-regulation of storage metabolism, up-regulation
of glycolytic and ethanolic fermentation, and alanine
accumulation promoted by the lack of mitochondrial
ZmBT1 resemble the responses of plants to conditions
in which mitochondrial functioning is compromised
(Miyashita and Good, 2008; Shingaki-Wells et al., 2014). Under
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FIGURE 6 | Lack of mitochondrial ZmBT1-1 impedes down-regulation of
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such conditions, mitochondria fail to develop normally and
exhibit signs of degeneration such as loss of cristae, clarification
of the matrix and swelling (Shingaki-Wells et al., 2014). To
investigate whether the metabolic disorder observed in Zmbt1-
1 endosperms was associated with aberrant mitochondrial
development, we analyzed the ultrastructure of mitochondria
in 24 DAP WT and Zmbt1-1 endosperms using ultrafast
high-pressure freezing fixantion and transmission electron
microscopy. As a control, we also analyzed leaf mitochondria.

As shown in Figures 8A,C mitochondria of leaves from the
two genotypes exhibited a similar, conventional morphology,
being oval or elongated, and having conspicuous cristae
distributed throughout the matrix. In striking contrast,
whereas mitochondria of WT endosperms were elongated

and had cristae (Figure 8B, Supplemental Figure 5A), the
vast majority of mitochondria in Zmbt1-1 endosperms
were round-oval in shape and had no cristae in the matrix
(Figure 8D, Supplemental Figure 5B). In Zmbt1-1 endosperm
mitochondria, only small, round cristae-like invaginations
were identified at the organelle periphery closely apposed
to the inner membrane (Figure 8D). To investigate whether
the ultrastructural differences in mitochondria of Zmbt1-1
endosperms could be a consequence of reduced starch content,
we conducted high-pressure freezing and transmission electron
microscopy analyses of 24 DAP endosperms of Sh2, a starch-
deficient mutant lacking the large SH2 subunit of AGP (Bhave
et al., 1990).

As shown in Figures 8E,F mitochondria of Sh2 leaves and
endosperms exhibited conventional morphology, indicating that
the aberrant morphology of Zmbt1-1 endospermmitochondria is
not due to reduced starch.

We next addressed the possibility that the aberrant
ultrastructure of mitochondria in Zmbt1-1 endosperms might be
related to the absence of mitochondrial ZmBT1-1. To this end we
analyzed mitochondria from Zmbt1-1::MitTPr-1TP-ZmBT1-1
plants. As shown in Figures 8G,H Zmbt1-1::MitTPr-1TP-
ZmBT1-1 leaf and endosperm mitochondria exhibited a
ultrastructure indistinguishable from that of WT leaf and
endosperm mitochondria. Overall, the data showed that
a lack of mitochondrial ZmBT1-1 expression results in
aberrant development and architecture of the mitochondria in
maize endosperm.

DISCUSSION

ZmBT1-1 Is an Important Determinant of
the Metabolic Fate of Incoming Sucrose in
Developing Maize Endosperms
The channeling of incoming sucrose into sink metabolism in the
maize endosperm requires its cleavage by invertase and SuSy.
In maize, the major endosperm invertase, CWI-2, is involved in
the transport of photoassimilates into the developing kernel, and
its expression is highest early in seed development in the lower
endosperm (Cheng et al., 1996; Prioul et al., 2008). The main
SuSy isoform in maize endosperms, SH1, is involved in cellulose
and starch synthesis (Shannon et al., 1996; Chourey et al.,
1998; Thévenot et al., 2005). During seed development, SH1 is
expressed first in the upper endosperm; expression then extends
to the lower endosperm (Doehlert et al., 1988; Prioul et al., 2008).
Like that of ZmBT1-1, SH1 expression increases from the 14 DAP
developmental stage and parallels starch accumulation (Doehlert
et al., 1988; Méchin et al., 2007; Prioul et al., 2008; Li et al.,
2013). Increased SuSy activity during endosperm development
can therefore be regarded as a marker for the onset of endosperm
starch filling (Prioul et al., 2008).

