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Post-translation modification of proteins plays a critical role in cellular signaling
processes. In recent years, the SUMO (Small Ubiquitin-Like Modifier) class of molecules
has emerged as an influential mechanism for target protein management. SUMO
proteases play a vital role in regulating pathway flux and are therefore ideal targets for
manipulating stress-responses. In the present study, the expression of an Arabidopsis
thaliana cysteine protease (OVERLY TOLERANT TO SALT-1, OTS1) in wheat (Triticum
aestivum L.) has led to improved plant growth under water stress conditions.
Transformed wheat (pUBI-OTS1) displayed enhanced growth and delayed senescence
under water deficit when compared with untransformed Gamtoos-R genotype or plants
carrying an empty vector. Transformed pUBI-OTS1 plants also maintained a high relative
moisture content (RMC), had a higher photosynthesis rate, and also had a higher total
chlorophyll content when compared to untransformed plants or plants carrying an empty
vector. SUMOylation of total protein also increased in untransformed plants but not in the
AtOTS1 transformed plants. Our results suggest that SUMO-proteases may influence
an array of mechanisms in wheat to the advantage of the crop to be more tolerant to
water stress caused by drought. This is the first report to elucidate SUMOylation effects
in the hexaploid crop wheat (T. aestivum L.).

Keywords: SUMO protease, transgenic wheat, water stress tolerance, drought, RuBisCo, chlorophyll
fluorescence, OVERLY TOLERANT TO SALT 1

INTRODUCTION

Water stress, due to periods of drought, is one of the most important abiotic stressors hampering
productivity in agriculture crops. It occurs episodically in many regions is and, in some instances,
it will be continuous with no indication of ending. Bread wheat (Triticum aestivum L.) is a high
commodity crop cultivated in many countries accross a wide range of agroecological conditions and
lack of water due to drought severely affects wheat productivity. Plants tolerate such water stress due
to an array of biochemical reactions leading to phenotypic plasticity. Wheat, as with most cereals,
will counter lack of water by several mechanisms such as the induction of reactive oxygen species-
detoxifying agents, modification of photosynthesis rate, altering gene expression, re-allocation of
proteins and their turn-over, ultimately affecting growth rate (Cruz de Carvalho, 2008; Ford et al.,
2011; Bowne et al., 2012). Wheat will also shorten its lifespan to reproduce prior to water resources
becoming totally depleted, a phenomenon known as drought escape or the ephemeral strategy
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(Shavrukov et al., 2017). Drought escape is often associated with
stunted growth since the plant primarily channels all it nutrients
and energy for seed production. However, the seed quality and
yield are usually negatively affected, an undesirable agronomical
attribute (Zampieri et al., 2017).

Regulation of protein post-translation modification (PTM)
by Small Ubiquitin-like Modifiers (SUMO) is further an
important biochemical mechanism to regulate plant growth
during stress (Guerra et al., 2015). The process is referred to
as SUMOylation, which is reminiscent of ubiquitination. The
process employs its own set of analogous enzymes (E1, E2,
and E3) to tag specific proteins through sequential catalysis
activation, conjugation, and ligation, in respective reactions
(Colby, 2006; Miura and Hasegawa, 2009; Hansen et al., 2017;
Rytz et al., 2018). SUMOylation requires ATP and is a two-step
reaction catalyzed by the heterodimeric E1 activating enzyme
(SAE2/SAE1), forming a thioester bond between its catalytical
cysteine and the C-terminal carboxyl group of SUMO. E2
conjugating enzyme (ubc9) receives this SUMO on the cysteine
residue. With the aid of E3 SUMO ligase, SUMO is then carried to
the ε-group of lysine of the target protein, forming an isopeptide
bond (Desterro et al., 1999; Saracco et al., 2007; Gareau and
Lima, 2010). SUMO conjugation of proteins leads to changes
in their stability, availability, and functionality which could be
detrimental to the plant (as reviewed by Botha et al., 2017).
Liu et al. (2016) further revealed that the enzymes involved
in the SUMOylation process deviated from conventional gene
transcription by using a downstream gene 39-UTR, making use
of a functional Pol V-dependent pathway.

SUMOylation is also important during plant development.
Engineered Arabidopsis thaliana, which had a mutation in
either SAE1/2 encoding E1 or SCE1 encoding conjugating
(E2) enzyme, suffered serious growth defects (Saracco et al.,
2007). However, SUMOylation is a reversible process. SUMO
proteases act as iso-peptidases that specifically cleave the
SUMO–substrate linkage during a process called deSUMOylation
that allows for the recycling of free SUMO and ensuring
homeostatic control of SUMO-mediated signaling (Johnson,
2004; Capili and Lima, 2007; Conti et al., 2008). In recent
years, much emphasis has been placed to understand the
de-SUMOylation process and the function of cysteine proteases
to unravel the process of SUMOylation. Seven SUMO cysteine
proteases, belonging to the CE and CP clans (Botha et al.,
2017) have been identified from A. thaliana. However, only
proteases AtULP1a (At3g06910), OVERLY TOLERANT TO
SALT-1 (OTS1) (At1g60220), OVERLY TOLERANT TO SALT-
2 (OTS2) (At1g10570), and EARLY IN SHORT DAYS 4 (AtESD4)
(At4g15880) have been functionally characterized (Reeves et al.,
2002; Conti et al., 2008; Srivastava et al., 2016a,b).

