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CO, uptake and water loss in plants are regulated by microscopic pores on the
surface of leaves, called stomata. This enablement of gas exchange by the opening
and closing of stomata is one of the most essential processes in plant photosynthesis
and transpiration, affecting water-use efficiency (WUE) and thus drought susceptibility. In
plant species with crassulacean acid metabolism (CAM) photosynthesis, diel stomatal
movement pattern is inverted relative to Cz and C4 photosynthesis species, resulting
in much higher WUE and drought tolerance. However, little is known about the
molecular basis of stomatal movement in CAM species. The goal of this study is to
identify candidate genes that could play a role in stomatal movement in an obligate
CAM species, Kalanchoé fedtschenkoi. By way of a text-mining approach, proteins
were identified in various plant species, spanning Cz, C4, and CAM photosynthetic
types, which are orthologous to proteins known to be involved in stomatal movement.
A comparative analysis of diel time-course gene expression data was performed
between K. fedtschenkoi and two Cg species (i.e., Arabidopsis thaliana and Solanum
lycopersicum) to identify differential gene expression between the dusk and dawn
phases of the 24-h cycle. A rescheduled catalase gene known to be involved in stomatal
movement was identified, suggesting a role for HoO, in CAM-like stomatal movement.
Overall, these results provide new insights into the molecular regulation of stomatal
movement in CAM plants, facilitating genetic improvement of drought resistance in
agricultural crops through manipulation of stomata-related genes.

Keywords: Kalanchoé fedtschenkoi, stomatal movement, crassulacean acid metabolism, drought, rescheduled
gene expression, Arabidopsis thaliana, Solanum lycopersicum

INTRODUCTION

Crassulacean acid metabolism (CAM) is a plant adaptation that involves a carbon concentrating
mechanism that is based on a temporal separation of CO; fixation (Ehleringer and Monson,
1993), which is facilitated by the inverted day/night pattern of stomatal closing and opening in
comparison with C3 or C4 photosynthesis species (Males and Griffiths, 2017). Specifically, CAM

Frontiers in Plant Science | www.frontiersin.org 1

March 2019 | Volume 10 | Article 292


https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2019.00292
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2019.00292
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2019.00292&domain=pdf&date_stamp=2019-03-13
https://www.frontiersin.org/articles/10.3389/fpls.2019.00292/full
http://loop.frontiersin.org/people/523355/overview
http://loop.frontiersin.org/people/464858/overview
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Moseley et al.

Comparative Genomics and Stomatal Movement

species open their stomata during the night allowing for
uptake of atmospheric CO;, which is converted into malate
for storage in the vacuole. During the day, CO; is released
from malate while stomata are closed, resulting in CO;
accumulation around Rubisco for normal photosynthetic
processes (Ehleringer and Monson, 1993). Additionally, the
inversion of stomatal movement is an important drought
avoidance/tolerance mechanism in CAM photosynthesis plants,
by which water loss caused by evapotranspiration is decreased
and consequently water-use efficiency is increased. Engineering
of these traits into non-CAM species has great potential for
genetic improvement of drought resistance in crops, which
requires a deep understanding of the molecular mechanisms
underlying stomatal movement in CAM photosynthesis plants
(Borland et al., 2014; Yang et al., 2015).

Aside from stomata research in CAM, research on stomata,
in general, has recently increased (Figure 1). In all plants,
stomata play essential roles in controlling water losses caused by
transpiration and CO, uptake for photosynthesis, modulating
the transpiration-driven water flow through the soil-plant-
atmosphere continuum, and plant adaptation to changing
environmental conditions and stresses (Damour et al,
2010). Understanding stomatal development, movement,
and patterning can facilitate engineering efforts to improve these
traits. However, two issues today hinder the pace of advancement
in stomatal research. Firstly, most work on these stomatal
processes has been conducted in the model C3 plant Arabidopsis
thaliana. This can present an issue when wanting to transfer
the knowledge gained from these studies to another species as
the genes involved in these processes can vary in regulation
and/or function, as seen in CAM species (Abraham et al., 2016;
Males and Griffiths, 2017; Yang et al., 2017), and in the grass
species Brachypodium distachyon (Raissig et al., 2016, 2017).
Secondly, homology between protein sequences can help infer
protein function (Clark and Radivojac, 2011), but the issue is
that many proteins’ functional information is missing from
annotation databases or is hidden in the scientific literature. For
instance, a protein of interest could be homologous to a protein
characterized to function in a stomata-related process, but this
information is not known because the characterized protein lacks
the gene ontology (GO) annotation.

