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Biological membranes are predominantly composed of structural glycerophospholipids 
such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Of the 
membrane glycerophospholipids, phosphatidylinositol (PtdIns) and its phosphorylated 
derivatives (phosphoinositides) constitute a minor fraction yet exert a wide variety of 
regulatory functions in eukaryotic cells. Phosphoinositides include PtdIns, three PtdIns 
monophosphates, three PtdIns bisphosphates, and one PtdIns triphosphate, in which 
the hydroxy groups of the inositol head group of PtdIns are phosphorylated by specific 
lipid kinases. Of all the phosphoinositides in eukaryotic cells, phosphatidylinositol 
3,5-bisphosphate [PtdIns(3,5)P2] constitutes the smallest fraction, yet it is a crucial lipid 
in animal and yeast membrane trafficking systems. Here, we review the recent findings 
on the physiological functions of PtdIns(3,5)P2 and its enzyme—formation of aploid and 
binucleate cells (FAB1)—along with the regulatory proteins of FAB1 and the downstream 
effector proteins of PtdIns(3,5)P2 in Arabidopsis.
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INTRODUCTION

Biological membranes are physical barriers that regulate cellular biological reactions through 
dedicated permeable zones. They are composed of major structural glycerophospholipids 
such as phosphatidylcholine and phosphatidylethanolamine alongside minor regulatory 
phospholipids such as phosphatidylinositol (PtdIns) and its phosphorylated derivatives 
(phosphoinositides), which exert a wide variety of regulatory functions in all eukaryotic 
cells. Phosphoinositides spatiotemporally regulate diverse downstream cellular pathways via 
the recruitment of various effector proteins through specific membrane domains (Balla, 
2013). Phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] is the least abundant 
phosphoinositide in eukaryotic cells, comprising approximately 0.05–0.1% of the total 
phospholipids. Studies have shown that various mammalian physiological signals such as 
hormones and growth factors, and osmotic or oxidative stress signals in yeast and plant 
cells, cause a rapid elevation in PtdIns(3,5)P2 levels (Dove et  al., 1997; Meijer et  al., 1999; 
Sbrissa et  al., 1999; Bridges et  al., 2012; Hirano et  al., 2015). PtdIns(3,5)P2 levels are 
regulated by a synchronized mechanism consisting of PtdIns 3-phosphate 5-kinase, formation 
of aploid and binucleate cells/FYVE finger-containing phosphoinositide kinase (FAB1/PIKfyve), 
and a PtdIns(3,5)P2-phosphatase (SAC3/FIG 4) (Hasegawa et  al., 2017). FAB1 and PIKfyve 
are localized in the vacuoles and endolysosomes, respectively, and carry out essential roles 
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in endosomal membrane trafficking, including vacuolar sorting, 
endocytosis of membrane proteins, ion transport, cytoskeleton 
dynamics, and retrograde transport in animals and yeasts 
(Efe et  al., 2005; Shisheva, 2008; Ikonomov et  al., 2011). 
PtdIns(3,5)P2 is the product of FAB1, and has crucial roles 
in maintaining membrane trafficking, autophagy, and signaling 
mediation in response to various cellular stresses (Shisheva, 
2008). It has been demonstrated that loss of FAB1/PIKfyve 
function causes severe defects during embryogenesis, resulting 
in embryonic lethality in Drosophila spp., Caenorhabditis 
elegans, and Mus musculus (Nicot et  al., 2006; Rusten et  al., 
2006; Ikonomov et  al., 2011; Takasuga et  al.,  2012).

The majority of eukaryotes contain a single copy of the 
FAB1-encoding gene; however, Arabidopsis has four distinct 
FAB1-related genes (FAB1A, FAB1B, FAB1C, and FAB1D) of 
which only FAB1A and FAB1B contain a conserved FYVE 
(FAB1, YOTB, Vac1, and EEA1) domain (Mueller-Roeber and 
Pical, 2002). The diversity of FAB1 genes indicates the vast 
array of functions that FAB1 and PtdIns(3,5)P2 have in Arabidopsis 
and higher plants. This review summarizes the current findings 
on the physiological roles of PtdIns(3,5)P2, its catalyst enzyme 
FAB1, and its regulating and effector proteins in Arabidopsis.