The cysteine protease OTS2 for example acts redundantly
to modulate salt stress response but plants lacking SUMO
proteases cannot endure salt stress (Conti et al., 2008, 2014).
A. thaliana mutants expressing OTS1/2 are also more resistant
to Pseudomonas syringae and have higher salicylic acid content
(Bailey et al., 2016). OTS1 overexpression in A. thaliana
further increases salt tolerance with a concomitant reduction
in SUMOylated protein production (Reeves et al., 2002;

Conti et al., 2008). Srivastava et al. (2017) recently found that
transgenic rice (Oryza sativa L. cv. Nipponbare) overexpressing
OTS1 (OsOTS1) were more salt-tolerant but also more drought-
sensitive possibly due to a reduced amount of the drought
responsive transcription factor OsbZIP23 leading to suppressed
drought responsive gene expression. Overexpressed OsOTS1
SUMO protease thereby directly targets the ABA and drought
responsive transcription factor OsbZIP23 for de-SUMOylation
affecting its stability. In contrast, OsOTS-RNAi lines, with
reduced OsOTS1 SUMO protease production, had an increased
abundance of OsbZIP23 and increased drought responsive gene
expression resulting in better drought tolerance in rice (Srivastava
et al., 2017). However, besides the recent study in rice, there is still
very little known about the function of OTS1 in crops other than
rice. Also, there is little known about any consequences of changed
OTS1 expression in other plants than rice or the non-crop plant
Arabidopsis regarding any possible benefits to a plant to withstand
water stress caused by drought. In general, exposure of a plant
to water stress caused by drought induces variations in osmotic
potential and affects cellular turgor pressure, causing vacuole
disruptions, and an increased expression of cysteine proteases
(Seki et al., 2002; Kidrič et al., 2014; Botha et al., 2017). In addition,
oxidative stress greatly increases during water stress conditions
leading to the formation of reactive oxygen radicals (hydrogen
peroxide), a reduction in the availability of amino acids and
ultimately protein degradation. In addition, the abundance of key
photosynthetic proteins such as the chloroplast-located ribulose-
1,5-bisphosphate carboxylase/oxygenase (RuBisCO) (Khanna-
Chopra, 2011) is affected under drought resulting in the
substantial reduction of photosynthesis (Chaves et al., 2008;
Perdomo et al., 2017).

The purpose of this study was therefore to advance our
understanding of the function of SUMO proteases in stress
protection particular during water stress conditions. Our
study was thereby aimed to specifically investigate if over-
expression of cysteine protease OVERLY TOLERANT TO
SALT-1 (AtOTS1) from A. thaliana (ecotype Columbia-0) in
bread wheat (T. aestivum L.) will provide improved tolerance to
water stress, as the elucidation of SUMOylation has so far almost
exclusively been conducted in the non-crop species A. thaliana.
In selected transformed wheat plants we particularly measured
plant growth as well as photosynthetic activity, changes in
proteolytic and antioxidative enzyme activity, and amino acid
production after exposure of plants to water stress caused by
drought exposure when compared with untransformed plants
and plants carrying an empty vector.

MATERIALS AND METHODS

Plant Treatment and Plant
Growth Analysis
For the assessment of the response of the plants overexpressing
AtOTS1 to water stress, seeds of transformed plants
overexpressing AtOTS1 (Gamtoos-R pUBI-OTS1; three third
generation plants from independent transgenic events) (Le Roux,
2015; Botha-Oberholster et al., 2017), plants only transformed
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with an empty vector (empty-pUBI), and non-transformed
wild type plants were germinated in pots containing an equal
volume of sand and soil in a greenhouse at 20◦C (16 h day:8 h
night cycle). Pots were equipped with a dripper irrigation system
containing nutrients (Multifeed TM, South Africa). Water supply
was stopped when plants reached the final extension stage of
growth (58–65 days after germination) corresponding to phase
45 of the Zadoks’ scale (Supplementary Figure S1; Zadoks
et al., 1974; Vendruscolo et al., 2007) (day 0 in experiments),
as heading and grain filling were shown to be one of the most
sensitive growth stages during wheat development to apply
drought stress (Ahmed et al., 2000; Ihsan et al., 2016). After
stopping any further water supply, all untransformed plants or
plants carrying an empty vector died after 7 days (no further
measurements were made with these plants after 7 days), while
the plants overexpressing AtOTS1 were analyzed until day 14
post watering (pw).

For plant growth analysis, plant height, and flag leaf length and
width were measured according to Aase (1977) using a line gauge
(unit of measurement in mm). In the case of plant height all the
individual tillers of the plant were measured from the ground
to the tip of the tallest tiller of the plant (n = 20). Plant fresh
and dry weight, which included turgid weight, was determined to
calculate the relative moisture content (RMC) (Sade et al., 2014,
2015). Soil samples (n = 3) to 150 mm depth were also collected
and the soil wet mass was determined after drying the soil in
an oven at 105◦C for 48 h then the soil was weighed and the
gravimetric soil moisture content determined (Black, 1965).