There are text-mining tools that can be used to search
for information about similar proteins by combining BLAST
searches with links to articles from certain databases (Gilchrist
et al., 2008; Li et al., 2013; Jaroszewski et al., 2014). However,
these tools do not search the literature, therefore, limiting their
analysis. Recently, a new web-based tool called PaperBLAST
(Price and Arkin, 2017), was developed to combine sequence-
homology searches and text-mining of linked articles for
predicting a protein’s function. PaperBLAST has potential to
alleviate the two issues facing stomatal research described above,
and therefore aid in discovering molecular mechanisms behind
inverted stomatal movement seen in CAM species.

In this study, we first identified underexplored stomatal-
related genes that contain no stomata-related annotations
but have been linked to stomatal-related processes using
PaperBLAST. Next, we identified genes that could be involved

in the inverted stomatal movement in CAM plants through
a comparative analysis of time-course gene expression data
between an obligate CAM photosynthesis species (Kalanchoé
fedtschenkoi) and two Cs photosynthesis species (A. thaliana
and Solanum lycopersicum). Our research greatly expanded the
catalog of stomata-related genes in plants, providing a resource
for future experimental work in stomatal research of non-
model species, and more importantly, providing gene targets for
engineering CAM-like traits into non-CAM species.

MATERIALS AND METHODS

Ortholog Groups and Phylogenetic
Analysis

Ortholog groups consisting of proteins from 26 plant species
were obtained from Yang et al. (2017). For phylogenetic analysis,
protein sequence alignments were created using the web-based
MUSCLE program' with default parameters (Katoh and Standley,
2013; McWilliam et al, 2013; Li et al., 2015). Phylogenetic
trees were generated from the protein sequence alignments
using the web-based IQ-Tree program® with default parameters
(Trifinopoulos et al., 2016).

Gene Ontology Analysis of Protein

Sequences

Gene ontology terms for A. thaliana and K. fedtschenkoi genes
were taken from the gene annotation information downloaded
from Phytozome v12.1° (Goodstein et al., 2012). The right-sided
hypergeometric enrichment test at medium network specificity in
ClueGO (Bindea et al., 2009) was used to identify the biological
processes over-represented in individual gene sets. The Holm-
Bonferroni step-down method (Holm, 1979) was performed for
p-value correction. The minimum and maximum thresholds
for selected GO-tree levels were 3 and 8, respectively, while
individual clusters were required to include no less than 3%
of genes associated with each GO term. To minimize GO-
term redundancy, GO-term fusion and grouping settings were
selected and the representative term for each functional cluster
was determined as the term enriched at the highest level of
significance. The GO terms with p-values less than or equal to
0.05 were considered significantly enriched.

Data-Mining Using PaperBLAST

To include a variety of evolutionary lineages, the proteomes of
13 representative plant species including Amborella trichopoda
(basal angiosperm, Cs3 photosynthesis), Ananas comosus
(monocot, CAM photosynthesis), A. thaliana (dicot, Cs
photosynthesis), B. distachyon (monocot, C3 photosynthesis),
K. fedtschenkoi (dicot, CAM photosynthesis), Mimulus guttatus
(dicot, C3 photosynthesis), Musa acuminata (monocot, Cs3
photosynthesis), Oryza sativa (monocot, C3 photosynthesis),

Uhttps://www.ebi.ac.uk/Tools/msa/muscle/
Zhttp://www.igtree.org/
*https://phytozome.jgi.doe.gov/pz/portal. html
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FIGURE 1 | Number of publications per year related to stomata and guard cell research since 1949. Results of searching the PubMed database using the key words

“stomata” (A) and “guard cell” (B).

Phalaenopsis  equestris  (monocot, CAM photosynthesis),
Setaria italica (monocot, C4 photosynthesis), S. lycopersicum
(dicot, Cs photosynthesis), Sorghum bicolor (monocot, Cy
photosynthesis), and Vitis vinifera (dicot, C3 photosynthesis)
were downloaded from the PLAZA 4.0 database (Van Bel et al.,
2017; Supplementary Table S1). Each protein sequence was
used as a search query in PaperBLAST (Price and Arkin, 2017)
using an E-value threshold of le—3. The subsequent HTML
files contain various information on the homologous proteins,
such as functional information, article name, and text snippets
from articles containing the homologous protein’s IDs. The
HTML files were collected and parsed through searching for
any presence of stomata-related keywords (i.e., “stomata” and
“guard cell”) in each PaperBLAST hit’s affiliated data using
in-house python scripts. Any homologous proteins that did not
contain the keywords in their related data were filtered out.
The relevant extracted data for each species are summarized in
Supplementary Table S2.

