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Late Neogene and Quaternary climatic oscillations have greatly shaped the genetic
structure of the Mediterranean Basin flora, with mountain plant species tracking
warm interglacials/cold glacials by means of altitudinal shifts instead of broad
latitudinal ones. Such dynamics may have enhanced population divergence but also
secondary contacts. In this paper, we use a case example of subsection Willkommia
of Centaurea (comprising three narrowly distributed endemic species, Centaurea
gadorensis, C. pulvinata, and C. sagredoi) to test for reticulate evolution and recurrent
hybridizations between nearby populations. For this, we combine analyses of genetic
diversity and structuring, gene flow and spatial correlation, and ecological niche
modeling. Our results support the contention that the current genetic structure of
the three species is the result of historical gene flow at sites of secondary contact
during the glacial periods, followed by isolation after the retraction of populations to
the middle-upper areas of the mountains during the interglacial periods. The extent and
direction of the gene flow was determined largely by the location of the populations on
mountainsides oriented toward the same valley or toward different valleys, suggesting
the intermountain valleys as the areas where secondary contacts occurred.

Keywords: Centaurea, gene flow, Quaternary glaciations, reticulate evolution, secondary contacts

INTRODUCTION

Climatic changes since the end of the Neogene have greatly modeled the flora of the Mediterranean
Basin in terms of species distributions and divergence (Bocquet et al., 1978; Blondel and Aronson,
1995; Hewitt, 1996; Gómez and Lunt, 2007). Pleistocene glaciations caused some of the disjunct
distribution patterns found in several groups of Mediterranean plants and have shaped their
population genetic structure (Hewitt, 1996, 1999, 2000; Taberlet et al., 1998; Petit et al., 2003, 2005;
Svenning and Skov, 2007). Specifically, one of the most common plant-distribution patterns in
the Mediterranean mountain ranges is schizo-endemism (e.g., Verlaque et al., 1997; Thompson,
2005), in which fragmentation and isolation of a widespread ancestral taxon favored allopatric
differentiation of range-restricted endemic species. The resulting species are closely related, share
the same chromosome number, but inhabit disjunct areas (Favarger and Contandriopoulos, 1961).
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During the Pleistocene, mountains in the Mediterranean
peninsulas acted as glacial refugia (Taberlet et al., 1998;
Hewitt, 1999; Petit et al., 2003; Médail and Diadema, 2009).
Mediterranean refugia are usually regarded as “southern refugia”
(sensu Stewart et al., 2010) or “macrorefugia” (sensu Rull,
2009), as they constituted, in most cases, the source for further
northward recolonization. Such migration events usually implied
large latitudinal movements (of hundreds of kilometers) and
occurred through multiple founding events, resulting in the
pattern widely known as “southern richness vs. northern purity”
(Hewitt, 2000). This basic model, however, may be more
complex because of the persistence of species throughout the
glacial periods in refugia at latitudes higher than those of the
southern refugia, from which they recolonized surrounding
areas as the climate improved (Stewart and Lister, 2001). Plant
populations that remained in the southern European mountains,
in contrast, survived warm interglacials/cold glacials by means
of altitudinal shifts (Hewitt, 2000). It is generally accepted
that the wide diversity of microhabitats throughout the rugged
topography of these areas allowed species to migrate along
altitudinal gradients, favoring persistence, but also differentiation
of isolated populations in different mountains or even at
short distances in the same mountain range (Hewitt, 1999;
Gómez and Lunt, 2007; Médail and Diadema, 2009; Jiménez-
Mejías et al., 2015). However, vertical movements induced by
the repeated glacial/interglacial cycles of the Pleistocene could
also have encouraged hybridization and reticulate evolution in
lineages from Mediterranean mountains. At lower altitudes,
secondary contacts between vicariant lineages occurred over
the course of different glacial maxima, facilitating gene flow,
hybridization, and hybrid speciation, resulting in complex
evolutionary patterns (Thompson, 2005; Nieto Feliner, 2011,
2014). The reticulate evolution pattern linked to altitudinal shifts
has been documented in several Mediterranean genera (e.g.,
Fuertes Aguilar et al., 1999; Albaladejo and Aparicio, 2007;
Suárez-Santiago et al., 2007a; Alarcón et al., 2012; Maguilla and
Escudero, 2016) including Centaurea (Suárez-Santiago et al.,
2007b; Garcia-Jacas et al., 2009; López-Vinyallonga et al., 2015;
López-Pujol et al., 2016).

One of the groups in which reticulation phenomena have
been detected is subsection Willkommia (Blanca) Garcia-Jacas,
Hilpold, Susanna, and Vilatersana of the genus Centaurea L.
(Asteraceae; Suárez-Santiago et al., 2007b). This subsection
includes 20 species and 18 subspecies endemic to the eastern
Iberian Peninsula and northwestern Africa (Breitwieser and
Podlech, 1986; Devesa et al., 2014; Hilpold et al., 2014a). The
origin of Willkommia has been dated to about 5.5 Ma (Suárez-
Santiago et al., 2007b). Until recently, diversification within this
subsection was attributed to schizo-endemism processes (Blanca,
1981a). Nevertheless, the additivity patterns of nuclear ribosomal
ITS and ETS sequences and the geographical structure of the
detected ribotypes (Suárez-Santiago, 2005; Suárez-Santiago et al.,
2007b), as well as the evolutionary analysis of a satellite-DNA
family within the subsection (Suárez-Santiago et al., 2007c)
clearly indicate that Willkommia diversification has followed
a model of reticulate evolution. This reticulation is thought
to be the consequence of recurrent hybridizations between

divergent populations within the geographical range of a primary
radiation (i.e., microallopatric), triggered by the Pleistocene
climatic oscillations in the complex local topography (Suárez-
Santiago et al., 2007b).

Reticulate evolution is usually detected through phylogenetic
analyses based on nucleotide sequences of multiple species, as was
the case in the subsection Willkommia. However, to unravel the
reticulation process and its consequences on the genetic structure
and the identity of the species, more fine-scale studies are needed
(Nieto Feliner, 2011). Phylogeographic analysis of population
differentiation within species and among closely related species
within a geographically restricted area enables the testing of a
specific hypothesis on the evolutionary pattern followed by a
group of plant species and also makes it possible to infer the
role of climate changes as well as topography in explaining such
evolutionary patterns.