Photosynthesis (Fv/Fm), Stomatal
Conductance and Chlorophyll
Determination
Stomatal conductance was measured at three positions on each
leaf surface using a leaf porometer (model SC-1, Decagon
Devices, Inc., Pullman, WA, United States) as previously
described (Zarco-Tejada et al., 2000). Rate of photosynthesis
was measured according to Strasser et al. (2004) making use of
chlorophyll fluorescence (ChlF) induction transients (O-J-I-P),
using a hand-held Chlorophyll Fluorometer (model: OS-30P;
Manufacturer: Opti-Sciences, Inc., United States) QQ (Opti-
Sciences, 2004). Dark adaptation clips were applied to leaves for
20 min (prior to reading) to achieve a flush out of assimilates.
Technical repeats for both instruments were recorded at different
places from the tip to the base of the flag leaf to represent the
entire leaf surface. All measurements were taken at the onset of
the water stress treatment (day 0) and then at days 7 and 14 pw.

Extraction of chlorophyll was done according to Arnon (1949)
and spectrophotometrically determined with the SmartSpecTM

Plus BioRad. Chlorophyll content was calculated using the Arnon
(1949) equation. All measurements were carried out with three
biological repeats (n = 3) and conducted in triplicate (n = 9).

Enzyme Activity and Protein
Determination
Extraction of protein for enzyme activity analyses was performed
as described in Botha et al. (2014). For enzymatic analysis,

leaf tissue was snap-frozen in liquid N2 and then ground
to powder, followed by the addition of 500 ml of ice-cold
100 mM potassium phosphate buffer (pH 7.5) containing
1 mM ethylenediaminetetraacetic acid (EDTA) and 1% (m/v)
polyvinylpyrrolidone (PVP). After centrifugation (25,000× g for
20 min at 4◦C), the supernatant was used for enzyme assays.
All enzyme activity measurements were conducted with three
biological repeats (n = 3) and conducted in triplicate (n = 9).

Peroxidase activity was determined following a modified
method of Zieslin and Ben-Zaken (1991) with 0.1 M sodium
phosphate buffer (pH 5), 3 mM H2O2, 3 mM guaiacol, and an
aliquot of the enzyme extract (Botha et al., 2014). The formation
of tetraguaiacol was monitored at 470 nm. POX activity was
expressed as mmol tetraguaiacol min−1 mg−1 protein.

Glutathione S-transferase (GST) enzyme activity was
measured as described by Venisse et al. (2001) using 0.1 M
phosphate buffer (pH 6.5), 3.6 mM reduced glutathione, 1 mM
1-chloro-2,4-dinitrobenzene (DNB), and an aliquot of the
enzyme extract (Botha et al., 2014). The formation of GS-DNB
conjugate was monitored at 340 nm. GST activity was expressed
as mmol GSH min−1 mg−1 protein.

Protein Concentration
Protein concentration in plant extracts was determined according
to the method described by Bradford (1976) with the Bio-Rad
protein assay reagent with bovine albumin (Bio-Rad Laboratories
Inc., Hercules, CA, United States) as a standard, and using a
plate reader (Glomax Spectrophotometer, Promega, Sunnyvale,
CA, United States), as described by Rylatt and Parish (1982).

SDS-PAGE and Western Blot Analyses
Total protein was isolated from plants according to Dehesh
et al. (1986) with the addition of 2 mM phenylmethylsulfonyl
fluoride (PMSF) to the extraction buffer. Protein concentration
was determined as described above. Total protein (25 µg)
dissolved in 4X Laemmli buffer (Bio-Rad, Hercules, CA,
United States) was denatured at 95◦C for 5 min and then
separated on a Mini-Protein TGX gradient gel (4–15%, v/v)
according to the manufacturer’s instructions (Bio-Rad, Hercules,
CA, United States). Separated proteins were transferred to
a polyvinylidene difluoride membrane (Hybond-P, Amersham
Biosciences) with a Bio-Rad Trans-Blot R© SD semi-dry transfer
cell apparatus according to the manufacturer’s instructions (Bio-
Rad, Hercules, CA, United States). Membranes were blocked
with 3% (m/v) bovine serum albumin (BSA) and probed with
a polyclonal antibody against the large (LSU) and small (SSU)
Rubisco Subunit (1:50,000) (Botha and Small, 1987) and a
human anti-SUMO1 monoclonal antibody (1:2,500) (UBPBio,
Aurora, United States) diluted in phosphate buffered saline (PBS)
containing 3% (m/v) BSA. Protein detection was done with
alkaline phosphatase conjugated Donkey Anti-Mouse (Abcam)
(1:2,500) or goat anti-rabbit (1:7,000) (Sigma-Aldrich, St. Louis,
MO, United States) antisera in conjunction with nitro blue
tetrazolium and 5-bromo-4-chloro-3-indolyl phosphate (Sigma-
Aldrich, St. Louis, MO, United States).

To quantify protein expression, membranes were digitized,
and bands intensities were analyzed by densitometry using
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ImageJ software with a standard setting (ImageJ Software, NIH,
Bethesda, MD, United States). Results were expressed as relative
abundance, after normalization following two-way ANOVA.