Analysis of Time-Course Gene

Expression Data

The diel expression data for K. fedtschenkoi were taken from
Yang et al. (2017), which were generated from transcriptome-
sequencing (RNA-Seq) of whole leaf tissue samples collected
at 2-h intervals from plants grown under a 12-h light/12-h
dark cycle. The diel expression data for A. thaliana were taken

from Mockler et al. (2007), which were generated from samples
collected at 4-h intervals from plants grown under a 12-h
light/12-h dark cycle. Raw RNA-Seq reads for S. Iycopersicum
were taken from the DDBJ Sequence Read Archive* under the
accession numbers DRA003529 and DRA0035530, which were
generated from whole-leaf samples collected every 2 h from
plants grown in a 10-h light/14-h dark cycle (Higashi et al., 2016).
The S. lycopersicum raw sequencing reads were quality checked
by FastQC (Andrew, 2014), trimmed using Trimmomatic v0.36
(Bogler et al., 2014) with default parameters, and quality checked
again by FastQC. The trimmed S. lycopersicurn RNA-Seq reads
were mapped to the S. lycopersicum iTAG v2.3 reference genome
using TopHat2 v1.0.1 (Kim et al., 2013) using default parameters.
Read counts were computed using Cufflink v2.2.1 (Trapnell
et al,, 2012) and fragments per kilobase of transcript per million
mapped reads (FPKM) were calculated. Processing of all raw
sequencing data was performed using Kbase (Arkin et al., 2018).
Genes with an average FPKM less than 0.01 and with less than
half of their sampling points having an FPKM equal to zero
were filtered out from the K. fedtschenkoi and S. lycopersicum
expression data sets. Following previous works utilizing the
A. thaliana time course transcriptome dataset (Abraham et al.,
2016; Yang et al.,, 2017; Moseley et al., 2018), the A. thaliana
data was adjusted to arrive at expression profiles on the same

“https://www.ddbj.nig.ac.jp/index-e.html
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time scale as K. fedtschenkoi and S. lycopersicum gene expression
data. Specifically, the cubic interpolation algorithm in the pandas
Python library’ was used to simulate the A. thaliana gene
expression data at additional time points so that all three data sets
consisted of sampling points spaced every 2 h over a 24-h period.

Comparative Analysis of Gene

Expression

Comparative analysis of transcript expression between the time-
windows dusk and dawn was performed as described by Yang
et al. (2017). For both K. fedtschenkoi and A. thaliana, the dusk-
window covers 10, 12, and 14 h after the starting of the light
period and the dawn-window covers 22, 24, and 2 h after the
starting of the light period (Supplementary Figure S1). For
S. lycopersicum, which was grown under a slightly different light
regime than K. fedtschenkoi and A. thaliana, the dusk-window
covers 8, 10, and 12 after the starting of the light period, and
the dawn-window covers 22, 24, and 2 h after the starting of
the light period (Supplementary Figure S1). For each species,
any genes with negative gene expression levels were removed
and expression data for each gene was normalized as described
in Yang et al. (2017). A two-column matrix was created, where
rows represented genes, one column represented the sum of all
transformed dusk time points, and the other column represented
the sum of all transformed dawn time points. For each gene,
the right-tailed Fisher Exact Test was used to determine if
that gene’s expression was enriched in dusk, dawn, or neither,
according to the contingency tables described in Yang et al.
2017; (Supplementary Figure S1). The Fisher Exact Test was
performed using the fisher_exact function from the scipy Python
library®. The False Discovery Rate (Benjamini and Hochberg,
1995) was controlled per species and time-window at a p-value
of < 0.05. This comparative analysis was performed to identify
ortholog groups containing re-scheduled gene expression in
CAM species in comparison with C3 species, in which the
S. lycopersicum and A. thaliana gene were enriched in the same
time-window whereas the K. fedtschenkoi gene was enriched in
the opposite time-window (i.e., dawn vs. dusk).

RESULTS

Identification of Stomata-Related Genes

Our PaperBLAST analysis of the protein sequences in 13
plants species identified an average of 5,196 proteins per
species that could be involved in stomata-related processes,
accounting for 16.4% of the respective plant genome on
average (Supplementary Table S3). A total of 321 proteins in
the PaperBLAST database had data containing the keywords
“stomata” and “guard cell” (Table 1). Most of these proteins (304)
were A. thaliana proteins, with the second most (9) belonging to
S. lycopersicum. Only A. thaliana and S. lycopersicum had proteins
that matched to all 321 proteins in the PaperBLAST database
(Supplementary Table S3). Each protein in PaperBLAST is

Shttps://pandas.pydata.org/
Chttps://www.scipy.org/

TABLE 1 | Plants species with stomata-related proteins in PaperBLAST database.

