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Chloroplasts provide energy for all plants by producing sugar during photosynthesis.
To adapt to various environmental and developmental cues, plants have developed
specific strategies to control chloroplast homeostasis in plant cells, including chloroplast
degradation during leaf senescence and the transition of chloroplasts into other types
of plastids during the day-night cycle. In recent years, autophagy has emerged as an
essential mechanism for selective degradation of chloroplast materials (also known
as chlorophagy) in the vacuole. Different types of membrane structures have been
implicated to involve in the delivery of distinct chloroplast contents. Here we provide
a current overview on chlorophagy and discuss the possible chloroplast receptors and
upstream signals in this process.
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INTRODUCTION

The chloroplast, a well-known plastid found in all photosynthetic plant cells, is the central organelle
providing plants with foods and energy in the form of sugar or starch by photosynthesis (Jarvis and
Lopez-Juez, 2014). Chloroplast turnover plays a critical role in plastid transition (e.g., proplastid
to chloroplast) and nutrient mobilization (e.g., carbon and nitrogen) (Siqueira et al., 2018). Upon
different stress conditions, chloroplasts may be damaged and produce toxic ROS or stress signals
which are detrimental to the plant growth. To cope with a variety of internal or external stresses,
plants carry out leaf senescence via selective degradation of chloroplasts to avoid the accumulation
of toxic ROS, thus placing a significance of efficient chloroplast turnover under stress conditions
(Xie et al., 2015; Izumi and Nakamura, 2018; Nakamura and Izumi, 2018; Otegui, 2018; Soto-Burgos
et al., 2018). Recent evidence suggests that chloroplast materials are sequestered into multiple
types of subcellular structures for their delivery into the lytic vacuole. Novel insights into our
understanding of chloroplast turnover have been obtained by recent studies on the relationship
between chloroplast degradation and autophagy, a self-eating process conserved in all eukaryotic
cells (Liu and Bassham, 2012). The accelerated leaf senescence observed in most autophagy-related
(ATG) mutants suggests that autophagy might function as a strategy for carbon and nitrogen
remobilization to the sink tissues by facilitating chloroplast degradation in the source tissues.

Three types of autophagy have been defined so far, including chaperone-mediated autophagy,
macroautophagy and microautophagy (Mizushima and Komatsu, 2011). Chaperone-mediated
autophagy, which depends on chaperone HSC70 and co-chaperones, has been reported in
mamalian cells but not in yeast and plants (Mizushima and Komatsu, 2011). Macroautophagy
occurs with the formation of a unique double membrane structure termed an autophagosome for
the delivery of the cargos into the lysosomes/vacuole, and utilizes molecular machinery termed
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as ATG genes to generate the autophagosome. During
autophagosome formation, an isolation membrane, named
phagophore, engulfs and encloses the cargos to become a
double membrane structure (Liu and Bassham, 2012). By
contrast, during microautophagy, cargos are directly evaginated
into the vacuole lumen by the vacuole membrane. Of note,
microautophagy can be either ATG-dependent or ATG-
independent (Mijaljica et al., 2011; Oku et al., 2017). These
different types of autophagy have been implicated in cargo
selectivity to facilitate the bulk or specific degradation of
the target cargos under different conditions. In plant cells,
excellent reviews have implicated that both macroautophagy and
microautophagy pathways contribute to chloroplast degradation,
and exhibit cargo specificity under different types of conditions
(e.g., leaf senescence, carbon starvation or high light stress)
by forming various types of structures (Xie et al., 2015; Izumi
and Nakamura, 2018; Nakamura and Izumi, 2018; Otegui,
2018; Soto-Burgos et al., 2018). Here, we aim to compare these
different pathways for the selective degradation of chloroplasts
(here termed as chlorophagy), with an emphasis on the possible
chloroplast receptors and related signals in this process.