Differential proteomic analysis of developing Zmbt1-1 and
WT endosperms indicated that glycolytic metabolism of sucrose
breakdown products generated by CWI-2, and their subsequent
conversion into ethanol and alanine, is more active in Zmbt1-1
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FIGURE 7 | Lack of mitochondrial ZmBT1-1 promotes the accumulation of high levels of ethanol, GABA, and alanine. The graphics represent the contents of the

metabolites indicated in 24 DAP endosperms from WT, Zmbt1-1, Zmbt1-1::ZmBT1-1(1), and Zmbt1-1::MitTPr-1TP-ZmBT1-1(1) seeds. Values represent the mean ±

SD of determinations on four independent samples. Asterisks indicate significant differences based on Student’s t-tests. (P < 0.05, Zmbt1-1 mutants vs. WT).

than in WT endosperms, as expression levels of CWI-2, SDH,
FK, and enzymes of glycolysis, ethanolic fermentation and the
TCA cycle were higher in Zmbt1-1 endosperms than in WT
endosperms (Supplemental Table 1, Figure 4). Furthermore,
expression level of alanine aminotransferase was lower in Zmbt1-
1 endosperms than in WT endosperms (Supplemental Table 1,
Figure 4). These analyses also indicated that channeling of
sucrose into starch metabolism is less active in Zmbt1-1 than
in WT endosperms, as expression levels of SH1 and several
SSS isoforms in Zmbt1-1 endosperms were lower than in WT
endosperms (Supplemental Table 1, Figure 4). It thus appears
that ZmBT1-1 expression is an important determinant of the
switch from invertase- to SuSy-mediated metabolism of the
incoming sucrose in maize endosperms. This idea, which is
schematically illustrated in Figure 9A, is supported by the fact
that the contents of ethanol, alanine and its precursor GABA in
developing Zmbt1-1 endosperms are higher than those in WT
endosperms (Figure 7). The hypothesis is given further weight by
the results of analyzing total invertase and SuSy activities during
the development of WT and Zmbt1-1 endosperms, which show
that, in contrast to WT endosperms, total invertase and SuSy
activities do not vary much during the development of Zmbt1-1
endosperms (Figure 6). The fact that starch accumulates only in
the upper part of developing Zmbt1-1 endosperms (Figure 2D)
would strongly indicate that the reduced starch content in this
mutant is partly due to impairments in the developmental
activation of SH1 expression in the lower part of the endosperm.

Mitochondrial ZmBT1-1 Is a Deciding
Factor in Endosperm Primary Metabolism
The results presented in Figure 2, which show that Zmbt1-
1::1TP-ZmBT1-1 and Zmbt1-1::MitTPr-1TP-ZmBT1-1