Total count of Unique count of

Species hit genes hit genes
Arabidopsis thaliana 226698 304
Solanum lycopersicum 6531 9
Glycine max 3548 1
Oryza sativa Japonica Group 3283 3
Vitis vinifera 775 2
Zea mays 263 2
Total 321

linked to a publication(s) that contains information on the
respective protein. 272 publications were cataloged containing at
least one of the 321 proteins (Supplementary Table S3). Since
a majority of the 321 proteins were A. thaliana proteins and
that A. thaliana is a well-annotated organism, annotations of
the 304 A. thaliana proteins were examined. Using the current
annotation of A. thaliana proteins, 178 proteins were annotated
with stomata- or guard cell-related terms. An additional 20 genes
known to play key roles in stomatal movement and development
were added as well (Ohashi-Ito and Bergmann, 2006; MacAllister
et al., 2007; Pillitteri et al., 2007; Kanaoka et al., 2008; Kollist
etal,, 2014), totaling 198 stomata-related proteins with functional
annotation either GO or are known as key stomatal-related
genes (Supplementary Table S4). Among the 304 A. thaliana
stomata-related proteins in the PaperBLAST database, only 97
proteins were annotated as stomata-related in the GO database
or described as key stomatal-related genes, indicating that there
are 207 stomata-related genes missed by GO and hidden in the
scientific literature (Supplementary Table S5 and Figure 2A).
These 207 genes will be referred to as underexplored stomata-
related genes/proteins from here on. The biological processes
overrepresented in these 207 underexplored A. thaliana stomata-
related proteins include signal transduction, phosphorylation-
related processes, and several response processes (Figure 2B).

PaperBLAST uses an E-value threshold of le—3 to infer
homology between two proteins, and generally, this E-value
cutoff can be used reliably for this purpose (Pearson, 2013).
However, to produce a more confident set of stomata-related
genes for each species, the ortholog groups (OGs) of the 321
proteins linked to stomata-related processes in PaperBLAST
were extracted. In the construction of these OGs, Yang et al.
(2017) used a more stringent E-value threshold of le—5 to
infer homology and included proteins from 26 plant species.
A total of 257 OGs were extracted for the 321 proteins linked
to stomata-related processes in PaperBLAST. Individually, the
number of proteins from each species that shared the same OG
as the PaperBLAST protein ranged from just over 500 proteins in
A. trichopoda to over 1,200 proteins in both A. thaliana and Musa
acuminata (Supplementary Table S6). Further categorization
of these OGs on whether the respective species’ proteins were
orthologous to an A. thaliana protein in any of the three stomata
gene categories (i.e., annotated as stomata- /guard cell-related,
known key stomatal genes, or underexplored stomata-related
genes) is shown in Supplementary Table S7.
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Rescheduled Diel Expression of

Stomatal Genes in K. fedtschenkoi

It is hypothesized that the rewiring of diel gene expression pattern
played a role in the evolution of CAM plants from Cs plants (Yang
et al., 2017). To determine if any of the K. fedtschenkoi genes
orthologous to an A. thaliana gene in any of the three stomata
gene categories could play a role in the inversion of day/night
stomatal movement pattern, their diel expression profiles were
compared to their ortholog’s expression profiles in S. lycopersicum
and A. thaliana. Specifically, the gene expression profiles of 188
OGs, which were selected as they contained stomata-related
genes identified from the previous section in K. fedtschenkoi,
S. lycopersicum, and A. thaliana (Figure 2C).

Two criteria were used to identify stomata-related genes that
display rescheduled (dawn vs. dusk) gene expression in the
CAM photosynthesis species (K. fedtschenkoi) in comparison
with the two Cj; photosynthesis species (S. lycopersicum and
A. thaliana): (1) The K. fedtschenkoi gene must be significantly
enriched in either dawn or dusk, whereas the S. Iycopersicum
and A. thaliana orthologs must be significantly enriched in
the opposite time-window (i.e., dawn vs. dusk), and (2) the
K. fedtschenkoi gene must have a spearman rank correlation
coefficient < —0.6 with both the S. lycopersicum and A. thaliana
orthologs, whereas the S. lycopersicum and A. thaliana orthologs

must have a Spearman rank correlation coefficient > 0.6 among
themselves. Based on these two criteria, 16 OGs were identified
to contain stomata-related genes showing rescheduled (dawn vs.
dusk) gene expression in the CAM photosynthesis species in
comparison with the two C3 photosynthesis species (Table 2
and Supplementary Figure S2). Among these 16 stomata-related
OGs, only two OGs contained A. thaliana genes annotated
as stomata-related genes: CIPK23 (AT1G30270) and RCAR3
(AT5G53160) (Table 2). The remaining 14 OGs contained
A. thaliana genes that are not annotated or known as key
stomata-related genes but have been reported to be involved in
a stomata-related process in the literature, or in other words,
underexplored stomata-related genes.