In this study, we have selected a case example within the
subsection Willkommia comprising three narrowly distributed
endemic species: Centaurea gadorensis Blanca, C. pulvinata
(Blanca) Blanca, and C. sagredoi Blanca. Phylogenetic analyses
have shown that C. pulvinata and C. sagredoi are sister species,
while C. gadorensis is genetically differentiated from them
(Suárez-Santiago et al., 2007b). However, their relationships have
not been completely resolved, mainly due to the polymorphisms
found in the ITS/ETS sequences of C. pulvinata, which show
an additivity pattern with respect to the other two species,
suggesting gene flow during diversification (Suárez-Santiago,
2005). Morphologically, the three species are closely related and
are differentiated mainly by characters related to the habit of
the plant, upper cauline leaves, involucre, and pappus of the
achene (see Supplementary Figure 1 and, for more details on the
taxonomy and distribution of these species, the review in Flora
iberica by Devesa et al., 2014). All three species are distributed
within a mountain area that comprises three close massifs
in the Baetic System of southern Spain (Devesa et al., 2014)
(Figure 1A): Sierra de los Filabres, Sierra Nevada, and Sierra
de Gádor. Also, all three are located totally or partially within
the Sierra Nevada/Gata area, one of the main Mediterranean
plant refugia (Médail and Diadema, 2009). Centaurea sagredoi
is endemic to the northernmost of the three massifs, the Sierra
de los Filabres, and it grows on acidic soils (schists). Only two
populations are known, one on the northern mountainside and
the other on the southern mountainside. Centaurea gadorensis
can be found in the southernmost mountain range, the Sierra
de Gádor, where up to seven populations have been reported
on basic soils (limestone). However, two populations of this
species are located on the southern side of Sierra Nevada, a large
massif situated geographically between Sierra de los Filabres
and Sierra de Gádor on schists (Figure 1A). Finally, Centaurea
pulvinata is restricted to two large populations along the northern
mountainsides of Sierra Nevada and one population on the
southern mountainside of Sierra de los Filabres, in all cases on
acidic substrates (Figure 1A).

The geographically restricted three-species system allows us
to investigate the reticulate evolution proposed in the subsection
Willkommia and how this was favored by the Pleistocene climate
fluctuations and topography. Here, we test whether the three
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FIGURE 1 | Distribution and genetic composition of the populations sampled. (A) Geographical distribution of the 10 populations of C. gadorensis (circles),
C. pulvinata (stars), and C. sagredoi (squares), distribution of the cpDNA haplotypes (pie charts), and estimated genetic structure based on microsatellite data using
the Bayesian approach implemented in STRUCTURE (bar plots). Pie charts indicate haplotype frequencies. STRUCTURE analysis is shown for K = 2, which
represents the uppermost hierarchical level estimated. (B) Inferred cpDNA network, following the statistical parsimony method, with TCS. Circle sizes are proportional
to the haplotype frequencies. Numbers in parenthesis indicate how many individuals have each haplotype. (C) Bar plot showing the results of the Bayesian clustering
of cpDNA data implemented in BAPS. Population codes and species names are shown below. For population codes, see Supplementary Table 1.

species originated in a context of vicariance interrupted by
secondary contacts and hybridization among the three species,
or in a scenario in which hybridization played no role during
speciation. Regarding reticulation in the evolution of the three
species, we evaluate the role of the topography and climatic
fluctuations of the Pleistocene in favoring secondary contacts
in lowlands between nearby populations oriented toward the
same valley. To test these hypotheses, we undertake the following
tasks: (1) we study the population genetic differentiation at intra-
and interspecific level using different methodological approaches

and thus gather evidence of the reticulate evolution pattern
they could have followed; (2) we examine suitable distributions
for the species at the present and the Last Glacial Maximum
(LGM; c. 21 ka); 3) we determine how geographical, climatic, and
topographic variation over space and time explain the pattern of
population genetic structure.

For these tasks, we use two complementary approaches. First,
for the genetic study, we analyze the genetic variation using a
combination of two different molecular markers with different
evolutionary rates and modes of inheritance: nuclear loci for
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microsatellites, and nucleotide sequences of the intergenic spacer
trnT–trnL of the chloroplast DNA (cpDNA). Second, for the
distribution study, we use ecological niche modeling (ENM) to
build the specific paleodistribution models.

MATERIALS AND METHODS

Plant Material
A total of 10 populations were sampled throughout the
distribution range of the three species (Figure 1A and
Supplementary Table 1). These included the only known
populations of C. sagredoi and C. pulvinata (two and three
populations, respectively), and five populations of C. gadorensis
(three from Sierra de Gádor and two from Sierra Nevada). The
populations were taxonomically assigned to each of the three
species according to the review of the genus in the Iberian
Peninsula (Devesa et al., 2014). All the populations except two
of C. gadorensis (PEC and REV) were sampled in early summer
of 2012. To increase the sampling of C. gadorensis in the Sierra
de Gádor, we sampled the PEC and REV populations in the
summer of 2014. For each population, leaf samples from 30
adult individuals (i.e., 300 individuals in total) were collected.
The individuals were randomly collected, trying to cover the
maximum possible area of each population while maintaining a
minimum distance of one meter between individuals.

DNA Extraction, Microsatellite
Genotyping, and cpDNA Sequencing
For microsatellite analyses, the genomic DNA of the 300 sampled
individuals (30 individuals of 10 populations) was extracted from
silica-dried leaves using the kit NucleoSpin Plant II (Macherey-
Nagel), following the manufacturer’s instructions. All individuals
were genotyped for seven microsatellite loci as described in
Fréville et al. (2000; loci: 13D10, 21D9) and in Marrs et al.
(2006; loci: CD37, 42CM27, 25CM6, CM17, CM15), and following
the PCR conditions explained in those studies. We selected
these loci from all the ones described in Fréville et al. (2000)
and Marrs et al. (2006) because they were the only ones that
yielded an unambiguous amplification pattern. Genotyping was
performed on an ABI PRISM

R©

3100-Avant Genetic Analyzer
(Applied Biosystems, Foster City, CA, United States). Alleles were
scored using GENEMARKER v1.85 (SoftGenetics, State College,
PA, United States).

The plastid intergenic spacer trnT–trnL was amplified and
sequenced for a subsample of 10 individuals per population
(100 individuals in total), using the primers a and b (Taberlet
et al., 1991), and the PCR conditions in Small et al.
(1998). Sequencing was performed on an ABI PRISM

R©

3100-
Avant Genetic Analyzer (Applied Biosystems, Foster City, CA,
United States). The resulting sequences were aligned using the
Clustal algorithm in the alignment editor BIOEDIT v7.0.5.3
(Hall, 1999), and then adjusted by eye. Indels were coded as
presence or absence at the end of the data matrix following the
simple indel coding method (Simmons and Ochoterena, 2000), as
implemented in INDELCODER (Ogden and Rosenberg, 2007).

The genotype matrix used in this article is available on
Figshare at https://figshare.com/s/4c7e64826f27b05499f2. All
cpDNA sequences were deposited in European Nucleotide
Archive (accessions LS974119–LS974128).