MACROAUTOPHAGY-LIKE
DEGRADATION OF CHLOROPLASTS

A macroautophagy-like process for either partial or whole
chloroplast degradation utilizes the formation of autophagosomal
structures and requires ATG proteins (Wada et al., 2009). Among
these ATG proteins, ATG8 is widely used as an autophagosomal
marker to label the autophagosomal structures (Yoshimoto et al.,
2004; Contento et al., 2005; Zhuang et al., 2013, 2017, 2018;
Spitzer et al., 2015). So far, several types of macroautophagy-
related structures have been reported, including the Rubisco-
containing body (RCB) (Ishida et al., 2008), the ATI1-
GFP Labels Plastid-Associated Body (ATI-PS body) (Michaeli
et al., 2014), and small starch granule-like structures (SSTG)
(Wang Y. et al., 2013; Figure 1).

RCB Pathway
The first observation of a macroautophagy-like process for
chloroplast degradation came from the detection of Rubisco in
small spherical bodies (around 1 µm) in both the cytoplasm
and vacuole in wheat leaves, subsequently referred as RCBs
(Chiba et al., 2003). Autophagosome-like double membranes are
detected around these bodies (Figure 1). Another study using
live-cell imaging to track the fate of RCBs (indicated by GFP-
labeled Rubisco) in Arabidopsis and rice leaves demonstrated that
the production of RCBs requires ATG genes including ATG5 or
ATG7 (Ishida et al., 2008). Moreover, RCB fluorescent signals
co-localize with the autophagosomal marker GFP-ATG8. This
provides direct evidence that chloroplast proteins are degraded
via autophagy by forming the RCBs and subsequent sequestration
into autophagosomal structures. In addition, RCBs are highly
induced by carbon deprivation and darkness, suggesting a role
for autophagy in leaf carbon homeostasis by the degradation of
chloroplast proteins via RCBs. In support of this, it has been

observed that RCB numbers are increased in starchless mutants
(Izumi et al., 2010, 2013). Therefore, RCBs represent a typical
type of autophagic structure for chloroplast turnover.

It appears that the formation of RCBs is closely related to the
extending stromule (Figure 1). Intriguingly, in the autophagy
defective mutant atg5, many stromules are labeled by stroma-
targeted GFP, suggesting that RCBs are released from the
extending stromules (Ishida et al., 2008). In addition, stromules
are highly induced by different abiotic and biotic signals,
such as exposure to ROS or high sucrose/glucose conditions
(Brunkard et al., 2015; Hanson and Hines, 2018). Such plasticity
in chloroplasts by forming extending stromules in response to
diverse stimuli might provide an efficient way for the removal of
chloroplast materials. By GFP labeling in the confocal microscope
and immunolocalization in transmission electron microscope
(TEM), it was found that only Rubisco, but not chlorophyll, is
detected in the stromules (Kwok and Hanson, 2004; Holzinger
et al., 2008). This explains why thylakoid membranes are
not detected in the RCBs. Intriguingly, extended stromules
were also observed in a mutant defective in the Endosomal
sorting complex required for transport (ESCRT) protein, CHMP1
(Spitzer et al., 2015). A primary role for the ESCRT complex in
multivesicular body (MVB) biogenesis and endosomal sorting
has been well characterized in plant cells (Gao et al., 2017). It is
therefore proposed that CHMP1 might play an additional role
in autophagosome maturation, thus a malfunction of CHMP1
might lead to an incomplete autophagosome, and the delay of
RCB sequestration, resulting in the accumulation of phagophore-
like structures and cytoplasmic RCBs (Spitzer et al., 2015).

ATI-PS Body Pathway
Another type of autophagy-related degradation structure with
a size around 1 µm, is termed the ATI-PS body, which is
mediated by the ATI proteins (Michaeli et al., 2014). ATI proteins
are plant-specific and no counterparts have been identified in
non-plant species (Honig et al., 2012). They directly interact
with ATG8 via the ATG8-interacting motif (AIM) and were
previously identified as being distributed on the endoplasmic
reticulum (ER). However, upon sugar starvation, ATI is detected
on the outer membrane of chloroplast but not on stromules,
precluding a similar origin to RCBs (Michaeli et al., 2014).
Another major difference of ATI-PS bodies is that they contain
different chloroplast cargos, including stromal, thylakoid and
envelope proteins. Although the ATI-PS bodies are suggested to
be derived from the chloroplast thylakoid, it raises a question as
to how ATI, which is predicted to be a single transmembrane
protein on the ER, is relocalized into the chloroplast lumen from
the chloroplast outer membrane. Of note, the release of ATI-PS
body from plastid is ATG-independent, but its delivery into the
vacuole requires the ATG machinery (Michaeli et al., 2014).