STRUCTURES OF FAB1/PIKFYVE 
COMPLEXES IN YEAST, MAMMALS, 
AND ARABIDOPSIS

FAB1/PIKfyve forms a large protein complex with several 
regulatory proteins to simultaneously catalyze PtdIns 3-phosphate 
kinase and PtdIns(3,5)P2 phosphatase reactions, thereby regulating 
phosphoinositide 3,5-bisphosphate levels.

In yeast, the FAB1/PIKfyve complex is localized to the vacuole 
membrane and is composed of Fab1p, Fig  4p (Gary  et  al., 2002), 

an adaptor-like protein (Vac14p) (Bonangelino et  al., 2002), 
and a FAB1 regulatory protein (Vac7p) (Bonangelino  et  al., 
1997). FIG 4 is a phosphoinositide phosphatase enzyme that 
specifically catalyzes the production of PtdIns3P from PtdIns(3,5)
P2 (Gary et  al., 2002; Rudge et  al., 2004; Duex et  al., 2006a,b). 
The loss of FIG 4 function impairs the phosphatase and 
PtdIns3P 5-kinase activity of the FAB1 complex (Rudge et  al., 
2004; Duex et  al., 2006b; Botelho et  al., 2008), suggesting 
that FIG 4 may have an additional regulatory role in PtdIns(3,5)
P2 synthesis. The adaptor-like protein Vac14p consists of multiple 
HEAT repeat arrays (Andrade and Bork, 1995) over almost 
its entire sequence (Jin et  al., 2008), and forms oligomers via 
its C-terminal region (Dove et  al., 2002; Jin et  al., 2008; 
Alghamdi et al., 2013). Vac14p associates with all of the FAB1 
complex proteins, acting as a scaffold protein, and it has been 
proven that the association of Vac14p with Fig 4p is necessary 
for the positive regulation of PtdIns(3,5)P2 synthesis (Duex 
et  al., 2006a,b; Botelho et  al., 2008; Jin et  al., 2008). The 
FAB1 regulatory protein Vac7p is the only transmembrane 
protein with no conserved motif and no known metazoan 
homologs (Gary et  al., 2002). Vac7p and Vac14p have been 
demonstrated to independently regulate PtdIns(3,5)P2 levels 
in yeast (Duex  et  al., 2006b).

In metazoan cells, FAB1 (also called PIKfyve in mammals) 
(Sbrissa et al., 1999) is localized in the early and late endosomes 
where it forms a complex with VAC14 (ArPIKfyve in mammals) 
(Sbrissa et  al., 2004) and SAC3 (FIG 4) (Sbrissa et  al., 2007; 
Ikonomov et al., 2013). The triple complex composed of PIKfyve 
(FAB1), ArPIKfyve (Vac14), and SAC3 (FIG 4) is known as 
the PAS complex, and regulates the synthesis and turnover of 
PtdIns(3,5)P2 (Sbrissa et al., 2007, 2008; Ikonomov et al., 2009).

The Arabidopsis genome encodes four types of FAB1 (FAB1A–
FAB1D), named based on their similarity to the yeast FAB1 
(Whitley et  al., 2009). Yeast FAB1 and mammalian PIKfyve 
have a conserved N-terminal FYVE (FAB1p, YOTB, Vac1p, 