Genetic Diversity and Structure
Genotypic linkage disequilibrium and the departure from Hardy-
Weinberg expectations were tested with FSTAT v2.9.4 (Goudet,
2003) and GENODIVE v2.0b24 (Meirmans and Van Tienderen,
2004), respectively. The frequency of null alleles at each locus
and for each population, and the inbreeding coefficients (f )
were estimated with the software INEST v2.2 (Chybicki and
Burczyk, 2009). INEST takes into account simultaneously null
allele frequencies at each locus and the average level of the
intrapopulation inbreeding as a multilocus parameter. We used
the Bayesian method proposed by Vogl et al. (2002), which
provides robust estimates for multi-locus microsatellite data even
in the presence of null alleles (Chybicki and Burczyk, 2009). To
test whether the excess of homozygotes was due to inbreeding,
we compared the full model (used to estimate f considering
null alleles) and a null model (f as constants equal 0) using the
Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002).
The model with the lowest DIC will be the model best fit to
the data. When the full model fits the data better, it means that
inbreeding is the most important component of the model, and
explains the high value of f. INEST was also used to calculate the
observed and expected heterozygosities (HO, HE) corrected for
null alleles. GENODIVE was used to estimate the mean number
of alleles per locus (A) and the number of private alleles. Allelic
richness (Ar) was calculated using FSTAT. All these statistics
were computed for each population and for each species (by
pooling populations) across all loci. When multiple tests were
involved, the sequential Bonferroni-type correction was applied
to test for significance (Rice, 1989). For cpDNA, nucleotide (π)
and haplotype (H) diversity were calculated using ARLEQUIN
v3.5.2.2 (Excoffier and Lischer, 2010).

The distribution of genetic variability within and among
populations, and among species, was evaluated for all molecular
markers using an analysis of molecular variance (AMOVA;
Excoffier et al., 1992) and tested with a permutation test
(10,000 permutations) with ARLEQUIN. Population genetic
structure was analyzed using different approaches. First, FST
values were calculated for each pair of species and populations
using GENODIVE, for microsatellite data, and for each pair
of species with ARLEQUIN for cpDNA. Second, the Bayesian
algorithm implemented in STRUCTURE v2.3.3 (Falush et al.,
2003) was used to evaluate the number of genetic clusters (K)
in our microsatellite data. The number of clusters tested ranged
from one to 11, with 10 replicates per K, using the admixture
model and correlated allele frequencies. The burn-in period and
Markov Chain Monte Carlo (MCMC) iterations were set to
50,000 and 106, respectively. The optimal number of clusters
was estimated with the online tool STRUCTURESELECTOR
(Li and Liu, 2018). We identified the uppermost hierarchical
level of genetic structure using the delta K-method (1K; Evanno
et al., 2005), which accurately identifies it when the populations
are evenly sampled (Puechmaille, 2016); as is the case here.
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To explore other levels of genetic partitioning, we used the mean
posterior probabilities lnP(K) (Pritchard et al., 2000) and the
four independent estimators proposed by Puechmaille (2016;
MedMedK, MedMeaK, MaxMedK, and MaxMeaK) considering
a membership coefficient threshold of 0.5. To align and visualize
the STRUCTURE output across the 10 replicates, we used the
online program CLUMPAK (Kopelman et al., 2015). Third, for
microsatellites, the genetic structure was also assessed using
a model-free multivariate statistics-based clustering method,
a discriminant analysis of principal components (DAPC) on
R package ADEGENET (Jombart et al., 2010). The function
xvalDapc from ADEGENET was used to select by cross-
validation the correct number of principal components with
1,000 replicates using a training set of 90% of the data. The
number of principal components was chosen based on the criteria
that it had to produce the highest average percentage of successful
reassignment and lowest root mean squared error (Jombart
et al., 2010). Finally, BARRIER v2.2 (Manni et al., 2004) was
used to identify sharp genetic breaks among populations based
on Monmonier’s algorithm; such genetic “barriers” are often
interpreted as depicting the geographical location of putative
landscape features that influence gene flow (Manni et al., 2004).
The significance of our calculations was tested by means of 1,000
bootstrap matrices of Nei’s genetic distance Da (Nei et al., 1983)
previously established with MICROSATELLITE ANALYZER
(MSA) v4.05 software (Dieringer and Schlötterer, 2003). In this
way, up to 10 barriers were tested.

It was found that only locus 21D9 has a moderate null
allele frequency (mean = 0.157), while the rest has a mean
frequency < 0.05 (see the section “Results”). To test the possible
effect of the null alleles at the 21D9 locus on FST values and
genetic structuring analyses, we repeated some of these analyses,
considering null alleles (pairwise FST using the software FreeNA;
Chapuis and Estoup, 2007) and eliminating this locus (AMOVA,
STRUCTURE). The results were almost equal when null alleles
are not considered and when 21D9 is included (data not shown),
so this locus was not expected to cause significant problems in the
analyses. It has been suggested that biases are negligible when null
alleles are present at frequencies below 0.200 (Dakin and Avise,
2004). Therefore, we kept 21D9 in all analyses.

A cpDNA network was reconstructed following the statistical
parsimony method (Templeton et al., 1992) as implemented in
TCS v1.21 (Clement et al., 2000). Moreover, a Bayesian clustering
of cpDNA data was implemented in BAPS v6.0 (Corander et al.,
2008) to analyze the population genetic structure by clustering
sampled individuals into groups. We ran 10 replicates from each
of the 11 simulations from K = 1 to K = 11 during mixture
analyses. The parameters for admixture analyses based on the
mixture analyses were set as recommended in the BAPS manual
(100 iterations used to estimate the admixture coefficients for the
individuals, 200 reference individuals, and 20 iterations used to
estimate the admixture coefficients for the reference individuals;
Corander et al., 2013).

Gene Flow and Spatial Correlation
A number of independent tests were carried out using the
microsatellite dataset to investigate how gene flow has shaped

genetic diversity and population structure of the species studied.
First, to test whether the divergence process between the
species fits the schizo-endemic pattern proposed for subsection
Willkommia or whether there was gene flow between populations
and species during their divergence, we used the MCMC
approach implemented in the program 2MOD v0.2 (Ciofi
et al., 1999). The method compares the relative likelihoods for
two contrasting models of demographic history, a model of
immigration-drift equilibrium (gene flow model) vs. ancestral
population fragmentation into independent units diverging by
drift (drift model). The program was run with MCMC simulation
of 1,000,000 iterations; 10% of the output was discarded as the
burn-in period. Probabilities of each model were calculated using
both the species and the sampling locality as population units. We
used Bayes factors (BF) to describe the probability of the most
likely model over the probability of the other model.