endosperms accumulate WT levels of starch, demonstrate that
the delivery of ZmBT1-1 specifically to mitochondria is enough
to complement the “low starch content” phenotype of Zmbt1-1
endosperms. Differential proteomic analysis of developing
Zmbt1-1 and Zmbt1-1::MitTPr-1TP-ZmBT1-1 endosperms
showed that mitochondrial expression of ZmBT1-1 in Zmbt1-1
endosperms up-regulates the expression of enzymes involved
in the sucrose-to-starch conversion process (i.e., SH1, AGP,
starch phosphorylase, SSS, and granule-bound starch synthase),
and down-regulates the expression of CWI-2, SDH, FK, and
glycolytic enzymes (Supplemental Table 3, Figure 5). These data
indicate that, as schematically illustrated in Figure 9B, delivery
of ZmBT1-1 specifically to mitochondria in Zmbt1 endosperms
reduces the glycolytic conversion of sucrose breakdown products
generated by CWI-2 into ethanol and alanine, and enhances
the SH1-mediated sucrose-to-starch conversion pathway. It
therefore appears that mitochondrial ZmBT1-1 plays a key role
in the transition from invertase- to SuSy-mediated metabolism of
the incoming sucrose during endosperm development and thus
acts as a major determinant of the metabolic fate of incoming
sucrose. In support of this view, analyses of enzymatic activities
during endosperm development revealed that the delivery of
ZmBT1-1 specifically to mitochondria restored the WT patterns
of total invertase and SuSy activities (Figure 6). Furthermore,
metabolic analyses showed that levels of ethanol, GABA, and
alanine in 24 DAP Zmbt1-1::MitTPr-1TP-ZmBT1-1 endosperms
were lower than those in Zmbt1-1 endosperms, and similar to
those of WT endosperms (Figure 7). Notably, these analyses
also revealed that mitochondrial expression of ZmBT1-1 rescued
WT contents of starch, ADPglucose, and other metabolic
intermediates of the sucrose-to-starch conversion process in
Zmbt1-1 endosperms (Figures 2, 3).
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Possible Involvement of an As-yet
Unidentified Plastidial ADPglucose
Transporter in the Sucrose-To-Starch
Conversion Process in Zmbt1-1

Endosperms Expressing ZmBT1-1
Delivered Specifically to Mitochondria
Zmbt1-1 endosperms accumulate high levels of ADPglucose
in the cytosol, which can be due to reduced ZmBT1-1-
mediated transport of ADPglucose from the cytosol to the
amyloplast (Shannon et al., 1996). Plastidial ZmBT1-1-lacking
Zmbt1-1::1TP-ZmBT1-1 and Zmbt1-1::MitTPr-1TP-ZmBT1-1
endosperms accumulate WT levels of ADPG and starch
(Figure 3), which indicates that plastidial ZmBT1-1 is not strictly
required for normal starch production in maize endosperms.
One explanation to this phenomenon could be that specific
delivery of ZmBT1-1 to mitochondria promotes the transit of
cytosolic G6P into the amyloplast for its subsequent conversion
to starch as schematically illustrated in Figure 9B. In such
case, however, high ADPG levels would be expected to occur
in Zmbt1-1::1TP-ZmBT1-1 and Zmbt1-1::MitTPr-1TP-ZmBT1-
1 endosperm cells. Alternatively, the enhancement of starch
content and the reduction of ADPG content to WT levels
in Zmbt1-1 endosperms by specific delivery of ZmBT1-1 to
mitochondria could be due to the fact that delivery of ZmBT1-1
to the mitochondrial compartment of Zmbt1-1 endosperm cells
causes the up-regulation of the expression (or the activation)
of an as-yet unidentified plastidial ADPglucose transporter
enabling the transport of ADPglucose from the cytosol to the
amyloplast. At present it is not possible to draw any firm
conclusions as to the class of the translocator responsible for
moving ADPglucose across the amyloplast envelope membrane
of Zmbt1-1::1TP-ZmBT1-1 and Zmbt1-1::MitTPr-1TP-ZmBT1-
1 endosperms. However, we must emphasize that amyloplasts
from plants and organs other than cereal endosperms are
capable of transporting ADPglucose (Pozueta-Romero et al.,
1991; Naeem et al., 1997). Furthermore, amyloplasts isolated
from bt1 maize and rice endosperms still possess 25% of
the capacity of WT amyloplasts to transport ADPglucose
(Shannon et al., 1998; Cakir et al., 2016). This residual activity
appears to be catalyzed by a uniporter system, as ADPglucose
incorporation into isolated amyloplasts of bt1 rice endosperms
is not stimulated by preincubation with ADP (Cakir et al.,
2016). Recent studies have shown that nucleoside transporters are
capable of transporting extracellular ADPglucose into bacteria
(Almagro et al., 2018). Therefore, it is tempting to speculate
that plastidial nucleoside transporters could be involved, at least
partly, in the transport of ADPglucose across the envelope
membrane of Zmbt1-1::1TP-ZmBT1-1 and Zmbt1-1::MitTPr-
1TP-ZmBT1-1 endosperms.