Evolutionary Dynamics of
Stomata-Related Genes

The three plant species studied here have undergone multiple
rounds of whole-genome duplication (Yang et al, 2017),
which can cause multiple copies (i.e., paralogs) of one
gene. At large, gene duplications have contributed to the
evolution of novel functions (e.g., adaptation to stress) via the
subsequent dynamic events that can occur after gene duplication,
such as subfunctionalization and neofunctionalization (Yang
et al,, 2006; Panchy et al, 2016). To better understand the
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TABLE 2 | Orthologous genes in Arabidopsis thaliana, Solanum lycopersicum, and Kalanchoé fedtschenkoi that displayed differential enrichment between dusk and

dawn in gene expression.

A. thaliana gene name Description A. thaliana locus S. lycopersicum locus K. fedtschenkoi locus
ACA.I Autoinhibited Ca2+/ATPase I AT1G13210 Solyc01g011100 Kaladp0043s0103
AT1G17500 ATPase E1-E2 type family protein/haloacid dehalogenase-like AT1G17500 Solyc01g096930 Kaladp0050s0103
hydrolase family protein
AT1G26130 ATPase E1-E2 type family protein/haloacid dehalogenase-like AT1G26130
hydrolase family protein
AT1G72700 ATPase E1-E2 type family protein/haloacid dehalogenase-like AT1G72700
hydrolase family protein
PDR4 Pleiotropic drug resistance 4 AT2G26910 Solyc05g053570 Kaladp0058s0071
PDR6 Pleiotropic drug resistance 6 AT2G36380 Solyc05g055330 Kaladp0068s0280
Solyc06g065670 Kaladp0322s0001
KCS2 3-ketoacyl-CoA synthase 2 AT1G04220 Solyc05g013220 Kaladp0020s0110
KCS8 3-ketoacyl-CoA synthase 8 AT2G15090 Solyc12g006820 Kaladp0029s0057
Kaladp0050s0301
Kaladp0062s0076
Kaladp0095s0482
AT1G72180 Leucine-rich receptor-like protein kinase family protein AT1G72180 Solyc029091860 Kaladp0062s0167
AT5G25930 Kinase family with leucine-rich repeat domain-containing protein AT5G25930 Solyc09g064520 Kaladp0090s0003
Solyc12g098100
RK1 Receptor kinase 1 AT1G65790 Solyc04g077370 Kaladp0095s0362
Solyc04g077390 Kaladp0266s0009
CIPK23 CBL-interacting protein kinase 23 AT1G30270 Solyc01g008850 Kaladp0053s0051
CIPK3 CBL-interacting protein kinase 3 AT2G26980 Solyc129009570
HXK2 Hexokinase 2 AT2G19860 Solyc03g121070 Kaladp0037s0285
Kaladp0064s0085
CPK4 Calcium-dependent protein kinase 4 AT4G09570 Solyc10g081740 Kaladp0092s0084
Solyc11g065660
NAK Protein kinase superfamily protein AT5G02290 Solyc05g053930 Kaladp0058s0603
Solyc06g005500
PMR6 Pectin lyase-like superfamily protein AT3G54920 Solyc03g111690 Kaladp0024s0371
Solyc05g014000
RCAR1 Regulatory component of ABA receptor 1 AT1G01360 Solyc08g082180 Kaladp0042s0353
RCAR3 Regulatory components of ABA receptor 3 AT5G53160
CNGC5 Cyclic nucleotide gated channel 5 AT5G57940 Solyc03g114110 Kaladp0008s0414
CLC-B Chloride channel B AT3G27170 Solyc02g094060 Kaladp0011s0070
ATMLA Homeobox-leucine zipper family protein / lipid-binding START AT4G21750 Solyc10g005330 Kaladp0093s0030
domain-containing protein
NAP5 Non-intrinsic ABC protein 5 AT1G71330 Solyc129044820 Kaladp0040s0675
CAT2 Catalase 2 AT4G35090 Solyc02g082760 Kaladp0001s0016

evolutionary dynamics that supported CAM arising from Cs, the
phylogenetic relationships within the 16 OGs were examined.
Using A. trichopoda, which is a basal angiosperm plant species
(Albert et al, 2013), as an outgroup, phylogenetic trees were
constructed for each OG.