Second, we tested the connectivity among populations by
estimating the migration rates among them. Thus, to know
whether there was recent (over two to three generations) gene
flow between the populations, we estimated migration rates (m)
between all individual populations using a Bayesian assignment
test with the software BAYESASS v1.3 (Wilson and Rannala,
2003). As program settings, the default values were used (MCMC
iterations, 3 × 106; length of the burn-in, 999,999; sampling
frequency, 2,000; delta value, 0.15). In addition, the extent
and direction of historical gene flow among populations were
estimated by calculating the historical mutation-scale migration
rates (M) with MIGRATE-N v3.6.4 (Beerli and Felsenstein, 2001).
We ran 30 replicates under a Brownian motion model, assuming
constant mutation rate for all loci. With a Bayesian approach,
a long chain with 20,000 genealogies to sample was run, with a
sampling increment of 100 (thus, totaling 2,000,000 genealogies
per replicate); the burn-in was set at 20,000. A static heating
scheme was chosen (temperatures were specified to 1.00, 1.50, 3
and 1 × 106), with uniform prior distribution both for 2 and M
(min: 0; max: 500; delta: 50). The effective number of migrants
per generation (Nm) among populations was estimated by using
the formula 4Nm = 2M (Beerli and Felsenstein, 2001). We could
not estimate migration rate (m) values, because those determined
from MIGRATE-N were mutation scaled (M), and mutation rates
(µ) for microsatellites for the genus Centaurea were not available.
Analyses were carried out at the CIPRES bioinformatic facility
(Miller et al., 2010).

Finally, we tested whether the observed genetic structure
was a consequence of limited dispersal across space. Thus,
we determined correlations between genetic differentiation
[FST distances (Nei, 1987), determined with GENODIVE and
transformed as FST/(1 − FST)] and geographical, climatic,
and topographic factors by multiple matrix regression
with randomization (MMRR; Wang, 2013). Geographical
matrix included logarithms of geographical distances between
populations. In order to generate the climatic and topographic
distance matrices, we first compiled GIS data layers for 19
bioclimatic variables and a digital elevation model at 30
arc-sec resolution (ca. 1 km) from the WorldClim website1

1www.worldclim.org
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FIGURE 2 | Diagram and matrix for the distance classes used in the spatial autocorrelation analysis. Class 1: intramountain-intramountainside (populations in the
same mountain range, same mountainside; surrounded by a purple circle on the diagram and 1 in the matrix); class 2: intermountain-same valley (populations in two
nearby mountains, on mountainsides facing the same valley; blue arrows on the diagram and 2 in the matrix); class 3: intramountain-intermountainside (populations
in the same mountain range, different mountainsides; black arrows on the diagram and 3 in the matrix); class 4: intermountain-different valley (populations in two
nearby mountains, on mountainsides facing different valleys; red arrows on the diagram and 4 in the matrix); class 5: one-mountain in between (populations in two
mountains with one mountain in between; gray arrows on the diagram and 5 in the matrix); class 6: two-mountain in between (populations in two mountains with two
mountains in between; green arrow on the diagram and 6 in the matrix).

(Hijmans et al., 2005). Topographic variables were aspect
(0◦ to 360◦ representing the azimuth that mountainsides
are facing), elevation (in meters), and slope (in percentage).
We extracted values for each variable at every locality using
ARCGIS v10.2 (ESRI, Redlands, CA, United States), performed
principal components analyses with the prcomp function and
“scale = TRUE” in R, and calculated the distances between
populations using the dist function in R. MMRR analysis was
implemented using the MMRR function in R (Wang, 2013).
Moreover, we also performed a MMRR analysis including a

topographic resistance-based distance matrix and excluding
direct geographical and topographic distances, to reflect
interpopulation biological connectivity based on topography,
and also a spatial autocorrelation analysis (using GENODIVE
and the transformed FST distances). These analyses were used
to test the genetic similarity between populations considering
the topography and the orientation of the mountainsides on
which the populations occur (Figure 2). Thus, if secondary
contacts occurred in the lowlands during the glacial peaks
and isolation at high altitudes during interglacial/postglacial
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periods, then we might expect that populations oriented to
the same valley are genetically more closely related than those
oriented toward different valleys. For resistance distance matrix,
we generated a map of topographic suitability values (for
aspect, elevation, and slope) using MAXENT v3.3 (Phillips
et al., 2006), translated the suitability scores into resistance
values (1-suitability) in order to generate a resistance layer, and
then we formulated the distance matrix from the resistance
layer by calculating pairwise least-cost path distances between
populations using gdistance package in R. For the spatial
autocorrelation analysis, the distance classes were (see Figure 2):
intramountain-intramountainside (populations in the same
mountain range, same mountainside; class 1), intermountain-
same valley (populations in two nearby mountains, on the
mountainside facing the same valley; class 2), intramountain-
intermountainside (populations in the same mountain range,
different mountainsides; class 3), intermountain-different valley
(populations in two nearby mountains, on mountainsides facing
different valleys; class 4), one-mountain in between (populations
in two mountains with one mountain in between; class 5),
two-mountain in between (populations in two mountains
with two mountain in between; class 6). Significance of
MMRR analyses and spatial autocorrelation was tested using
10,000 permutations.

Ecological Niche Modeling (ENM)
The maximum entropy algorithm implemented in MAXENT was
employed to evaluate the potential distribution of C. gadorensis
for both the present and LGM climatic conditions. ENM
was not performed with the other congeneric species studied
(C. pulvinata and C. sagredoi) because the number of wild
occurrences was not sufficient to establish reliable models
(Pearson et al., 2007). Presence data for C. gadorensis were
gathered from the Threatened Flora Information System (FAME)
of the Andalusian regional government (Mateos et al., 2010;
accessed under permission) and from the sampling sites of
this study. After removing duplicate records within each pixel
(30 arc-sec, ca. 1 km), 11 presence records resulted. To build the
distribution model for the present climatic conditions, a set of 19
bioclimatic variables at 30 arc-sec resolution (ca. 1 km) covering
the species distribution range and neighboring areas, and
representative of the period 1950–2000, was downloaded from
the WorldClim website. We performed a correlation analysis of
the bioclimatic variables within the study area using SDMtoolbox
v1.1b (Brown, 2014). From each pair or group of highly correlated
variables (r ≥ |0.9|), we selected the variable that contributed
most to the model (attending to values of percent contribution
and results of jackknife tests of variable importance) and had
a clear response curve (i.e., those variables with flat or nearly
flat response curves were not considered). The selected variables
were isothermality (bio3), maximum temperature of the warmest
month (bio5), minimum temperature of the coldest month
(bio6), and precipitation seasonality (bio15). The distribution
model under current conditions was then projected to the LGM
using paleoclimatic layers simulated by the Community Climate
System Model v4 (CCSM4; Gent et al., 2011) and the New
Earth System Model of Max Planck Institute for Meteorology

(MPI-ESM2). As these layers were available only at 2.5 arc-min
resolution, they were interpolated to 30 arc-sec using the
“Spline with Barriers” tool implemented in ARCGIS v10.2 (ESRI,
Redlands, CA, United States).