FIGURE 1 | Domain structures of FAB1, SAC family proteins, and VAC14 in Arabidopsis. Domain structures were identified using the PROSITE program  
(https://prosite.expasy.org/). FYVE; FAB1, YOTB, VAC1, EEA1 zinc finger domain, TCP1; Tailless Complex Polypeptide 1 domain found in chaperone proteins, SAC; 
suppressor of actin domain, TMD; transmembrane domain, WW; a domain containing two conserved tryptophans, HEAT repeats; a tandem repeat structural motif 
composed of two alpha helices linked by a short loop found in Huntingtin, Elongation factor 3, protein phosphatase 2A, TOR1, Q-rich; a glutamine rich domain.
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and EEA1)-finger domain, the central part of which comprises 
a Cpn_TCP1 (HSP chaperonin T-complex protein 1) homology 
domain and the C-terminal of which comprises a kinase catalytic 
domain. The FYVE-finger domain is responsible for binding 
PtdIns3P and localizing it to the endosomes (Shisheva, 2008). 
Arabidopsis FAB1A and FAB1B also possess a conserved FYVE 
domain, and the fab1afab1b double mutant has a male 
gametophyte-lethal phenotype suggesting functional redundancy 
between FAB1A and FAB1B in Arabidopsis. Phylogenic analysis 
has indicated that FAB1 orthologs without the FYVE domain 
are clustered in the higher plant lineage (Whitley et  al., 2009). 
Since the expression of FAB1C and FAB1D has been detected 
in various tissues (Bak et  al., 2013; Serrazina et  al., 2014), 
these proteins are likely to have diversified during the evolution 
of higher plants where they may have acquired novel functions 
beyond the canonical FAB1 (FAB1A and FAB1B) proteins. 
FAB1B and FAB1D have complementary roles in the regulation 
of membrane recycling, vacuolar pH, and the homeostatic ROS 
control in pollen tube growth, despite the cytosolic localization 
of FAB1D in the pollen tube (Serrazina et  al., 2014). Unlike 
the gene arrangement of FAB1, Arabidopsis has a single VAC14 
gene (Zhang et  al., 2018). Bimolecular fluorescence 
complementation has revealed that FAB1A/B and VAC14 
physically interact to form a functional protein complex in 
Arabidopsis (Whitley et  al., 2009; Hirano et  al., 2011; Zhang 
et  al., 2018). The Arabidopsis genome includes 9 SAC-domain 
containing phosphatase (SAC1-SAC9) genes (Zhong and Ye, 
2003) which can be separated into three different classes based 
on their homology; SAC1-SAC5 are the most similar to yeast 
FIG4p, SAC6-SAC8 have two C-terminal transmembrane domains 
and are the most similar to yeast SAC1p, and SAC9 is the 
largest protein containing a unique WW domain (Zhong and 
Ye, 2003) (Figure 1).

SUBCELLULAR LOCALIZATION FAB1 
AND PtdIns(3,5)P2 IN ARABIDOPSIS

In yeast and mammalian cells, the FAB1/PAS complex (comprising 
of FAB1, VAC14, & FIG 4) is localized in the vacuoles, 
endosomes, and lysosomes (Gary et  al., 1998; Shisheva et  al., 
2001; Rudge et  al., 2004; Botelho et  al., 2008; Jin et  al., 2008; 
Zhang et  al., 2012). In Arabidopsis, FAB1A is predominantly 
localized in the SORTING NEXIN-1 (SNX-1)-residing late 
endosomes of the developmental cell division, transition, and 
elongation zones of epidermal and cortical cells (Hirano et  al., 
2015), whereas FAB1B localizes to the endomembrane 
compartments including endoplasmic reticulum (ER)-like 
reticulate structures and vacuoles of the pollen tubes. However 
FAB1D, the plant-specific FAB1 ortholog with no FYVE-domain, 
is mainly localized in the cytosol indicating that the N-terminal 
FYVE-domain of FAB1 is necessary for its endosomal localization 
in Arabidopsis (Serrazina et  al., 2014).

The fluorescent PtdIns(3,5)P2-specific probe, based on 
tandem repeats of the cytosolic PtdIns(3,5)P2-interacting 
domain (ML1N) of the mammalian lysosomal transient 
receptor potential cation channel, Mucolipin 1 (TRPML1), 

was developed to label mammalian (Li et  al., 2013) and 
Arabidopsis cells. Using this probe, PtdIns(3,5)P2 was 
predominantly observed on late endosomes in root cells. 
Unlike the yeast and mammalian cells, the vacuolar localization 
of the PI(3,5)P2-specific probe was never observed in 
Arabidopsis (Hirano et  al., 2017b).

Intriguingly, FAB1A and PtdIns(3,5)P2 have been shown to 
be  localized in the plasma membrane on the shank of growing 
root hairs, hardening the region by constructing a secondary cell 
wall and cortical microtubule structures. This suggests that FAB1 
and PtdIns(3,5)P2 have acquired a novel function whereby they 
harden the root hair cell wall to regulate the organization of 
cortical microtubules and secretion of secondary cell wall structural 
components in higher plants (Hirano et  al., 2018) (Figure 2).