SSTG Pathway
Starch granules, which are wildly deposited in the chloroplast,
serve as an essential carbon reservoir by converting starch into
sugar (Malinova et al., 2018). A previous study revealed that
starch contents are greatly decreased (about 70%) in atg4a4b-1
upon exposure to the darkness (Izumi et al., 2010). In another
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study, electron microscopy has shown that a small starch granule-
like structure (usually with a diameter of < 0.5 µm) was captured
in the cytosol and sequestered into the autophagic bodies (Wang
Y. et al., 2013). These SSGLs were clearly labeled by YFP-tagged
granule-bound starch synthase I (GBSSI-YFP), a starch granule
marker, and also colocalized with the autophagosome marker
CFP-ATG8f. It also appears that the occurrence of stromules
may contribute to the release of SSGL, which is supported by
the detection of SSGL in the stromules by both confocal and
electron microscopy (Wang Y. et al., 2013). Similar to RCBs
and ATI-PS bodies, the number of vacuole-localized SSGLs was
greatly reduced after blocking autophagic activity via ATG6
silencing, suggesting that the degradation of SSGLs are also
ATG-dependent (Wang Y. et al., 2013).

Whole Chloroplast Pathway
Previous study has shown that whole chloroplasts are delivered
to vacuoles in individually darkened leaves which display
accelerated senescence due to sugar starvation (Wada et al.,
2009). A recent study has also showed that whole chloroplasts
can be targeted for degradation by autophagy upon exposure
to UV light (Izumi et al., 2017). After UV light exposure,
the autophagosomal membrane, as labeled by GFP-ATG8a,
captures the whole chloroplast and encloses it into a completed
autophagosome. These autophagosomal structures are much

larger than the previously described chlorophagy-related
structures, and can be readily detected in the vacuole as well.
Moreover, plants lacking autophagic activity have less vacuolar
delivery of these UV light-triggered structures into the vacuole
and display a higher sensitivity to UV-B exposure. It is suggested
that the invagination of the entire chloroplast is different from
the RCB pathway, as it occurs independent of the activation
of the RCB pathway. However, in both atg5 and atg7 mutants,
damaged chloroplasts with extended stromules also accumulated
upon UV-B exposure (Izumi et al., 2017), raising the possibility
that stromule formation might contribute to whole chloroplast
degradation as well.

MICROAUTOPHAGY-LIKE
DEGRADATION OF CHLOROPLASTS

In comparison to macroautophagy, microautophagy mediates
the degradation of chloroplast by direct invagination of the
chloroplast contents via the vacuole membrane (Figure 1).
A recent study showed that high-intensity light (HL) will trigger
chloroplast envelope damage and lead to chloroplast swelling
(Nakamura et al., 2018). In addition, overexpression of VESICLE
INDUCING PROTEIN IN PLASTID1 (VIPP1), a protein that
regulates chloroplast envelope integrity, causes the formation
of abnormal swollen chloroplasts (Nakamura et al., 2018). These