Given the low number of occurrences for C. gadorensis (11),
we used a methodology based on a jackknife (or ‘leave-one-
out’) procedure to test the model (Pearson et al., 2007).
Also, we used the Lowest Presence Threshold as the cut-off
value to decide whether the discarded locality was ‘suitable’
or ‘unsuitable.’ The performance of the models was evaluated
through success rate (percentage of right predictions) and
statistical significance (see Pearson et al., 2007). To build the
definitive models (i.e., using all occurrence points), we ran
MAXENT 100 times using the bootstrap method. All ENM
predictions were visualized in ARCGIS.

RESULTS

Characteristics of the
Molecular Markers Used
One of the microsatellite loci (the 13D10) surveyed showed up
to four alleles for many individuals of the three species. Since
the diploid nature of some of these individuals was corroborated
by visualizing their chromosomes in root meristematic cells from
germinating seeds (following the protocol in Darlington and La
Cour, 1969), the occurrence of individuals with up to four alleles
(in 13D10 locus) was attributed to duplications of this locus
within the genomes of the three species studied. Consequently,
the locus 13D10 was excluded from the statistical analyses. There
was no evidence of linkage disequilibrium for microsatellite loci
(only loci 42CM27 and CM15 showed linkage disequilibrium
in the CAL population of C. pulvinata). With regard to the
Hardy-Weinberg equilibrium (HWE), 14 of 60 population-by-
locus tests deviated significantly, from which 10 corresponded
to the 21D9 locus (in all populations). Null allele frequency was
low for all combinations of loci and populations (mean < 0.05);
only the bi-allelic locus 21D9 had a mean null allele frequency
higher than 0.1 (mean = 0.157). Therefore, only null alleles
in 21D9 appeared to explain the deviation from HWE. The
alleles found and their observed frequencies for the different
microsatellite loci, and null allele frequencies, are shown in the
Supplementary Figure 2. The trnT–trnL sequence alignment was
559 base pairs in length, and it included five variable positions
and seven indels.

Genetic Diversity and Structure From
Microsatellite Loci
In general, all three species showed very similar values of genetic-
diversity indices (Table 1), with C. pulvinata and C. sagredoi
showing the lowest value of variation in terms of heterozygosity
(HE = 0.65). At the population level, genetic-diversity values
(HE) ranged from 0.54 of CAL (C. pulvinata) to 0.69 of
REV (C. gadorensis), and those of allelic richness from 3.80

2http://www.mpimet.mpg.de/en/science/models/mpi-esm/
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TABLE 2 | Hierarchical analysis of molecular variance (AMOVA).

Sum of Variance Percentage Fixation

Source of variation d.f. squares components of variation indices P-value

Microsatellites

Among species 2 62.549 0.0936 4.63 FCT = 0.046 0.001

Among populations
within species

7 96.056 0.2023 10.01 FSC = 0.105 <0.001

Within populations 590 1017.667 1.7249 85.36 FST = 0.146 <0.001

Total 599 1177.272 2.0208

cpDNA

Among species 2 694.360 6.5641 31.18 FCT = 0.312 0.045

Among populations
within species

7 1005.840 14.3558 68.19 FSC = 0.991 <0.001

Within populations 90 12.000 0.1333 0.63 FST = 0.994 <0.001

Total 99 1712.200 21.0533

(LAR; C. gadorensis) to 5.75 (GAR and SUF; C. sagredoi)
(Table 1). The comparison of DIC values for the full model
(f > 0) and the null model (f = 0) resulted in inbreeding
being significant in CAS, REV (C. gadorensis), RAG, CAL
(C. pulvinata), and GAR (C. sagredoi); and also in C. pulvinata
and C. sagredoi when the overall population estimation was made
(see Table 1 and Supplementary Table 2). Centaurea sagredoi was
the species with the highest number of private alleles (9), whereas
C. pulvinata showed five and C. gadorensis three.

AMOVA analysis showed that most of the genetic variation
occurred within populations (85%), and that the genetic
differentiation between species was lower (FCT = 0.046,
P = 0.001) than the genetic structuring between populations
within species (FSC = 0.105, P < 0.001; Table 2). Pairwise FST
comparison showed higher differentiation between C. gadorensis
and C. sagredoi, and between C. gadorensis and C. pulvinata, than
between C. pulvinata and C. sagredoi (Supplementary Table 3).
At the population level, all pairwise comparisons were significant
(Supplementary Table 4).

The Bayesian clustering method, as implemented in
STRUCTURE, recognized two genetic clusters as the uppermost
hierarchical level of genetic partitioning according to the highest
1K peak (Figure 1A and Supplementary Figure 3). These
clusters could be identified as C. gadorensis and C. sagredoi.
Meanwhile, Centaurea pulvinata showed a clear admixture of the
C. gadorensis and C. sagredoi genomes, although the contribution
of each species was different, depending on the C. pulvinata
population. Thus, individuals of the SER population were
almost equally assigned to both clusters (Q = 0.55, C. gadorensis
cluster vs. Q = 0.45, C. sagredoi cluster), whereas individuals
of the RAG and CAL populations were clearly assigned to the
C. sagredoi cluster (Q = 0.84 and Q = 0.89, respectively). The
results interpreted using the method of Puechmaille (2016)
revealed nine clusters (K = 9) as the most likely group structure
(Supplementary Figure 3), considering locations with Q ≥ 0.5
in any inferred cluster. This value was also recovered by the
mean posterior probabilities lnP(K) and it coincided with
a second highest 1K peak (Supplementary Figure 3). The
mean membership coefficient per population ranged from
0.508 to 0.760 for individuals across the nine inferred clusters.
In this case, most of individuals comprising each cluster
were from one sampling location, with two exceptions, REV,
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RAG, and PEC populations. REV population (C. gadorensis)
presented a mixture of individuals belonging to differentiated
genetic clusters [the clusters that are approximately assigned
to the CAS, MON (C. gadorensis) and SER (C. pulvinata)
populations]. The RAG population (C. pulvinata) showed
a clearly mixed ancestry involving the genetic cluster for
GAR (C. sagredoi). PEC population (C. gadorensis) was the
only population with Q < 0.5 in any inferred cluster and,
therefore, could not be assigned to a specific cluster. All
clusterings, from K = 2 to K = 11, are represented in the
Supplementary Figure 3.

Discriminant analysis of principal component clustering
showed that the first discriminant component separated
populations of C. gadorensis from the other two species,
and the second discriminant component separated the SUF
population of C. sagredoi from C. pulvinata populations and
GAR of C. sagredoi, which was intermingled with C. pulvinata
populations (Figure 3). BARRIER software detected sharp
genetic breaks that coincided mostly with the ridgelines of
both Sierra Nevada and Sierra de los Filabres (i.e., there
are putative genetic barriers between populations located
on the northern and southern mountainsides of these two
mountain ranges, especially notable after the sixth barrier
was added; Supplementary Figure 4); putative barriers
detected between neighboring populations in the same
mountainside and between populations on nearby mountain
ranges oriented toward the same valley proved less significant
(see Supplementary Figure 4).