Protease Determination
Extraction of total proteases was carried out with 0.1 M citrate-
phosphate buffer (CP, pH 5.6) containing 10 mM L-cysteine.
For extraction, leaf tissue was ground to a powder using liquid
N2, then cold CP buffer (20 mM, pH 5.6) was added. After
centrifugation (25,000 × g for 20 min at 4◦C), the protease
containing supernatant was analyzed on a gradient acrylamide gel
(5–15%). For gel preparation, the HoeferTM SG Series Gradient
Makers system was applied. Solution one (S1) contained a
30% acrylamide:N,N′-methylenebisacrylamide (29:1) solution,
1% (m/v) sodium dodecyl sulfate (SDS), 0.2% (m/v) gelatine,
10 % (v/v) tetramethylethylenediamine (TEMED), ammonium
persulfate (APS, 10%, m/v), and 1.5 M Tris pH 8.8. The second
solution (S2) contained all ingredients as in S1 with the exception
of gelatine and 30% acrylamide solution (equates to highest %T).
Gels were pre-electrophoresed at 50 V for 60 min in the gel buffer
storage condition at 4◦C, and then 80 mg of protein sample,
with or without addition of the cysteine proteinase inhibitor E64
(Barrett et al., 1982; Matsumoto et al., 1999), was loaded and
proteins were separated at 15 mA for 2 h. After separation, the
gels were carefully removed from the glass plates and washed
three-times in a renaturing buffer (2.5% v/v Triton-X 100 and
5 mM cysteine) and subsequently incubated in developing buffer
(0.5% v/v Triton-X 100, 50 mM Tris–HCl, pH 7.5 and 5 mM
CaCl2, 1 mM ZnCl2, 10 mM cysteine) for 24 h. The gels were
stained with Coomassie R-250 and destained until clear zones,
which indicate protease activity due to gelatine degradation, were
visible against the dark blue background (Palma et al., 2002).

Amino Acid Extraction and
Quantification
Leaf material was dried at 60◦C for 24 h. Samples were then
finely ground to powder to which 0.5 ml of 6 M HCI containing
norleucine (250 ppm) as an internal standard was added.
Amino acids analysis was conducted using the AccQ•TagTM

Ultra Derivatization Kit (Waters, United States) following the
manufacturer’s instructions, and as described by Boogers et al.
(2008). A photo diode array detector was used to detect
the derivatized amino acids at 260 nm. Amino acids were
identified by co-elution with amino acid standard H (Pierce,
United States) as well as commercially available individual amino
acids (Sigma, United States).

Data Analysis and Statistics
All measurements were made with three biological repeats
(n = 3) with measurements done in triplicate (n = 9).
Mean values are presented with their standard deviation
(SD) and analyzed using Graphpad Prism software version
5.0 (Motulsky, 20141). Statistical validation and significance
(p = 0.05) was determined with one-way analysis of variance
followed by post-t Dunnett’s test.

1http://www.graphpad.com/scientific-software/prism/

RESULTS

Phenotypic Response to Water Stress
To assess the responses of either untransformed plants or
transformed plants containing an empty-pUBI, or transformed
plants containing AtOTS1 (pUBI-OTS1), the plants were grown
in the greenhouse and phenotypically assessed at day 53 before
exposure to water stress. Figure 1 illustrates the phenotype of
untransformed (A–B) and transformed wheat plants expressing
AtOTS1 (C–E) before and after exposure to water stress. The
different types of plants had no significant difference in leaf length
or width (Table 1). However, plant height of transformed pUBI-
OTS1 plants (average 710 mm) differed significantly (p = 0.005,
n = 20) from that of the untransformed wild type plants (400 mm)
(Table 1). When water stress was imposed, the untransformed
plants were wilted and started to senesce after 2 days. By day 5,
untransformed plants and plants transformed with the empty-
pUBI were severely wilted and displayed symptoms of chlorosis,
bleaching, and leaf curling, and by day 7, these plants were dead
(Figure 1B). In contrast, the transformed pUBI-OTS1 plants only
expressed similar symptoms after 14 days of exposure to water
stress (Figure 1E).

To study the level of water loss experienced by the different
types of plants, relative moisture content (RMC) of leaves
and shoots, which in turn coincides with the gravimetric
analysis of soil water content, was also assessed (Figure 2).
Transformed pUBI-OTS1 plants had a significant higher amount
of water in its leaves after exposure to water stress when
compared to untransformed and empty-pUBI plants (p = 0.05).
Although both groups initially had an RMC of ± 80% at
a soil moisture content of about 80%, RMC in both leaves
and shoots greatly declined in the untransformed plants after
7 days of water stress exposure and leaves had only a RMC
of 15%. In contrast, pUBI-OTS1 transformed plants still had a
much higher leaf RMC (± 75%) 7 days after drought exposure.
RMC further declined but only to 60% RMC 14 days after
induced water stress exposure (Figure 2). A similar different
response to induced water stress was found when the shoot
RMC was measured for the different types of plants. Again,
transformed pUBI-OTS1 plants maintained a higher RMC after
exposure to water stress (7 or 14 days pw) when compared
to untransformed plants or plants transformed with an empty
vector (Figure 2).

Chlorophyll, Photosynthesis and
Stomatal Conductance
We then measured chlorophyll content, photosynthesis rate and
stomatal conductance in the untransformed and transformed
plants (Figure 3). Chlorophyll content was significantly reduced
(p ≤ 0.05) after exposure of plants to induced water stress
(Figure 3A). However, the transformed pUBI-OTS1 plants had
consistently higher chlorophyll content when compared with
untransformed and empty-pUBI plants. A significant reduction
in chlorophyll content was only observed in the pUBI-OTS1
transformed plants 14 days after exposure to water stress,
while untransformed and empty-pUBI plants had significantly
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FIGURE 1 | Phenotypic response of untransformed (WT Gamtoos-R) and transformed wheat (pUBI-OTS1) prior to (A,B), and after induction of water stress (C–E).
Where (A,B) is untransformed wheat at day 0 (A), and day 7 (B), and (C–E) is transformed wheat at day 0 (C), day 7 (D), and day 14 (E). Also depicted are the
phenotypes of transformed wheat plants (pUBI-OTS1, T1; pUBI-OTS1, T2; pUBI-OTS1, T3) (F–H).
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TABLE 1 | Plant height, as well as flag leaf length and width of untransformed (WT
Gamtoos-R) and wheat transformed with pUBI-OTS1 or empty vector (pUBI) prior
to exposure to water stress.