FIGURE 1 | Multiple pathways for chloroplast degradation. Partial or whole chloroplast contents are sequestered into various types of compartments for
degradation. In a macroautophagy-like (Macro chlorophagy, left), Rubisco-containing body (RCB) (Ishida et al., 2008), ATI1-GFP Labels Plastid-Associated Body
(ATI-PS body) (Michaeli et al., 2014), and small starch granule-like structure (SSTG) (Wang Y. et al., 2013), as well as entire chloroplast (Izumi et al., 2017) are
sequestered by a autophagosome. In a microautophagy-like (Micro chlorophagy, right) pathway, CV-containing vesicle (CCV) (Wang and Blumwald, 2014),
senescence-associated vacuole (SAV) (Otegui et al., 2005), globular vacuole (Woodson et al., 2015) as well as direct vacuolar invagination of entire chloroplast
(Nakamura et al., 2018) have been reported for the degradation of chloroplast contents. These pathways can be either ATG-dependent (arrows in black color) or
ATG-independent (arrows in red color). ATG8, Autophagy-related protein 8; ATI1, ATG8 interacting protein 1; ATI-PS body, ATI1-GFP Labels Plastid-Associated
Body; CV, CHLOROPLAST VESICULATION; CCV, CV-containing vesicles; RCB, Rubisco-containing body; PUB4, PLANT U-BOX 4; SAG12, Senescence-associated
gene 12; SSTG, small starch granule-like structure; SG, starch granule; SAV, senescence-associated vacuole; VIPP, VESICLE INDUCING PROTEIN IN PLASTID1.
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swollen chloroplasts are detected in the vacuole under HL
or VIPP1 overexpression conditions. Interestingly, it appears
that the swollen chloroplasts are initially recognized by the
ATG8-containing structures prior to vacuole invagination.
Furthermore, confocal imaging analysis showed that the entire
swollen chloroplast is directly engulfed by the GFP-δTIP labeled
tonoplast into the vacuole, while this process is absent in
the atg5 mutant, supporting the involvement of an ATG-
dependent microautophagy-like process. The role of the ATG8-
labeled structure is suggested to serve as a selective platform
for chloroplast recognition via an interaction between the
chlorophagy receptor(s) and ATG8, in a manner similar to that

TABLE 1 | Predicted chloroplast outer membrane proteins containing the
ATG8-interacting motif in Arabidopsis.

Name Gene ATG8-
interacting
motif

Position from
(aa)

Position to
(aa)

Toc33 At1g02280 EFFGKL 24 29

Toc34 At5g05000 REWIGI 8 13

NLFNKI 237 242

Toc64/OEP64 At3g17970 NLWVLL 7 12

Toc75I At1g35860 YSFANV 55 60

Toc75III At3g4674 GMFEKV 223 228

Toc75-IV At4g09080 / / /

Toc75-V/OEP80 At5g19620 / / /

Toc159 At4g02510 GEFEPV 286 291

KTYASV 23 28

YRYRYL 1265 1270

SIYKSI 1510 1515

OEP7 At3g52420 LGWLAI 19 24

OEP9 At1g16000 / / /

OEP61 At5g21990 ADFARI 24 29

OEP21A At1g20816 EMFEKV 138 143

OEP21B At1g76405 EMFDKV 138 143

OEP24A At1g45170 PSFNGL 43 48

PGFFII 55 60

LKYTYV 126 131

OEP24B At5g42960 GSFI V 57 62

OEP37 At2g43950 LGWASL 298 303

PDV1 At5g53280 PGYVFI 62 67

PDV2 At2g16070 KDFEVL 130 135

Cytochrome
b5

At1g26340 DCWVVI 21 26

KQYWVV 112 117

/ At4g16070 DSWTGI 412 417

/ At4g27610 PNWILI 22 27

/ At5g11250 FSYDAL 481 486

IGFFTL 14 19

RDFDGL 234 239

IIYSGL 1162 1167

TGD4 AT3g06960 PSFSPI 64 69

AVWPGL 193 198

∗The order of the predicted motifs are based on the score obtained on the iLIR web
tool (http://repeat.biol.ucy.ac.cy/iLIR/). aa, amino acid.

for the ATI-PS body. Alternatively, the formation of ATG8-sac
structures may facilitate the deposition of the cap-like structure
at the chloroplast to control the docking and fusion between the
chloroplast membrane and the tonoplast, followed by the release
of the chloroplast contents into the vacuole lumen.