Diversity and Structure of
cpDNA Haplotypes
For the cpDNA (Figures 1A,B and Table 1), we found 10
haplotypes in total. At the species level, C. gadorensis harbored
six haplotypes, and C. pulvinata and C. sagredoi three each.
Haplotypes were not segregated taxonomically (at the species
level) or geographically (according to the mountain range),
but rather mainly by population (Figures 1A,B). The main
haplotype (H1), central in the network (Figure 1B), was shared
by populations of all three species, the only haplotype being
found in PEC (C. gadorensis) and SER (C. pulvinata), and
the most frequent in GAR (6 of 10 sequences, C. sagredoi)
and MON (8 of 10 sequences, C. gadorensis). Only one other
haplotype (H2) was found in more than one population, whereas
the remaining haplotypes were exclusive to single populations
(and, in many cases, with all their individuals fixed to that
haplotype; Figures 1A,B).

According to the AMOVA results (Table 2), most variation
was found in the interpopulation component (68%) due to
the strong intrapopulation uniformity of the haplotype variants
(FST = 0.994, P < 0.001) and the very high interpopulation
differentiation (FSC = 0.991, P < 0.001). The species are
not clearly differentiated with the chloroplastidial marker,
where the coefficient of fixation between species was much
lower than that between populations and was at the limit of
significance (FCT = 0.31, P = 0.045; Table 2). The interspecific
pairwise FST showed the highest differentiation in those of

C. sagredoi with regard to C. gadorensis and C. pulvinata
(Supplementary Table 3).

The Bayesian clustering based on cpDNA data revealed seven
clusters (Figure 1C). One cluster contained the H1 sequences
(from MON, PEC, SER, and GAR); other included haplotypes H2
(from CAS and REV) and H3 (from REV); haplotypes H4 (from
LAR) and H8 (from CAL) were merged into another cluster;
H5 and H6 (both from MON) formed another cluster; while
sequences from RAG (H7), SUF (H10), and four sequences from
GAR (H9) formed the remaining three clusters (Figure 1C).

Gene Flow and Spatial Correlation
The results of BAYESASS clearly indicated no current exchange of
genes (with the relative exception of REV–CAS; Supplementary
Table 5). By contrast, considerable values of gene flow were
recovered with MIGRATE-N for all pairwise comparisons [with
a mean value of Nm = 1.466, above the cutoff value of Wright
(Nm = 1; Wright, 1931); Supplementary Table 6]. According
to 2MOD analyses, the gene-flow model was significantly more
favored than a pure drift model both at the species and at
the sampling locality levels (P = 1, BF = 100,000; P = 0.99,
BF = 20,000; respectively).

MMRR analysis revealed significant contribution of the
isolation by distance to the genetic differentiation of the
populations (β = 0.035, P = 0.017), but did not identify any
contribution of the climatic or topographic variables (Table 3).
However, a more detailed examination showed that this model
was influenced by C. gadorensis, and specifically by the PEC
and REV populations: when they were eliminated, there was
no effect of isolation by distance (β = 0.011, P = 0.643).
On the other hand, when we tested the effect that the
mountainside orientation of populations exerted on genetic
differentiation, the MMRR analysis identified a significant
contribution (using the resistance matrix for the topographic
variables; Table 3). Similarly, the spatial autocorrelation analysis
showed a significant genetic similarity between neighboring
populations in the same mountain mountainside (class 1:
intramountain-intramountainside; r = 0.315, P = 0.006), and
between populations on nearby mountain ranges oriented toward
the same valley (class 2: intermountain-same valley; r = 0.366,
P = 0.004). On the contrary, there was no significant genetic
similarity among other distance classes, including intramountain
range populations on mountainsides with different orientations
(class 3; Figure 2) (Table 3).

Ecological Niche Modeling
The model for C. gadorensis performed reasonably well, as we
found a high success rate (0.818) and statistical significance
(P < 0.001) in the jackknife test. For the present time frame,
several middle-elevation (1,000–2,000 m) mountain areas within
the study area appear to be suitable for C. gadorensis. Such
areas included peripheral mountains of both Sierra Nevada
and Sierra de los Filabres, most of Sierra de Gádor (with the
exception of its mountaintops), and other small mountain ranges.
By contrast, the intermountain valleys, usually below 1,000 m,
appeared to be unsuitable (Figure 4). Projections of the species
niche to the LGM were considerably different, showing all the
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FIGURE 3 | Result of the discriminant analysis of principal components (DAPC) using microsatellites. For population codes, see Supplementary Table 1.

lowlands (intermountain valleys) and midlands usually up to
1,600–1,800 m (Figure 4) to be suitable, thus suggesting a
clear scenario of population connectivity. The LGM projections

should be interpreted, however, with extreme caution given the
uncertainty of projections for the past using a small number
of occurrences (11).
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TABLE 3 | Results of the spatial correlation analyses.

MMRR Mountainside orientation1

All Without Spatial

populations PEC, REV MMRR autocorrelation

β P β P β P r P2

Cd −0.002 0.580 0.005 0.450 −0.005 0.270 – –

Gd 0.035 0.017 0.011 0.642 – – – –

Td −0.007 0.601 −0.017 0.418 0.5 × 10−3 0.013 – –

dc1 – – – – – – 0.315 0.006

dc2 – – – – – – 0.366 0.004

dc3 – – – – – – −0.130 0.190

dc4 – – – – – – −0.130 0.168

dc5 – – – – – – −0.317 0.022

dc6 – – – – – – −0.148 0.191

Cd, climatic distances; dc, distance class (1–6; see the section “Materials and
Methods”); Gd, geographical distances; Td, topographic distances. 1 Analyses
performed to test the effect of the orientation of the mountainsides inhabited by the
populations; here Td correspond to the topography-based resistance distances.
2 Significant P-values at the 5% nominal level after sequential Bonferroni correction.
All significant values are shown in bold.

DISCUSSION

The subsection Willkommia of sect. Centaurea has been
considered an example of a group of species that had diverged
following a schizo-endemic pattern (Blanca, 1981a), in which
fragmentation and isolation of a widespread ancestral taxon
favored the allopatric differentiation of closely related range-
restricted endemic species sharing the same chromosome
number. Nevertheless, molecular systematic studies on the
subsection (Suárez-Santiago et al., 2007b) and the section
Centaurea (Hilpold et al., 2014b), as well as the evolutionary
analysis of a satellite-DNA family within the subsection (Suárez-
Santiago et al., 2007c) clearly indicate that diversification of
Willkommia has followed a model of reticulate evolution.