PHYSIOLOGICAL FUNCTIONS OF FAB1 
AND PtsIns(3,5)P2 IN ARABIDOPSIS

The most striking feature of PtdIns(3,5)P2 deficiency or 
FAB1(PIKfyve) dysfunction in many eukaryotic cells is the 
enlargement of vacuoles, endosomes, or lysosomes (Yamamoto 
et  al., 1995; Ikonomov et  al., 2001; Rutherford et  al., 2006; 
Jefferies et  al., 2008; Whitley et  al., 2009; Hirano et  al., 
2011; Takasuga et  al., 2012). In mammalian cells, impaired 
FAB1(PIKfyve) function has been reported to cause severe 
defects during embryogenesis, resulting in embryonic lethality 
in animals (Nicot et  al., 2006; Rusten et  al., 2006; Ikonomov 
et al., 2011; Takasuga et al., 2012). Furthermore, the fab1afab1b 
revealed a lethal male gametophyte phenotype in Arabidopsis 
(Whitley et  al., 2009), with mutant pollen showing severe 
vacuolar reorganization and vacuolar acidification defects 
following the first mitotic division (Whitley et  al., 2009). 
The inhibition of PtdIns(3,5)P2 production reduced vacuolar 
acidification and convolution, and delayed stomatal closure 
in response to ABA. Since vacuolar H+-pyrophosphatase has 
been shown to bind PtdIns(3,5)P2 in vitro, the authors 
hypothesized that PtdIns(3,5)P2 may stimulate the H+-pumping 
activity of vacuolar H+-pyrophosphatase in ABA-dependent 
stomatal closure (Bak et  al., 2013). However, a patch-clamp 
study of the Arabidopsis vacuole demonstrated that nanomolar 
levels of PI(3,5)P2 regulate chloride channel a (CLC-a), a 
member of the anion/H+ exchanger family, which is implicated 
in stomatal movements in Arabidopsis, but not H+-
pyrophosphatase (Carpaneto et al., 2017). These observations 
suggest that PtdIns(3,5)P2 is localized in the vacuolar membrane 
where it exerts various vacuolar functions to regulate 
PtdIns(3,5)P2 effector proteins, however the presence of 
PtdIns(3,5)P2 on the vacuolar membrane could not be detected 
by ML1N-based fluorescent probably due to the detection 
limit of the probe (Kd of GFP-ML1N*2 was calculated to 
be  5.6  μM (Li et  al., 2013)).

The conditional down-regulation of FAB1A and FAB1B 
expression has been shown to cause various abnormal phenotypes 
including growth inhibition, hypo-sensitivity to exogenous auxin, 
disturbance of root gravitropism, and floral organ abnormalities. 
These pleiotropic developmental phenotypes are likely related 
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to auxin signaling in Arabidopsis (Hirano et  al., 2011). Auxin 
signaling defects in fab1afab1b knockdown are caused by the 
abnormal localization of the PIN2 and AUX1 auxin transporters, 
likely due to the inhibition of the late endosomal maturation 
process (Hirano and Sato, 2011; Hirano et  al., 2015, 2017a). 

It has also been reported that conditional knockdown of FAB1A 
and FAB1B, or inhibition of PtdIns(3,5)P2 production using a 
FAB1 inhibitor (YM201636), induces the release of late endosomes 
from cortical microtubules and disturbs cortical microtubule 
organization, highlighting the importance of late endosome 

FIGURE 2 | Subcellular localization of PtdIns3P, PtdIns(3,5)P2, FAB1s, SACs, and VAC14 in developing and mature Arabidopsis cells.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Hirano and Sato PtdIns(3,5)P2 Function in Plants