Other studies have also reported other types of structures for
the execution of chloroplast degradation in a microautophagy-
like manner, although they were not initially defined as
a microautophagy-like process. For example, senescence-
associated vacuoles (SAVs), which are characterized by a
senescence-induced cysteine protease Senescence-associated
gene 12 (SAG12), were identified as a distinct type of lytic
compartment during leaf senescence (Otegui et al., 2005).
SAVs display similar characteristics to the lytic vacuole as
they are stained by LysoTracker red or neutral red, although
they lack the tonoplast marker γ-TIP (Otegui et al., 2005).
Another study showed that isolated SAVs contain stromal
proteins including Rubisco and glutamine synthetase, but lack
thylakoid proteins (Martinez et al., 2008). It was claimed that
SAVs are still formed in the atg7 mutant, thus representing
a separate pathway for chloroplast turnover (Otegui et al.,
2005). However, in another study, by targeting chloroplasts
with CHLOROPLAST VESICULATION (CV), it is shown
that CV-containing vesicles (CCVs) are accumulated under
abiotic stress and downregulated by cytokinin (Wang and
Blumwald, 2014). Chloroplast materials including stroma,
envelope, and thylakoid proteins are identified in these
CCVs. The authors also showed that the formation of
CCVs is autophagy-independent and is separate from the
autophagosome marker GFP-ATG8a. Instead, bimolecular
fluorescence complementation (BiFC) assays showed that CV
interact with PsbO protein, a component of photosystem II
complex on the thylakoid membrane, suggesting that CCVs
may arise from within the chloroplast. Recently, it has also been
shown that CV is regulated by a NAC transcription factor RD26
(Kamranfar et al., 2018), which also regulates ABA-related genes
(Zhang and Gan, 2012), implying a feedback regulation between
ABA signaling and chloroplast degradation via the CCVs.
However, lacking an evident observation of the intermediate
structures for the formation of SAVs and the CCVs renders their
origins obscure.

CHLOROPHAGY-RELATED MEMBRANE
RECEPTORS IN PLANTS

A critical question in regarding to chlorophagy is how
selectivity for chloroplast contents is executed during this
process. Specific autophagic receptors are known to function
in different types of autophagy, such as mitophagy, pexophagy
and ER-phagy (Zaffagnini and Martens, 2016). The organelle
components are recognized by autophagic receptors for docking
to the autophagosomal structure or the vacuole membrane.
So far, the autophagic receptors identified usually contain
a canonical AIM, and a specific cargo interacting domain,
and are either ubiquitin-dependent or ubiquitin-independent
(Zaffagnini and Martens, 2016).
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However, with respect to the chloroplast being specific for
plant cells, it is not surprising that plant-unique receptors
might be involved in chlorophagy. ATI1/2 represents a type
of plant-specific receptor for chlorophagy which interacts
with ATG8 upon sugar starvation (Michaeli et al., 2014).
Several chloroplast-localized proteins have also been found
to interact with ATI by the split ubiquitin yeast two-hybrid
assay, and it was suggested that these proteins are sequestered
into the ATI-PS body via ATI interaction (Michaeli et al.,
2014). However, ATI is localized on the ER under normal
conditions and how the sugar signal activates the recruitment
of ATI onto the outer membrane of the chloroplast remains
unknown (Honig et al., 2012). An extensive supply of lipid
precursors from the endoplasmic reticulum (ER) to the
chloroplast have been implicated to be mediated by a group
of TRIGALACTOSYLDIACYLGLYCEROL (TGD) proteins, and
only TGD4 has been shown to be distributed on the outer
membrane of the chloroplast (Fan et al., 2015). One possibility
would be that ATI is translocated onto the chloroplast via
ER-chloroplast contact sites, so that it can be mobilized via
lipid exchange to aid the initiation of the ATI-PS body
(Zhuang et al., 2016).

In addition to ATI1/2, there are no proteins on the plant
chloroplast surface that have been experimentally tested to have a
similar function during chlorophagy. Using a Bioinformatic tool