Genotype Plant organ

Plant height Leaf length Leaf width

(mm) (mm) (mm)

WT Gamtoos-R 400 ± 8.0a 380 ± 5.0a 65 ± 5.0a

Empty-pUBI 410 ± 18.0b 360 ± 18.0a 66 ± 5.0a

Transgenic pUBI-OTS1 710 ± 55.0c 370 ± 25.0a 82 ± 9.0a

Three independent transgenic lines were measured, with each one being compared
with the non-transgenic control plant (WT Gamtoos-R). Experiments were repeated
three times. Error bars indicate SD (n = 9) and significance was set at p = 0.05.

less (p = 0.05) chlorophyll already 7 days after exposure
to water stress.

A significant difference in the photosynthesis rate was also
measured in the plants. pUBI-OTS1 transformed plants had a
higher (∼15%) rate than untransformed and empty-pUBI plants.
After exposure to induced water stress, the photosynthetic rate
declined but pUBI-OTS1 transformed plants always had the

FIGURE 2 | Comparative analysis of relative moisture content (RMC)
measured in the leaves (A), and shoots (B) prior to and after induction of
water stress. The gravimetric readings of the soil are superimposed against
the RMC. Indicated are the RMC of untransformed (WT Gamtoos-R) and
wheat transformed with pUBI-OTS1 or empty vector (pUBI), emphasizing how
they maintain RMC under deficient soil moisture. Error bars indicate SD (n = 9)
and significance was set at p = 0.05.

highest rate when compared to untransformed or empty-pUBI
plants (Figure 3B).

Stomatal conductivity measured in the untransformed and
transformed plants also declined significantly with the onset of
water stress (p = 0.05) as indicated by the scatter plot (Figure 3B).

Change in Amino Acid Composition
We then characterized the amino acid composition following
water stress treatment in the plants. Before exposure to water
stress, transformed pUBI-OTS1 plants had higher levels of
most of the measured free amino acids, except for methio-
nine and phenylalanine which were higher in untransformed
plants (Table 2).

After exposure to water stress for 7 days, transformed plants
overexpressing AtOTS1 still had more free amino acids when
compared with untransformed plants with the exception of
proline, lysine, methionine, isoleucine, and phenylalanine, which
were at higher levels in the untransformed plants. The levels
of the free hydrophobic amino acids methionine, proline, and
phenylalanine more than doubled after induction of water stress
in both transformed and untransformed plants. Interestingly, the
arginine and aspartate content was undetectable after 7 days pw
in the untransformed plant, while these remained unchanged in
the transformed plants overexpressing AtOTS1. After 14 days pw
a notable decrease in leucine levels are observed (Table 2).

RuBisCO and SUMO Expression
To further study the effect of water stress, particularly on
RuBisCO and SUMO expression in untransformed, empty vector
transformed and the pUBI-OTS1 transformed plants, protein
extracts were analyzed by SDS-PAGE and protein blots were
probed with RuBisCO and SUMO1 antibodies (Figure 4). Protein
blots probed with anti-LSU (RuBisCO large subunit) and anti-
SSU (RuBisCO small subunit) IgGs revealed two cross-reacting
peptides with sizes of 56 ± 4 kDa (LSU) and 15 ± 2 kDa (SSU)
respectively, which are the correct sizes for the two subunits in
wheat (Botha and Small, 1987). To further estimate the relative
abundance of the two subunits, the protein blots were scanned
with a laser densitometer. Densitometric analyses of the blots
revealed that LSU was always more abundant in the transformed
pUBI-OTS1 plants than in the untransformed plants or empty-
pUBI plants before and also after 7 day of induced water stress
treatment (Figure 4). Both subunits decreased in abundance in
the untransformed and empty-pUBI plants when water stressed.
In contrast, the abundance of the two subunits only significantly
decreased in the transformed pUBI-OTS1 plants when plants
were exposed to water stress for 14 days (Figure 4A).

To study the changes in SUMO cysteine proteases, blots
of separated crude protein extracts were also probed with
monoclonal anti-SUMO1 IgG. Several cross-reacting peptides
were found ranging in sizes from 50 ± 10 kDa to 10 ± 5 kDa
but with no difference in the profile between the cross-reacting
SUMO1 peptides in the untransformed and transformed plants
overexpressing OTS1 (Figure 5A). However, several cross-
reacting SUMO1 peptides present in the profile of untransformed
plants, was absent in the transformed plants overexpressing
AtOTS1 after exposure to water stress.
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FIGURE 3 | (A) Total chlorophyll measured in the untransformed (WT Gamtoos-R) and wheat transformed with pUBI-OTS1 or empty vector (pUBI), prior to (day 0)
and after exposure to water stress (day 7, and 14). Error bars indicate SD (n = 3). Similar letters on the bars indicate no significant difference, whereas different letters
indicate significance at p = 0.05. (B) Rate of photosynthesis (Fv/Fm) (line graph) and stomatal conductivity (scatter plot) prior to (day 0) and after exposure to water
stress (day 7, and 14). Photosynthesis significance was determined by p = 0.005 where n = 6 and error bar indicate SD.