Mitochondrial ZmBT1-1 Plays an Important
Role in Mitochondrial Function and Its
Absence Invokes Retrograde Signaling
Mitochondria are sources of specific signaling molecules that
relay information on their energetic and metabolic status to the

FIGURE 8 | Ultrastructure of mitochondria (m) in leaves (A,C,E,G) and 24

DAP endosperms (B,D,F,H) of WT (A,B), Zmbt1-1 (C,D), Sh2 (E,F), and

Zmbt1-1::MitTPr-1TP-ZmBT1-1(1) seeds (G,H). Arrowheads point to

mitochondrial cristae. Note their absence in (D), where only round, peripheral

invaginations (arrows) are observed. chl, chloroplast; ct, cytoplasm; cw, cell

wall; v, vacuole. Bars: 100 nm.

nucleus. Under conditions in which mitochondrial functioning
is compromised, the cell is capable of modulating the expression
of nuclear-encoded proteins through a retrograde regulation
process, so as to partially counteract the energy crisis that ensues
(Rhoads and Subbaiah, 2007; Chandel, 2014). For instance,
under conditions of oxygen deprivation, or when the expression
of proteins that are important for proper mitochondrial function
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endosperms. Enzymatic activities and pathways that are up-regulated in Zmbt1-1 endosperms are highlighted with large letters and thick arrows, respectively,

whereas enzymatic activities and pathways that are down-regulated in Zmbt1-1 endosperms are highlighted with small letters and gray arrows, respectively. Panel (B)

illustrates differences between Zmbt1-1 and Zmbt1-1::MitTPr-1TP-ZmBT1-1 endosperms. Enzymatic activities and pathways that are up-regulated in

Zmbt1-1::MitTPr-1TP-ZmBT1-1 endosperms are highlighted with large, black arrows, whereas enzymatic activities and pathways that are down-regulated in
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plastidial transporter (?) that facilitates the incorporation of cytosolic ADPglucose into the amyloplast of Zmbt1-1::MitTPr-1TP-ZmBT1-1 endosperms. ADH, alcohol

dehydrogenase; ALD, aldolase; G3PDH, glyceraldehyde-3-phosphate dehydrogenase; GBSS, granule-bound starch synthase; HK, hexokinase; PDC, pyruvate
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is compromised, plants down-regulate storage metabolism,
up-regulate glycolysis to maintain ATP synthesis, enhance
ethanolic fermentative metabolism to regenerate the NAD
necessary for glycolysis, and accumulate alanine to store
carbon and nitrogen, regulate intracellular pH balance or

prevent pyruvate and lactate accumulation (Wiseman et al.,
1977; Paumard, 2002; Miyashita and Good, 2008; Busi et al.,
2011; Shingaki-Wells et al., 2014). Under such conditions,
mitochondria fail to develop normally and exhibit signs of
degeneration (Shingaki-Wells et al., 2014). Results presented in
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this work provide strong evidence that mitochondrial ZmBT1-1
plays an important role in mitochondrial function, energy
provision and primary metabolism in maize endosperms, and
indicate that its absence invokes changes in the expression of
nuclear-encoded proteins to compensate for the associated
metabolic perturbations. This is supported by facts showing
that (i) vast majority of mitochondria in Zmbt1-1 endosperms
are aberrant (Figure 8), (ii) Zmbt1-1 endosperms accumulate
low levels of starch and high levels of ethanol and alanine in
Zmbt1-1 endosperms (Figures 3, 7) due to altered expression
of nuclear-encoded starch biosynthetic enzymes and enzymes
involved in glycolysis and ethanol and alanine production
(Figure 4, Supplemental Table 1); and (iii) delivering
ZmBT1-1 specifically to mitochondria reverts the Zmbt1-
1 phenotype and protein expression pattern (Figures 2–8,
Supplemental Table 3).