The OG containing the A. thaliana RCAR3 gene also included
two A. thaliana paralogs identified as RCARI (AT1G01360) and
RCAR?2 (AT4G01026). Only two genes from K. fedtschenkoi and
S. lycopersicum each were placed in this OG. Two subclades were
identified in this OG, one containing the A. thaliana paralogs
RCARI1 and RCAR2 and a S. lycopersicum gene (SL08G082180)
and the other subclade containing the A. thaliana RCAR3 gene, a
S. lycopersicum gene (SL03G007310), and the two K. fedtschenkoi
genes (Kaladp0008s0082 and Kaladp0042s0353) (Supplementary

Figure S3). RCAR genes are known to function as ABA
receptors and mediate ABA-dependent regulation of type 2C
protein phosphatases (Ma et al., 2009). In the presence of ABA,
RCAR genes inhibit type 2C protein phosphatases phosphatase
activities, which allows SNF1-related protein kinase 2 protein
kinases to activate components involved in regulating stomatal
movement (Culter et al, 2010; Raghavendra et al., 2010). The
K. fedtschenkoi RCAR3 gene was identified as having rescheduled
gene expression relative to the A. thaliana RCAR3 but not the
S. lycopersicurn RCAR3 (Supplementary Figure S3). Previous
work examining the temporal differences in gene expression
between the CAM species Agave Americana and A. thaliana
found similar evidence of rescheduled gene expression between
RCAR3 orthologs (Abraham et al, 2016). Determining the
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specific roles of each RCAR gene in ABA signaling, particularly
in CAM species, is needed to better understand the differences
in their gene expression between CAM and Cj species and the
impact the differences could have on stomatal movement.

The phylogenetic tree of the OG containing the A. thaliana
powdery mildew resistant 6 (PMR6, AT3G54920) gene displayed
rich evolutionary dynamics as multiple genes from each of
the three species were found within this OG (Supplementary
Figure S4). The rescheduled genes identified in this study
were not placed near each other in an evolutionary sense as
the S. lycopersicum genes (SL03G111690, SL05G014000) were
found several branching events away from the A. thaliana
(AT3G54920) and K. fedtschenkoi (Kaladp0024s0371) genes.
However, the A. thaliana and K. fedtschenkoi genes were
closely related to each other, as well as to one A. thaliana
(AT5G04310) and K. fedtschenkoi (Kaladp0008s0911) gene each
and three S. lycopersicum genes (SL03G071570, SL05G055510,
and SL11G008140). Kaladp0024s0371, identified as rescheduled
relative to the A. thaliana PMR6 gene, is predominantly
expressed during the day, while the A. thaliana PMR6 gene
is predominantly expressed toward the end of night time
(Supplementary Figure S4). The remaining closely related genes
displayed similar expression covering approximately the same
time window as the A. thaliana PMR6 gene. PMR6 encodes a
pectate lyase-like protein and mutations in PMR6 have shown
to alter the composition of the plant cell wall via increases in
pectin (Vogel, 2002). Moreover, stomata open more in pmr6
mutants than in wild-type likely due to the increased cell wall
stiffness of the guard cell (Woolfenden et al., 2017). Whether
alteration of cell wall composition during the day contributed to
the inversion of stomatal movement seen in CAM plants cannot
be determined here. Further investigation into the temporal
dynamics of cell wall composition in the guard cells of CAM
plants would provide better clues to the role of PMR6 in
stomatal movement, and to guard cell physiology in CAM
plants as a whole.

Two OGs containing underexplored genes had outgroup
rooted trees confidently constructed, with one OG containing
protein kinases and the other containing catalases. The protein
kinase OG contained two A. thaliana genes reported to
be involved in light-activation of stomatal opening, APKla
(AT1G07570) and APK1b (AT2G28930) (Elhaddad et al., 2014)
and a third reported to be involved in ABA-induced osmotic
stress response, NAK (AT5G02290) (Kodama et al, 2009).
The A. thaliana NAK gene formed a subclade with three
S. lycopersicum genes and two K. fedtschenkoi genes (Figure 3A),
potentially representing duplication events after divergence
from a common ancestor. The K. fedtschenkoi NAK gene,
Kaladp0058s0603 (NAKI), was found to have rescheduled
expression in comparison with the A. thaliana NAK gene, and
one of the S. Ilycopersicun NAK genes (SL06G010850). The
remaining NAK genes in S. Iycopersicum and K. fedtschenkoi
displayed expression covering approximately the same time
window as their respective paralogs. Little information is
available on the functional role of NAK, but Kodama et al. (2009)
have reported that under drought conditions, ABA induces NAK
gene expression. NAK autophosphorylates and migrates into the

nucleus and phosphorylates subsequent proteins. They propose
this results in modulation of nuclear function to cope with
dehydration stress. K. fedtschenkoi NAKI peaks in the morning,
while the NAK genes in the C3 plants are expressed during dusk.
CAM arose as an adaptation to water-limited environments, so
the rescheduled expression of an osmotic stress response gene,
which is closely related to genes involved in stomatal opening,
represents an interesting mode of CAM evolution.