Secondary Contacts and Historical Gene
Flow Between C. gadorensis,
C. pulvinata, and C. sagredoi
Populations
The BAYESASS analysis indicated almost no current gene
flow between the populations studied (Supplementary Table 5,
except for CAS and REV), this being an expected result given
that all these populations have a high degree of geographical
isolation, except populations CAS and REV of C. gadorensis
in the Sierra de Gádor (Figure 1A). By contrast, our data
support the occurrence of historical gene flow among the
species studied, as shown by the results of the demographic
analyses conducted with MIGRATE-N (Supplementary Table 6)
and 2MOD. In fact, the historical gene-flow rates (including
the interspecific rates) should be regarded as high (range
Nm = 1.138–2.013, mean = 1.466; Supplementary Table 6),
particularly if we compare them with other congeneric species
and partly using the same microsatellite loci. Nm values for

populations studied here are much higher than those reported
for other endemic Centaurea species of the subsect. Phalolepis,
phylogenetically close to Willkommia (Garcia-Jacas et al., 2006;
Suárez-Santiago et al., 2007b) with disjunct areas in Greece
(mean Nm = 0.534; López-Vinyallonga et al., 2015), Italy (mean
Nm = 0.645; Garcia-Jacas et al., 2019), and Turkey (mean
Nm = 0.466; López-Pujol et al., 2016). The high levels of
historical gene flow detected in the present study are consistent
with the low genetic differentiation observed between species
(Table 2 and Supplementary Table 3), which are significant
but much lower than those reported for both Greek, Italian,
and Turkish Centaurea subsect. Phalolepis (FST = 0.243, 0.232,
and 0.198, respectively; López-Vinyallonga et al., 2015; López-
Pujol et al., 2016; Garcia-Jacas et al., 2019). Moreover, we have
not detected isolation by distance (except among C. gadorensis
populations of Sierra de Gádor), suggesting that the lineage
distribution is the result of historical phylogeography. All this
evidence, together with the genetic admixture found within the
morphologically well-characterized populations (Figure 1A and
Supplementary Figure 3) supports the hypothesis of secondary
contacts between populations of differentiated species. Although
we were not able to ascertain exactly the time when the inferred
gene flow with MIGRATE-N took place [as mutation rates (µ)
for microsatellites for the genus Centaurea are unknown], this
would have occurred around the LGM (we found a time interval
of 1,100–46,000 years ago, following the approximation of
López-Vinyallonga et al., 2015).

According to our results C. pulvinata must have been a
major player in the hybridization and introgression events,
hybridizing with both C. gadorensis and C. sagredoi. However,
we detected no clear evidence of hybridization between
C. gadorensis and C. sagredoi. The values of genetic differentiation
(Supplementary Table 3) and the results of the genetic structure
analyses (Figures 1A, 3 and Supplementary Figure 3) show
that C. gadorensis is highly differentiated from C. sagredoi.
Instead, these same analyses show a close relationship between
C. pulvinata and C. sagredoi with microsatellite markers,
suggesting the same nuclear genetic background between the two.
This relationship is consistent with the phylogenetic analysis of
Willkommia (Suárez-Santiago et al., 2007b), where both species
belong to the clade called Nevado-Filábride as sister species. The
close genetic relationship between C. pulvinata and C. sagredoi
based on microsatellites also agrees with morphological data,
which have traditionally related the two species (Blanca, 1980,
1981b, 1984), and furthermore agrees with ecological data, as the
species have the same requirements in terms of soil type (acidic
soils derived from schist; Blanca, 1980, 1981b, 1984). The large
proportion of individuals with mixed ancestry detected in one of
the two C. sagredoi populations (GAR) and the almost absence
in the geographically isolated population SUF (Figure 1A) at
K = 3 (Supplementary Figure 3) support introgression from
C. pulvinata into C. sagredoi (see also Figure 3). We have also
detected hybridization and introgression between C. gadorensis
and C. pulvinata despite their not being as close as the pair
C. pulvinata/C. sagredoi, (Figure 1A). Indeed, in Centaurea
hybridizations have been found even between different sections
(e.g., Hilpold et al., 2014b).
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FIGURE 4 | Potential distribution of Centaurea gadorensis drawn with MAXENT. Top left, topographic map showing the location of genetically studied populations of
C. gadorensis (full circles), C. pulvinata (stars) and C. sagredoi (squares). Additional presence records of C. gadorensis used for ecological niche modeling (ENM) are
shown in empty circles. Top right, at the present time; bottom left, at the Last Glacial Maximum (LGM, ca. 21,000 years BP) using the Community Climate System
Model (CCSM); bottom right, at the LGM using the Model of Max Planck Institute for Meteorology (MPI-ESM). Black dots indicate current populations of the species,
whereas the dashed line shows the present coastline. The probability of presence is shown as continuous values from the threshold (defined as Maximum Sensitivity
plus Specificity) to 1. This figure has been generated with ARCGIS.

Influence of the Topographic Features on
the Reticulate Evolution Pattern
Mountains are among the main topographic factors influencing
the genetic structure of plant species. It is widely accepted
that during glacial/interglacial cycles of the Pleistocene
the wide diversity of microhabitats in the Mediterranean
mountains allowed species to migrate along altitudinal
gradients, favoring differentiation of isolated populations
(Hewitt, 1999; Gómez and Lunt, 2007; Médail and Diadema,
2009; Jiménez-Mejías et al., 2015). Also, hybridization and
reticulate evolution of previously isolated lineages resulted in
complex evolutionary patterns (cf. Thompson, 2005; Nieto
Feliner, 2011, 2014), as has been described for the Willkommia
subsection (Suárez-Santiago et al., 2007b).

Here, we highlight the way in which the orientation of the
mountainsides inhabited by the populations enabled secondary
contacts between populations during glacial peaks. Thus, we
suggest that the intermountain valleys are the areas where
secondary contacts occurred, and that the probability of these
secondary contacts was determined by the orientation of the
populations toward the same valley or toward different valleys.
Our data show that current populations harbor genetic signatures
of this model, so that the observed genetic differentiation is