TABLE 2 | Levels of free amino acids in leave material of WT Gamtoos-R and transgenic PUBI-OTS1 measured prior to (day 0) and after induction of water
stress (day 7 and 14).

Genotype Days Free amino acid content [Concentration in % (m/m) dry solid]

his ser arg gly asp glu thr ala pro lys tyr met val lle leu phe

WT Gamtoos-R 0 0.1 0.31 0.21 0.3 0.5 0.49 0.24 0.39 0.28 0.32 0.225 0.61 0.28 0.15 0.28 0.84

7 0.11 0.2 0 0.28 0 0.55 0.3 0.4 0.88 0.5 0.14 2.51 0.15 0.32 0.6 1.65

pUBI-OTS1 0 0.11 0.325 0.32 0.31 0.56 0.596 0.24 0.396 0.295 0.395 0.21 0.54 0.31 0.19 0.41 0.32

7 0.11 0.314 0.36 0.3 0.57 0.75 0.25 0.45 0.4 0.4 0.22 0.62 0.23 0.21 0.9 0.6

14 0.12 0.298 0.296 0.26 0.56 0.6 0.15 0.33 0.56 0.31 0.19 0.52 0.26 0.21 0.225 0.595

Measurements was only taken for the WT Gamtoos-R until day 7, as it suffered irreversible damage and was dead by day 7. Red = increases > 50% from day 0.
Green = decreased > 50% from day 0.
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FIGURE 4 | (A) Protein blot of crude extract from untransformed (WT Gamtoos-R) and wheat transformed with pUBI-OTS1 or empty vector (pUBI) prior to (day 0)
and after exposure (day 7 and 14) to water stress, probed with anti-Rubisco (LSU) and (SSU) IgG. All lanes were loaded with 20 µg total protein. Blots were probed
with a 1:7 000 dilution of the polyclonal IgG against LSU, SSU. The leaf proteins were resolved by 12% (w/v) sodium dodecyl sulfate–polyacrylamide gel
electrophoresis prior to transferring to nitrocellulose. Images were cropped for presentation purposes. T1–T3 represents three independent transgenic events.
(B) Gel densitometric analysis of the protein blot in (A) of the rubisco large (LSU, 54 kDa) and small (SSU, 14 kDa) subunits in the leaf crude protein extracts from
untransformed (WT Gamtoos-R) and wheat transformed with pUBI-OTS1 or empty vector (pUBI) prior to (day 0) and after exposure (day 7 and 14) to water stress.
Data are expressed as relative levels of rubisco protein compared with the basic level in control line (mean value of 1.0). Each bar is the mean of three independent
values (biological replicates) ± SE.
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FIGURE 5 | (A) Top: Crude protein separated on a 12.5% SDS-PAGE from untransformed (WT Gamtoos-R) and transformed pUBI-OTS1 wheat prior to (day 0) and
after exposure to water stress (day 7 and 14). All lanes were loaded with 20 µg total protein. Bottom: Untransformed (WT Gamtoos-R) and wheat transformed

(Continued)
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FIGURE 5 | Continued
with pUBI-OTS1 or empty vector (pUBI) prior to (day 0) and after exposure (day 7 and 14) to water stress, probed with anti-SUMO IgG. All lanes were loaded with
20 µg total protein. Blots were probed with a dilution of 1:10 000 dilution of monoclonal IgG against SUMO1. Images were cropped for presentation purposes.
T1–T3 represents three independent transgenic events. (B) Gradient Zymograms depicting proteolytic activity of untransformed and transgenic pUBI-OTS1 prior to
(day 0) and after exposure to water stress (day 7 and 14). Zymograms (gradient 5–15%) were casted and in all cases 35 µg protein was loaded. Inclusion of an
incubation step with 0.1 mM Cystein Protease inhibitor (E-64) performed at pH 7, enabled for the identification of cysteine proteases. Lanes with +PI refers to
treatment with protease inhibitor; whereas –PI refers to no inhibitor treatment. Arrows indicated bands that were removed after treatment with the 0.1 mM Cystein
Protease inhibitor (E-64). The presented data is representative of two independent experiments. Images were cropped for presentation purposes, and the contrast
was adjusted (10%).

To further elucidate whether the peptides on the protein
blots were cysteine proteases, a protease inhibitor E64 specific to
cysteine proteases, were included in the protein analysis before
proteins were separated on gradient zymograms (Figure 5B and
Supplementary Figure S2). A comparison between the protein
profiles of untransformed and transformed pUBI-OTS1 plants
before exposure to induced water stress showed no difference
in the profiles of proteases in the two types of plants, with each
having five protein bands with proteolytic activity. Addition of
the cysteine protease inhibitor E64 blocked the activity of three
proteases. After 7 days of exposure to water stress, the profile of
transformed plants had two additional activity bands, the latter
being an E-64 inhibitible cysteine protease not present in the
proteolytic profile of the untransformed plants (Figure 5B). At
day 14 pw, two bands were confirmed to be cysteine proteases in
the transgenic pUBI-OTS1 after inhibition with E-64.