The catalase OG contained three genes in each of the two
Cs; photosynthesis species (A. thaliana and S. lycopersicum),
consistent with a previous study (Mhamdi et al., 2012). However,
there were 6 K. fedtschenkoi genes in the catalase OG, which may
result from a recent whole-genome duplication in K. fedtschenkoi
(Yang et al,, 2017). The A. thaliana gene in the catalase OG
highlighted in Figure 3B, which contains rescheduled gene
expression in the CAM species in comparison with the Cj
species, is annotated as catalase 2 (CAT2) (Table 2). CAT2
is a part of the photorespiratory pathway and aids in the
detoxification of HyO; (Queval et al., 2007; Mhamdi et al., 2010,
2012). The CAT?2 clade in the catalase OG phylogenetic tree
(Figure 3B) includes all the genes listed in Table 2 for this OG but
also includes another K. fedtschenkoi gene (Kaladp0052s0025),
suggesting there are two CAT2 genes in K. fedtschenkoi. The
A. thaliana and S. lycopersicum genes have gene expression
enriched and peaking in the morning, as well as one of the
K. fedtschenkoi CAT2 (CAT2.1) genes (Figure 3B). The second
K. fedtschenkoi gene (CAT2.2) has gene expression enriched and
peaking during dusk (Figure 3B). This presents an interesting
scenario as the proteins that each catalase gene encodes for,
have relatively specific roles in determining the accumulation
of H,0O, produced through various metabolic pathways
(Mhamdi et al., 2012).

DISCUSSION

Research into stomata’s role in controlling water loss and gas
exchange as well as in facilitating protection against changing
environmental conditions and stresses has increased recently,
with the purpose of understanding the molecular mechanisms
behind these features. However, the functional information
generated from these studies is either missing from annotation
databases or is hidden in the scientific literature (Price and Arkin,
2017), therefore, hindering the progress in functional genomics
research to gain a deep and comprehensive understanding of
stomata-related genes. To help alleviate this problem, this study
identified genes that were neither annotated nor known as
key stomata-related genes across 13 plant species, but have
been reported as being involved in a stomata-related process in
the literature. To demonstrate the utility of this new resource
for stomata-related genes, the molecular mechanism behind
the inversion of stomatal movement in CAM species, relative
to C3 species, was investigated using the gene sets generated
for one CAM species (K. fedtschenkoi) and two Csz species
(A. thaliana and S. lycopersicum). Several genes were identified
as candidates for further investigation into inverted stomatal
movement in CAM.
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A little over 300 genes were found in the literature to be
involved in stomata-related processes, with a majority of them
belonging to A. thaliana. Stomata-related genes were identified in
each of the 13 plant species used in this study using PaperBLAST.
The subset of genes for each species were further categorized
based on sequence similarity with A. thaliana genes found with
PaperBLAST, which were either previously annotated/known
stomata-related genes, or underexplored stomata-related genes.
The underexplored stomata-related genes reported in this study
would serve as an excellent resource for future investigations into
the molecular mechanisms behind stomata-related processes,
particularly in non-Arabidopsis species. The genes identified
in the 12 plant species other than A. thaliana could have
other functional roles, even though they belong in the same
ortholog group. For instance, it has been recently reported
that orthologous genes involved in stomatal development and

patterning in B. distachyon and A. thaliana display divergence
in stomata-related function and regulation, even though they are
orthologous genes (Raissig et al., 2016, 2017).

To investigate the molecular mechanism(s) that could help
explain the inversion of stomatal movement seen in CAM
plants, relative to Cs; plants, the newly generated list of
homologous stomata-related genes across 13 plant species was
examined. CAM plants close their stomata during the day
to reduce their rate of transpiration, thus enabling them to
better tolerate drought-stress than C; plants. ABA plays an
essential role in a plants response to drought by facilitating
stomatal closure (Vishwakarma et al., 2017), and in CAM plants,
ABA concentrations have been altered to peak right before
morning (Abraham et al., 2016). The NAK gene has been
characterized to be induced by ABA in drought conditions
(Kodama et al., 2009) and was identified in the list of homologous
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stomatal-related genes as having rescheduled gene expression
between K. fedtschenkoi and two Cs species. Assuming the
NAKI gene in K. fedtschenkoi has the same function as its
A. thaliana ortholog, it can be hypothesized that the shift in
its expression could likely result from or result in the change
in ABA concentrations. This hypothesis can be tested using
molecular genetics and functional approaches in the future (e.g.,
characterization of knockout nakl mutants in K. fedtschenkoi).
Determining the role of NAKI in K. fedtschenkoi, and how it
relates to stomatal movement, could provide new insights into
the molecular mechanisms which CAM plants use to adapt to a
dry environment. Moreover, identifying the regulator of NAK1
could also help in understanding ABA signaling, and therefore
stomatal closing, in CAM plants.