for prediction of proteins that may interact with ATG8 (Kalvari
et al., 2014), and based on the available experimental information
of the chloroplast outer membrane proteins in Arabidopsis (Lee
et al., 2014), a set of predicted AIM-containing proteins in
Arabidopsis is listed in Table 1, including TOC159, TOC75 and
TOC33. TOC159, TOC75, and TOC33 are inserted into the
outer membrane of chloroplast, forming the chloroplast protein
TOC import complex for the import of chloroplast proteins
(Lee et al., 2014). Particularly, post-modifications of the TOC
complex under various induction conditions have been reported
(Agne et al., 2010; Ling et al., 2012; Wang P. et al., 2013;
Woodson et al., 2015; Shanmugabalaji et al., 2018; Figure 2).
In addition to the TOC complex, potential AIMs were also
identified in the outer envelope protein (OEP) complex, which
serves as an alternative pathway for chloroplast protein import
(Lee et al., 2014). OEP7 and OEP9 have been shown to function
together with heat shock protein Hsp17.8 and AKR2A cofactors
in targeting membrane proteins to plastid outer membranes
under normal physiological conditions (Niehaus et al., 2014;
Kim et al., 2015). To enable the efficient recognition by the
autophagosomal or vacuolar membrane, it is possible that these
chloroplast outer membrane proteins might serve as receptors
by binding to the ATG or non-ATG chlorophagy regulators.
However, since these plant-specific chloroplast proteins lack
counterparts in either yeast or mammalian cells, more effort

FIGURE 2 | Post-modification on the TOC complex. Upon exposure to different conditions, two types of modifications occur on the TOC complex, including
phosphorylation (orange color) and ubiquitination (yellow color).
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will be required in the future to validate the predicted AIMs
and their possible roles in different types of chloroplast
degradation pathways.

POSSIBLE SIGNALS AND
POST-TRANSLATIONAL MODIFICATION
FOR THE CHLOROPLAST PROTEINS
DURING CHLOROPHAGY

Although chlorophagy is highly induced by various stress
conditions, the molecular signals for chlorophagy activation
remain unknown. Notably, RCB formation requires stromule
formation, which is highly inducible under starvation and
stress conditions (Ishida et al., 2008). For example, it has
been reported that stromule number is increased upon ABA
treatment (Gray et al., 2012). On the other hand, ABA modulates
the activity of downstream factors like ABI and P2CC, which
further activate the SnRK2 kinase complex (Soon et al., 2012).
Particularly, the SnRK complex also serves as a critical upstream
regulator for autophagic activation by phosphorylation of a
set of ATG proteins, e.g., ATG1 (Soto-Burgos et al., 2018).
Although there is no direct evidence to link ABA signaling with
autophagy, a recent study using quantitative phosphoproteomics
showed that phosphorylation of TOC159 homologs TOC132
and TOC120 occurs in an ABA-dependent manner only in the
SnRK2-deficient mutant background (Wang P. et al., 2013).
Furthermore, in vitro phosphorylation assays have demonstrated
that TOC159 might be directly phosphorylated by recombinant
SnRK2 proteins (Wang P. et al., 2013). In another study,
phosphorylation of recombinant A-domain of TOC159 was
also observed when incubated with casein kinase 2 (CK2)-
like proteins (Agne et al., 2010), an evolutionarily conserved
serine/threonine protein kinase to function in circadian clock
regulation. Recently, it was shown that CK2 also participates
in the ABA-activated SnRK2 signaling pathway (Vilela et al.,
2015). Therefore, it is possible that SnRK2- or CK2- dependent
phosphorylation of chloroplast membrane proteins or the
ATG proteins activates chlorophagy in coordination with the
ABA signaling pathway. It will be interesting to test whether
the phosphorylation of these chloroplast membrane-associated
proteins would serve as a signal to recruit the ATG machinery
onto the chloroplast membrane.

In addition to phosphorylation, another type of essential
post-translational modification, ubiquitination, might provide
the specificity for the selection of chloroplast cargos. Emerging
evidence from both yeast and mammalian cells supports a
close interplay between ubiquitination and autophagy (Shaid
et al., 2013). In plants, it is well known that ubiquitination
plays a critical role in chloroplast biogenesis during plastid
developmental transitions (e.g., proplastid to chloroplast in seed
germination). In a recent study, it was reported that during
germination, the DELLA proteins promote TOC159 degradation
via ubiquitination to modulate proplastid to chloroplast
transition during early plant development (Shanmugabalaji
et al., 2018). Although it is claimed that ubiquitinated