explained, in part (isolation is also involved; see below), by the
effect of their orientation. This finding supports that they are the
result of migration at high altitudes from contact areas and not of
remaining in situ during the glacial/interglacial cycles. The main
evidence for the effect of the topography and orientation of the
populations on the observed genetic differentiation comes from
the spatial correlation analyses, which resulted in populations
being significantly related on the same mountainside or different
mountainsides but oriented toward the same valley (Table 3),
regardless of their taxonomy. The other evidence comes from
the analysis with BARRIER (Supplementary Figure 4), which
identified the mountain ridgelines of Sierra Nevada and Sierra
de los Filabres as barriers to the gene flow between populations
on both sides of each mountain range. Given the lack of
isolation by distance and the patterns of historical/contemporary
gene flow, these data, combined with species-distribution
modeling (Figure 4), support a scenario in which allopatric
populations were forced by the Quaternary glacial periods to
expand their ranges at lower altitudes, coming into contact and
hybridizing in the intermountain valleys. Meanwhile, during
the interglacial/postglacial (warm) periods, populations would
retreat again to higher elevations on the mountains (as occurs
today), starting a period of isolation and differentiation.
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The geographical distribution of the populations of C. sagredoi
and C. pulvinata (Figure 1A), together with the genetic pattern
detected with the microsatellites for both species (Figures 1A, 3,
Supplementary Figure 3, and Supplementary Tables 3, 6),
fit the hypothesis of altitudinal migrations following the
pattern of climatic oscillations and recurrent genetic exchanges.
Populations of the southern mountainside of Sierra de los
Filabres and the northern mountainside of Sierra Nevada would
have formed a zone of genetic contact in the valley located
between the two mountains (Figures 1A, 2). A similar example
has been described for the genus Armeria in Sierra Nevada
(Fuertes Aguilar et al., 2011). In this case, contact between the
parental species of the hybrid A. filicaulis subsp. nevadensis,
namely A. splendens and A. filicaulis, is explained by the lowering
of the altitudinal range of A. splendens driven by the contraction
of vegetation belts during the LGM. The high isolation of SUF
(C. sagredoi) on the northern mountainside of Sierra de los
Filabres (Figure 1A) is the likely the reason for its greater genetic
differentiation [Figure 3, Supplementary Figure 3 (with its own
cluster from K = 3), and Table 1 (with a large number of private
alleles)]. During the glacial periods, secondary contact with other
populations of C. sagredoi (GAR) or with C. pulvinata would have
been rather unlikely.

As in the case between the southern mountainside of Sierra
de los Filabres and the northern mountainside of Sierra Nevada,
there is a clear genetic connectivity between populations located
at the southern mountainside of Sierra Nevada and the northern
mountainside of Sierra de Gádor, all belonging to C. gadorensis
(Figures 1A, 3 and Supplementary Figure 3). Although such
genetic connectivity is expected for conspecific populations, it is
also attributable to the glacial periods due to the lack of isolation
by distance, when plants would have descended to lowlands
and exchanged genes. Such a scenario is also reflected with the
ENM, which unambiguously indicates that areas of presumed
genetic exchange would have occupied extensive intermountain
valleys during the LGM (Figure 4). On the contrary, during the
interglacial periods such as the present time, plants would have
moved upward, constraining the exchange of genes, as indicated
by the BAYESASS analysis (Supplementary Table 5).

Within C. gadorensis, it is somewhat surprising to find
genetic differences between LAR and MON populations despite
the general pattern of genetic similarity between neighboring
populations on the same mountainside (see Supplementary
Figure 3 for K = 9, Supplementary Table 4). In the STRUCTURE
analysis, population LAR shows its own cluster from K = 7
(Supplementary Figure 3), and there is a presumed genetic
barrier between LAR and MON (Supplementary Figure 4). Both
populations show the highest pairwise FST value within the
species, and LAR harbors the H4 haplotype while MON shows
mainly H1 (Figures 1A–C). Such genetic differences might be
due to topography, as both populations are separated by two
subsidiary ridges that reach 1,800 m at the latitude of LAR. An
alternative or complementary explanation may be demography:
LAR and MON are two small populations with 1,197 individuals
pooling the two populations (Giménez et al., 2011). Genetic
drift would have been severe in these small localities, leading to
the present patterns of genetic differentiation in contrast to the

populations in Sierra de Gádor, with a combined estimated size
of 33,648 individuals (Giménez et al., 2011).

On the other hand, our results also show the genetic signature
left by population-divergence processes in allopatry. Population
isolation, as a consequence of fragmentation processes and/or
bottlenecks/founder events, generally results in populations with
especially low levels of genetic diversity in the cpDNA (as result
of the smaller effective size of the cpDNA compared to the
nuclear genome; e.g., Bittkau and Comes, 2005), as well as
in the absence of isolation by distance between populations
(Hutchison and Templeton, 1999). We have detected both
situations (Tables 1, 3 and Figures 1A–C), which, together with
the second hierarchical level of genetic structure observed for
microsatellites (K = 9, Supplementary Figure 3) and AMOVA
results (Table 2), points to the impact of genetic drift on the
populations studied, although other factors cannot be ruled out
(e.g., selection). Given the evidence of secondary contacts already
discussed, genetic drift is probably due to the founding events
during the retraction in altitude of the populations from the
contact sites during the interglacial periods. Previous studies
of secondary contact and hybridization during glacial periods
and isolation in warm interglacials show a clear geographical
structure (e.g., Albaladejo et al., 2005; Maguilla and Escudero,
2016; Schneeweiss et al., 2017). By contrast, our results do not
show a clear geographical trend through the sharing of haplotypes
among taxa in different geographical areas; nor do they show
a taxonomic pattern (Figures 1A,C). This evidence points to
the recurrence of secondary contacts and possible sorting of
plastid lineages during the population retraction after secondary
contacts, coupled with genetic drift.

High Genetic Diversity in the Species of
the Subsection Willkommia of
Centaurea: An Expected Outcome for
Plant Species From a Mediterranean
Mountain Refuge
Genetic diversity detected with microsatellites within the species
studied is substantial (mean HE for the 10 populations
studied = 0.616; Table 1), higher than expected for endemic
species in general (HE = 0.420; Nybom, 2004), and comparable
to expected rates for widespread species (HE = 0.620; Nybom,
2004). Similar levels of genetic variability were found in species
of Centaurea subsect. Phalolepis using almost the same set
of microsatellite loci (mean HE = 0.587 and 0.504 for the
Greek and Anatolian taxa, respectively; López-Vinyallonga et al.,
2015; López-Pujol et al., 2016). For narrow endemic plants,
the expected levels of genetic diversity are low, but in the
Mediterranean mountains the endemisms appear to harbor
moderate to high levels (cf. Jiménez-Mejías et al., 2015) such as
those found previously in Centaurea subsect. Phalolepis and now
in the subsect. Willkommia. The reason for such polymorphism
in Greece and Turkey was the occurrence of populations within
mountainous, environmentally stable refugia, and the same
reason may also account for our present results, given that all
three species are distributed within the Sierra Nevada/Gata refuge
(Médail and Diadema, 2009). It is widely agreed, both on the basis
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of paleoecological and genetic data, that mountainous habitats in
the main Mediterranean peninsulas (Iberian, Italian, and Balkan,
but also Anatolian) have acted as large refugia both for plants and
animals (Bennett et al., 1991; Hewitt, 1996, 1999; Taberlet et al.,
1998; Gómez and Lunt, 2007). Endemisms and phylogeographic
hotspots are often linked to climatic stability and topographic
heterogeneity (Carnaval et al., 2009; Médail and Diadema, 2009;
López-Pujol et al., 2011; Harrison and Noss, 2017). In addition
to the occurrence within a refugium, hybridization and an
increased effective population size might have influenced the
levels of genetic diversity of these three Centaurea species by
increasing it during the secondary contacts (Frey et al., 2012;
Seehausen et al., 2014).
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