An additional gene identified in the list of homologous
stomatal-related genes as having undergone rescheduling of
gene expression in K. fedtschenkoi relative to C3 species was a
catalase gene, CAT2. There are generally three catalase genes
in a plant’s genome, and each gene is considered functionally
conserved between species (Mhamdi et al., 2012). Specific
to the CAT2 gene, CAT2 is expressed in photosynthetic
mesophyll cells and guard cells, is involved in photorespiration,
and shows day-night rhythms in transcript abundance, with
peaks in the morning (Zhong et al, 1994; Zhong and
McClung, 1996; Queval et al., 2007; Mhamdi et al., 2010;
Mhamdi et al, 2012). CAT2’s primary role is in HO,
detoxification, specifically H>O, produced as a result of
photosynthesis (Mhamdi et al., 2010). Rubisco is a bifunctional
enzyme that also catalyzes oxygenation of RuBP, which
produces 2-phosphogylycolate as one of its products. This small
molecule is not metabolized via the Calvin-Benson cycle but is
dephosphorylated to produce glycolate, which is transported to

the peroxisomes. Within the peroxisomes, glycolate is oxidized
to glyoxylate using oxygen as a co-factor, which results in
H,0, being produced. This production is negatively controlled
by CAT2 (Figure 4A).

CAM is a mechanism to reduce photorespiration by reducing
the CO,:0, ratio in cells (Figure 4B). In other organisms that
have evolved a method to reduce glycolate production, the main
fate of glycolate is excretion or oxidation to glyoxylate via a
mitochondrial dehydrogenase using NAD™ as the final electron
acceptor (Stabenau and Winkler, 2005). Whether this is the
case in K. fedtschenkoi is yet to be determined, however, our
results suggest a reduced role for CAT2.1 in K. fedtschenkoi.
Interestingly, CAT2 seems to be duplicated in K. fedtschenkoi,
with one copy having conserved gene expression and the other
copy being expressed at dawn (Figure 3B). In a study in
A. thaliana, CAT2 was found to be involved in ABA signaling
for stomatal closure as cat2 mutants had significantly enhanced
ABA-induced stomatal closure (Jannat et al., 2011). These authors
presented a model where ABA activates respiratory burst oxidases
(RBOHs) in the membranes of guard cells which results in rapid
production of H,O; in the guard cells (Kwak et al., 2003). The
H,0, then activates Ca?™ channels causing stomatal closure
during the night (Pei et al., 2000; Murata et al., 2001; Figure 4C).
CAT?2 plays a negative role in ABA signaling in stomatal closure
by detoxifying the guard cells. This results in Ca?™ channels
not being activated which leaves the stomata open (Figure 4C).
Due to the role of CAT2 in stomatal opening, we propose that
CAT2.2, expressed during dusk in K. fedtschenkoi, could play a
role in stomatal opening by inhibiting ABA-induced stomatal
closure by reducing H>O; concentrations (Figure 4D). Several
other authors have suggested that H,O, activation of Ca?™
channels represents a possible convergent point for multiple
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stress signaling pathways (Gechev and Hille, 2005; Sewelam et al.,
2014; Niu and Liao, 2016). Functional characterization of both
CAT2 genes in K. fedtschenkoi is needed to determine any roles
in stomatal opening, as well as determine if CAT2.2 is circadian
regulated. Further determination of the role of H,O, signaling in
K. fedtschenkoi stomatal movement is needed.

In summary, this study cataloged hundreds of underexplored
stomata-related genes in multiple plant species including C3, C4,
and CAM photosynthesis plants. We also identified numerous
underexplored stomata-related genes that displayed re-scheduled
gene expression between orthologs in a CAM species and two
Cj3 species, providing valuable candidates for CAM-engineering
in C3 photosynthesis crops to enhance drought-resistance.
Furthermore, the impact of gene duplication and diversification
on CAM evolution was underlined, highlighting the evolutionary
dynamics involved in CAM evolution.
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