TOC159 is degraded via the proteasome pathway, whether
ubiquitinated TOC159 may be targeted by chlorophagy awaits
to be determined. Of note, TOC159 has previously been
identified as a substrate of another E3 ligase SP1, which is
distributed on the outer membrane of the chloroplast to regulate
chloroplast biogenesis (Ling et al., 2012). Interestingly, MUL1,
the closest homolog of SP1 in humans, has been shown to
regulate the ULK1 (ATG1 homolog in human) activity and
mitophagy negatively (Li et al., 2015; Rojansky et al., 2016). Upon
selenite treatment, it was observed that ULK1 translocates to
mitochondria to interact with MUL1. In plants, SP1 has been
detected on peroxisomes, mitochondria as well as chloroplasts
(Pan and Hu, 2018). Additionally, it was reported that Parkin,
a E3 ubiquitin ligase in mammalian cells, interacts with the
mitochondrial outer membrane protein VDAC to regulate
its ubiquitination for the targeting of mitochondria during
mitophagy (Geisler et al., 2010). Hence, it is possible that
SP1 might play an additional role during chlorophagy and
future work is needed to identify potential SP1 substrates
during chlorophagy.

Recently, in a screening for a suppressor of fc2-triggered
chloroplast degradation, a E3 ligase PLANT U-BOX 4 (PUB4)
was identified (Woodson et al., 2015). It was implied that
PUB4 functions in chloroplast turnover via ubiquitination of
the chloroplast proteins during dark-to-light transitions against
ROS. Of note, loss-of-function of the chloroplast protein import
machinery (TOC33 and TOC159), also suppresses fc2-triggered
chloroplast degradation, implying a coordination between the
chloroplast import machinery and degradation. It appears that
a pub4 mutant exhibits less sensitivity to carbon starvation than
the atg mutant, thus the authors claimed that the PUB4-mediated
chloroplast degradation is likely to be independent of autophagy.
However, during the PUB4-dependent chloroplast degradation
process, it was observed that the damaged chloroplast directly
fuses with a globular vacuole, which is quite similar to the
microautophagy pathway through direct vacuolar invagination.
It should be pointed out that the ATG machinery is dispensable
during microautophagy and diverse molecular machineries are
identified in other species. For instance, the ESCRT machinery
but not the ATG machinery has been demonstrated to participate
in the incorporation of cytoplasmic proteins into the vacuole
(Oku et al., 2017).

PERSPECTIVE

Chloroplast homeostasis is critical for efficient nutrient recycling
and remobilization. A significant role for autophagy in senescent
leaves is to avoid the accumulation of toxic products from the
chloroplast by removing the damaged or excessive chloroplast
contents. For instance, chloroplasts produce ROS and stress
hormones (e.g., salicylic acid and ABA precursor), both of which
can alter nuclear gene expression and accelerate leaf senescence
(Yoshimoto et al., 2009; Schippers et al., 2015). Thus, degradation
of chloroplasts by autophagy may promote cell survival, and
contribute to the natural turnover of aging chloroplasts to
overcome early leaf senescence and cell death. However, so
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far, little is known about how chlorophagy is regulated and
how the selectivity of chloroplast materials is achieved. We
anticipate that more efforts will be put forward in future toward
the identification of novel chloroplast regulators to link with
the ATG machinery. In particular, identification of the distinct
chlorophagy receptors for different pathways as well as their
interaction network should provide more insights into how
these different pathways are coordinated for chloroplast turnover.
In addition, although previous studies visualizing chlorophagy-
related structures have mainly relied on 2D transmission electron
microscopy images or confocal microscopy imaging, details
on the intermediate structures are still missing. Outstanding
questions are as follows: Why are there so many types of
pathways/structures and are they related? What happens if
a pathway/structure is inhibited? How are vesicles initiated
within the double-membrane chloroplast (e.g., ATI-PS)? How
does the outer membrane of chloroplast fuse with the vacuole?
Given the complexity of chloroplast morphology, a combination
of advanced techniques such as 3D electron microscopy and
dynamic imaging should provide more insights into chlorophagy
at the cellular level in the future.
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