Frontiers in Plant Science | www.frontiersin.org 5 March 2019 | Volume 10 | Article 274

association in proper cortical microtubule construction (Hirano 
et  al., 2015). Studies have shown although FAB1C lacks the 
conserved N-terminal FYVE domain required to bind PtdIns3P, 
it still successfully produces PtdIns(3,5)P2 from PtdIns3P in 
vitro (Bak et  al., 2013). In addition, fab1b and fab1c T-DNA 
mutants exhibit stomatal closure defects, implying that FAB1B 
and FAB1C have overlapping functions in stomatal closure to 
control PtdIns(3,5)P2 levels in Arabidopsis guard cells (Bak 
et al., 2013). In fab1b and fab1d single mutants, pollen viability, 
germination, and tube morphology were not significantly affected, 
although the pollen tubes of these mutants were found to 
exhibit altered membrane recycling, vacuolar acidification, and 
decreased reactive oxygen species (ROS) production (Serrazina 
et  al., 2014). Lack of the N-terminal FYVE-domain in FAB1C 
and FAB1D may confer different subcellular localization patterns 
of these proteins in plant cells. In fact, a subcellular localization 
prediction program (SUBA4) predicts the nuclear localization 
of FAB1D (Hooper et  al., 2017), suggesting the PtdIns(3,5)P2 
synthesis role of FAB1D in nucleus. Future studies are necessary 
to determine the precise subcellular localization of FAB1C and 
FAB1D in plant cells.

FUNCTION OF FAB1- AND PtdIns(3,5)
P2-ASSOCIATED PROTEINS

Loss of VAC14 function leads to a lethal male gametophyte 
phenotype caused by vacuolar reorganization defects during 
pollen development (Zhang et  al., 2018). A similar male 
gametophyte phenotype is observed in vac14 and fab1afab1b 
mutants, and bimolecular fluorescence complementation suggests 
that FAB1A/B and VAC14 physically interact to form a crucial 
functional protein complex in Arabidopsis (Whitley et al., 2009; 
Hirano et  al., 2011; Zhang et  al., 2018).

The SAC1 protein has been shown to have PtdIns(3,5)P2 
phosphatase activity (Zhong et  al., 2005), with root hair 
elongation defects observed in sac1–2 homozygous T-DNA 
mutants. In contrast, gain of function SAC1 mutants have 
longer root hairs than the wild-type, indicating that SAC1 is 
essential for elongation during root hair morphogenesis 
(Vijayakumar et al., 2016). Although a direct interaction between 
FAB1 and SAC1 has not yet been reported, SAC1 and FAB1B 
have been found to co-localize in the wortmannin-sensitive 
vesicles of pollen and pollen tubes (Zhang et  al., 2018). These 
data suggest the formation of a complex between SAC1 and 
FAB1  in Arabidopsis.

The data also suggests the presence of PtdIns(3,5)P2 
phosphatase on the vacuolar membranes of Arabidopsis. In 
fact, yeast FIG 4 orthologs such as SAC2-SAC5 are localized 
in the vacuolar membrane to catalyze the conversion of 
PtdIns(3,5)P2 to PtdIns3P, thereby controlling the balance 
between these phosphoinositides and maintaining the 
morphology of storage and lytic vacuoles (Vermeer et  al., 
2006; Nováková et  al., 2014). SAC6/SAC1b-, SAC7/SAC1c/
RHD4- and SAC8/SAC1a-encoded proteins have been found 
to be  similar to yeast Sac1p and can rescue yeast from Sac1p 
mutations (Despres et  al., 2003), whereas SAC7 and SAC8 

are expressed broadly and SAC6 is expressed only in pollen 
(Despres et  al., 2003; Zhong and Ye, 2003). Mutations in the 
SAC7/RHD4 protein have been associated with aberrant root 
hairs, while mutant rhd4–1 roots accumulated higher levels 
of PtdIns4P in vivo, indicating that SAC7/RHD4 has a role 
in the regulation of PtdIns4P accumulation on the membrane 
compartments of growing root hair tips (Thole et  al., 2008). 
sac9 mutants have been shown to accumulate significant levels 
of PtdIns(4,5)P2 and PtdIns4P, and have a constitutively stressed 
phenotype with shorter roots and extreme cell wall and 
membrane structure abnormalities (Williams et  al., 2005; 
Vollmer et  al., 2011) (Figure 2).