Enzyme Activity in Water Stressed Plants
Finally, we also measured the activity of enzymes usually
associated with plant stress and stress induced oxygen species.
POX activity differed significantly between the pUBI-OTS1 and
the untransformed and empty-pUBI plants (p = 0.05) (Figure 6).
After exposure to water stress, POX and GST activity greatly
increased in transformed pUBI-OTS1 plants, but not in the other
types of plants.

DISCUSSION

Overexpression of AtOTS1 changed in our study the phenotype
of wheat plants with plants becoming taller and having
broader leaves. Overexpression of AtOTS1 further provided
better tolerance to drought by delaying the onset of wilting
observed in the untransformed plants. Although water stress
significantly decreased the RMC in untransformed plants, such
dramatic decrease was not found in the AtOTS1 overexpressing
transformed plants. RMC generally serves as an essential
indicator as to how the plant manages its water stress condition,
which is directly related to soil water content (Hammad and
Ali, 2014). Despite a massive 60% decline in soil water content,
the transformed pUBI-OTS1 plants maintained a high RMC.
It was previously shown that overexpression of an array of
genes provide drought tolerance (Lawlor, 2012 and references
within) by maintaining full turgor pressure in cells during water
stress conditions.

Our results also directly contradict the recent findings
reported by Srivastava et al. (2017). Although a slight increase

in shoot length in OsOTS1 overexpressing rice plants under
non-stressed conditions was also found, OsOTS1 overexpression
increased, in contrast to our findings, the sensitivity of rice
plants against induced water stress with OsOTS1 overexpressing
plants also having a reduced amount of the drought responsive
transcription factor OsbZIP23 leading to suppressed drought
responsive gene expression. In contrast, silencing of OsOTS1
expression increased the adaptability to drought conditions.
Arguably, the contradicting findings might be due to differences
in rice and wheat drought sensitivity. In addition, the
possible action of OTS1 in these plant systems during stress
response processes cleaving the SUMO–substrate linkage during
deSUMOylation might be very different. Generally, rice is more
sensitive to drought and wheat can also better adapt to drought
conditions via high osmotic adjustment and recovery after stress
(Daryanto et al., 2017). In a recent meta-analysis study, Zhang
et al. (2018) also found that drought decreased agronomic traits
differently between wheat and rice among different growth stages.
In addition, a further reason for our contradicting finding might
be the application of a heterologous system using an Arabidopsis-
derived OTS1 gene expressed in wheat while Srivastava et al.
(2017) overexpressed a rice OTS1 in a homologous rice system
which could have caused gene silencing and hence increased
drought sensitivity.

In this study, we also found that delaying the onset of
induced water stress in AtOTS1 transformed plants had
several beneficial consequences for survival following induced
water stress. These plants maintained a higher content of
chlorophyll across the period of induced water stress,
when compared to untransformed plants. Drought induce
a reduction of total chlorophyll content as already found
in various crops (Mafakheri et al., 2010; Gholaminr and
Khayatnezhad, 2011; Hailemichael et al., 2016). However,
after long exposure to water stress (14 days with a final soil
water content ± 15%), the AtOTS1 transformed plants also
developed wilting symptoms that were comparable to the
symptoms developed in the other plants 7 days after water
stress exposure. A prolonged water stress is generally associated
with destruction or disorganization of thylakoid membranes,
subsequently decreasing and depleting chlorophyll and its
synthesis which is followed by plant death (Nilsen and Orcutt,
1996; Montagu and Woo, 1999).

The AtOTS1 transformed plants had further a higher
photosynthetic rate when compared to untransformed plants
(Marcus et al., 2008). The photosynthetic capacity (Fv/Fm
ratio) of transformed plants remained functional longer than
that of the other plants despite exposure to water stress.
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FIGURE 6 | Changes in the peroxidase (POX) (A) and glutathione-S-transferase (B) activities measured in untransformed (WT Gamtoos-R) and wheat transformed
with pUBI-OTS1 wheat prior to (day 0), and after induction of water stress (day 7 and 14). POX activity was measured by the formation of tetraguaiacol monitored at
470 nm, while GST activity represents the formation of GS-DNB conjugate at 340 nm. Error bars indicate SD (n = 3). Bars with the same letters indicate no
significant difference, whereas different letters indicate significance at p = 0.05.

Many photosynthetic proteins (photosystem I and II subunits;
CAB-binding proteins 2, 3, and CP29; protein import receptors;
GTP-binding proteins; ferredoxins; ADP/ATP translocase) are
substrates for SUMOylation (Elrouby and Coupland, 2010),
thereby promoting dysfunctionality amongst these proteins.
However, by overexpressing a SUMO-protease some of these

proteins might have been more deSUMOylated and therefore
more functional under drought-induced water stress.

Rate of photosynthesis is further characterized by the
maximum quantum yield of the primary photochemical reaction
in dark-adapted leaves (Parkhill et al., 2001). This provides
an indication of the presence of photo-inhibition during
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water stress anticipation (Paknejad et al., 2007). A comparison
of the Fv/Fm of untransformed and AtOTS1 transformed
plants implied differential adaptive photosynthetic and photo-
protective mechanisms after exposure to water stress. Since
Fv/Fm ratio is collectively indicative of the Photosystem (PS) II
functionality (Parkhill et al., 2001), our data suggest a unique
preservation of PSII in transformed AtOTS1 overexpressing
plants, which resulted in a slower decline in the ratio Fv/Fm
under water stress.