A Suggested Functional Role for
Mitochondrial ZmBT1-1 in Facilitating
Exchange Between Intramitochondrial
AMP and Cytosolic ADP in
Maize Endosperms
Dual targeting of proteins to mitochondria and plastids occurs
mainly when proteins have overlapping functions in the two
organelles (Smith et al., 1998; Peeters and Small, 2001; Goggin
et al., 2003; Christensen et al., 2005; Duchêne et al., 2005;
Kmiec et al., 2014), although dually targeted proteins may also
fulfill different roles in plastids and mitochondria. In some
cases, proteins with dual targeting play important roles in
mitochondria, but not in plastids (Tarasenko et al., 2016).

ZmBT1-1 and homologs in other cereal species are counter-
exchange transporters that recognize not only ADPglucose, but
also ADP and AMP (Shannon et al., 1998; Bowsher et al., 2007;
Cakir et al., 2016). Accordingly, as illustrated in Figure 10, we
propose that inmaize endosperms ZmBT1-1 could play a decisive
role in exporting AMP from mitochondria to the cytosol in
exchange for ADP. Such transporters are not without precedent,
since mitochondrial AMP exporters have been reported in
both yeast and mammals (Fiermonte et al., 2004; Todisco
et al., 2006). Possible sources of AMP in the mitochondrial
matrix include reactions leading to the activation of amino
acids for protein synthesis, and formation of various CoA-
derivatives (catalyzed by amino-acyl tRNA synthetases and acyl-
activating enzymes, respectively) (Shockey et al., 2003; Duchêne
et al., 2005; Igamberdiev and Kleczkowski, 2006). Although
it has been suggested that de novo purine biosynthesis that
leads to AMP production is exclusively located in plastids
(Zrenner et al., 2006), immunolocalization and proteomic
analyses have provided evidence that enzymes of the de novo
purine biosynthesis pathway are also localized tomitochondria in
several organs and species (Atkins et al., 1997; Goggin et al., 2003;
cf. Supplemental Table 3, Krath and Hove-Jensen, 1999; Huang
et al., 2009; cf. Supplemental Table 1, Lee et al., 2013).

ADP incorporated into the matrix by mitochondrial ZmBT1-
1 could be converted to ATP to be exported to the cytosol
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FIGURE 10 | Metabolic scheme illustrating the suggested roles of ZmBT1-1 in

the mitochondrion and in the amyloplast of maize endosperms. In amyloplasts,

ZmBT1-1 could play a role in facilitating the incorporation of cytosolically

produced ADPglucose in exchange for newly synthesized AMP or ADP

produced by the starch synthase reaction. In mitochondria, ZmBT1-1 could

play a decisive role in exporting AMP to the cytosol in exchange for ADP

which, once in the matrix, could be converted to ATP by oxidative

phosphorylation. ATP generated in the mitochondrion could be exported to

the cytosol by means of the ADP/ATP carrier. GBSS, granule-bound starch

synthase; PGM, phosphoglucomutase; SP, starch phosphorylase; UGP, UDP

glucose pyrophosphorylase.

by means of the ADP/ATP carrier (Figure 10). Thus, the net
balance inherent in the suggested mechanism of ZmBT1-1-
mediated adenylate transport in maize endosperms would imply
the export to the cytosol of one molecule each of mitochondrially
synthesized AMP and ATP in exchange for two molecules
of cytosolic ADP (Figure 10). Mitochondrial ZmBT1-1 could
therefore play a role in energy provision by mitochondria in
maize endosperms. In amyloplasts, ZmBT1-1 could participate
in facilitating the incorporation of cytosolic ADPglucose in
exchange for newly synthesized AMP or ADP produced by the
starch synthase reaction (Figure 10).
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