PtdIns(3,5)P2 EFFECTOR MOLECULES

PtdIns(3,5)P2 is the least abundant phosphoinositide in eukaryotes 
(Balla, 2013), and constitutes 0.02% of the total phospholipids 
in Arabidopsis (Hirano et al., 2015). Although low in abundance, 
PtdIns(3,5)P2 has various physiological functions in Arabidopsis 
as a signaling molecule, which cannot be  carried out without 
the help of a range of effector proteins. Recently, a wide variety 
of effector proteins have been reported to associate with 
PtdIns(3,5)P2. In yeast, it has been demonstrated that autophagy 
related protein 18 (ATG18) is necessary for autophagy, the 
cytoplasm-to-vacuole targeting (Cvt) pathway, the delivery of 
the hydrolase aminopeptidase I  to the vacuole, and the early 
steps of autophagosome formation (Barth et  al., 2001; Guan 
et  al., 2001). ATG18 has both PtdIns3P- and PtdIns(3,5)P2-
binding sites, which are essential for its localization on vacuole 
membranes and its function as a negative regulator of PtdIns(3,5)
P2 synthesis (Hasegawa et  al., 2017). Eight orthologous ATG18 
proteins (ATG18a-ATG18h) have been found in the Arabidopsis 
genome, forming three major subgroups: ATG18a, ATG18c, 
ATG18d, and ATG18e form a cluster similar with the yeast 
protein Ygr223c; ATG18b is similar to yeast ATG18, whilst 
ATG18f, ATG18g, and ATG18h are more divergent forms 
(Xiong et  al., 2005). Among these, ATG18a is required for 
autophagosome formation during nutrient stress and senescence 
conditions (Xiong et  al., 2005) in coordination with ATG9 
(Zhuang et  al., 2017).

The plant immunophilin ROF1 containing a FK506 binding 
domain (FKBP), plays a significant role in the osmotic/salt 
stress responses of germinating seeds, and interacts directly 
with PI3P and PtdIns(3,5)P2 (Karali et al., 2012). The hydrophilic 
cation-binding proteins, PCaP1 and PCaP2, are involved in 
stomatal closure (Nagata et  al., 2016) and root hair 
morphogenesis (Kato et  al., 2013). They were also found to 
preferentially interact with PI(3,5)P2 and PtdIns(3,4,5)P3, 
however these interactions were inhibited by association with 
calmodulin in a Ca2+-dependent manner (Nagasaki et al., 2008; 
Kato et  al., 2013). The endosomal protein SNX1 binds to 
PI3P as well as PI(3,5)P2, and is involved in the auxin 
pathway, regulates endosome maturation (Hirano et  al., 
2015), PIN2 trafficking (Jaillais et  al., 2006), and cortical 
microtubule organization along with CLIP-associated protein 
(CLASP) (Ambrose et al., 2013). Vacuolar membrane-localized 
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H+-translocating pyrophosphatase (V-PPase) binds to PtdIns(3,5)
P2, PtdIns(4,5)P2, and PtdIns(3,4,5)P3 suggesting that PtdIns(3,5)
P2 may regulate vacuole acidification (Bak et al., 2013). Type-II 
Rho-related GTPase from plants 10 (ROP10) binds FAB1 and 
various phosphoinositides [PtdIns3P, PtdIns(3,5)P2, PtdIns4P 
and PtdIns(4,5)P2], resulting in  localization to and hardening 
of the root hair shank (Hirano et  al., 2018).

CONCLUSIONS AND 
FUTURE  PROSPECTS

In plants, the establishment of cell polarity is important for 
patterning processes. It has been reported that PtdIns(4,5)P2 
and PtdIns4P 5-kinase, which mediates their interconversion, 
are specifically enriched in the apical and/or basal polar plasma 
membrane domains, thereby controlling the polar localization 
of apical and basal cargoes in specialized cells such as root 
hairs, pollen tubes, and root cells (Ischebeck et al., 2008; Kusano 
et  al., 2008; Stenzel et  al., 2008; Tejos et  al., 2014). A recent 
study showed that FAB1B and PtdIns(3,5)P2 are predominantly 
localized in the plasma membrane of the root hair shank to 
control cortical microtubule organization and cell wall 
construction, thereby mediating root hair shank hardening in 
Arabidopsis. These results suggest that PtdIns(3,5)P2 and 
PtdIns(4,5)P2 have crucial roles in establishing cell polarity in 
specialized cells like root hairs. However, the function and 
significance of the majority of molecules involved in the 
PtdIns(3,5)P2-mediated regulation of cellular processes remains 

largely unknown. Future studies are required to determine the 
roles of PtdIns(3,5)P2 and its unique regulatory mechanisms 
in higher plants.
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