Transformed pUBI-OTS1 plants also had a higher abundance
of RuBisCO when compared to untransformed plants under non-
stress conditions. The RuBisCo abundance remained higher in
AtOTS1 transformed plants even after exposure to water stress
and only declined after long exposure to water stress (14 days
after water stress exposure with a soil water content ±15%).
RuBisCO consists of eight nuclear-encoded large subunits
(RuBisCO LSU) and eight chloroplast-encoded RuBisCO small
subunits (SSU) (Botha and Small, 1987). The large subunit
contains the active site, while the small subunits are responsible
for regulating the function and structure of RuBisCO (Raunser
et al., 2009). RuBisCO protein accumulation is generally affected
under stress conditions (Feller et al., 2008; Demirevska et al.,
2009). After exposure to induced water stress, the abundance
of both large and small subunits remained high in the AtOTS1
transformed plants with the large and small subunits declining
only after long water stress exposure (day 14 after water stress
exposure with a soil water content ± 15%). Since RuBisCO
subunits interact not only with each other, but also require
other protein partners for proper assembly and functioning
(Raunser et al., 2009), increased deSUMOylation due to AtOTS1
overexpression might have protected in transformed plants the
stability of the RuBisCO subunits during water stress.

We also found more proteolytic activity in transformed
plants overexpressing AtOTS1 with more, and also more intense,
activity bands particularly after exposure to induced water stress.
Some of these protease activities could be blocked by the
cysteine protease inhibitor E64 (Barrett et al., 1982; Matsumoto
et al., 1999) particularly after 7 days of water stress exposure.
However, we have so far not investigated if specifically any
SUMO proteases are represented in these activity bands. In our
protein expression analysis we also found as a consequence of
AtOTS1 overexpression fewer cross reacting SUMO1 peptides.
This finding possibly suggests that SUMOylation was lower
in the AtOTS1 transformed plants which would be consistent
with a previous finding in A. thaliana (Conti et al., 2008)
and rice (Srivastava et al., 2016b). In A. thaliana for example,
SUMOylation is directly influenced by the extent of stress
exposure (Verma et al., 2018). Prolonged exposure to water
stress leads to SUMO1/2 conjugation on a vast amount of
proteins, influencing overall protein trafficking and its turnover.
SUMOylation has the potential to change protein function
or cause complete inhibition of function, therefore designated
drought-associated proteins can no longer execute their function
(Verma et al., 2018). Therefore, deSUMOylation is crucial
for the survival of the plant during stress. Previously also
suggested has been that there is a link between SUMO1/2
SUMOylation and drought tolerance through OTS1 (cysteine

protease) deSUMOylation activity conditions (Conti et al., 2008;
Srivastava et al., 2016b; Verma et al., 2018).

The observed enhanced tolerance to drought in the AtOTS1
transformed plants can in part also be attributed to the up-
regulation of the antioxidative system (Foyer et al., 1994). The
cellular antioxidant system might be influenced by OTS1, since
POX and dismutases possess predicted SUMO attachment sites
(Srivastava et al., 2016b). It is therefore likely that SUMO
conjugation occurs on these enzymes during stress, thereby
affecting their activity and stability. GST activity also increased
significantly after exposure to drought. GST essentially affords
protein protection to various proteins under stress by detoxifying
endogenous plant toxins that accumulate as a consequence of
increased oxidative stress (Marrs, 1996). The observed GST
increase during water stress would assure protein functionality by
reducing oxidative damage (Cummins et al., 1999; Edwards et al.,
2000; Roxas et al., 2000).

Finally, oxidative stress is often also associated with
pronounced changes in amino acid amounts. Indeed, the
observed increase in GST and POX activity in the untransformed
(day 7) and AtOTS1 transformed plants (day 14) coincided
with higher proline content, suggesting that proline may
participate in scavenging reactive oxygen species in addition to
its role as an osmolyte as previously reported in salt stressed
plants (Hoque et al., 2007; Hossain et al., 2011; de Carvalho
et al., 2013; Rejeb et al., 2014). Particularly interesting was
the lower increase of the amino acid proline observed in the
untransformed plants. Proline provides osmoprotection and the
amount increases in many plant species, including maize, wheat
and pea, following exposure to water stress (Rampino et al., 2006;
Charlton et al., 2008; Witt et al., 2012). Since proline increased
more rapidly in our untransformed plants due to water stress,
AtOTS1 overexpression likely delays the natural response of
production of an osmoregulant like proline as a consequence of
drought-induced water stress.

In conclusion, we have found as new results that over-
expression of AtOTS1 in wheat increased both shoot and leaf
growth and lowered the abundance of SUMOylated proteins. In
addition, we could demonstrate for the first time that AtOTS1
overexpression in wheat, in contrast to the OsOTS1 rice, provides
better tolerance to drought by delaying the onset of water
stress. AtOTS1 overexpression maintained for longer vital cellular
processes, such as photosynthesis, increased deSUMOylation
thereby protecting the stability of the RuBisCO subunits during
induced water stress. In addition, the upregulated antioxidative
system activity lowered the stress response of an increase in
the osmoregulatant proline. Lastly, as the SUMO proteases
represented in our activity bands were not studied in detail, we
need to study them in future to fully understand their role in the
deSUMOlyation process that is responsible for delaying senesce
in the AtOTS1 overexpressing plants during drought.
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