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Extensively branched root systems can efficiently capture soil resources by increasing 
their absorbing surface in soil. Lateral roots are the roots formed from pericycle cells of 
other roots that can be of any type. As a consequence, lateral roots provide a higher 
surface to volume ratio and are important for water and nutrients acquisition. Discoveries 
from recent studies have started to shed light on how plant root systems respond to 
environmental changes in order to improve capture of soil resources. In this Mini Review, 
we  will mainly focus on the spatial distribution of lateral roots of maize and their 
developmental plasticity in response to the availability of water and nutrients.
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INTRODUCTION

Maize forms a structurally and functionally complex root system composed of different root 
types (Hochholdinger et  al., 2017) to efficiently acquire water and nutrients (Lynch, 2013) and 
to tolerate biotic and abiotic stresses (Lynch et  al., 2014). Lateral roots of different orders are 
the most eminent root type for nutrient and water uptake from soil because of their high 
surface to volume ratio (Rogers and Benfey, 2015). Compared to other root types, lateral roots 
display the highest developmental plasticity when exposed to unfavorable environmental conditions 
(Yu et  al., 2014a, 2016a). The formation and spatial distribution of lateral roots, e.g., lateral 
root branching is the most important factor governing root system architecture and soil 
exploration in plants (Atkinson et  al., 2014). Thus, genotypes with lateral root defects display 
a strong inhibition of nutrient uptake and biomass production in crops (Yu et  al., 2016a). 
The molecular mechanisms and hormonal crosstalk involved in lateral root formation and 
positioning has been extensively studied in the model plant Arabidopsis thaliana (Möller et  al., 
2017; Ötvös and Benková, 2017). Genetic and molecular control of lateral root initiation and 
formation in maize has been summarized in the recent review (Yu et  al., 2016a). In this Mini 
Review, we  provide an update on the molecular mechanisms involved in the lateral root 
branching response to environmental cues such as nutrients and water in maize.

ARCHITECTURAL RESPONSES OF LATERAL ROOTS TO  
THE AVAILABILITY OF SOIL RESOURCES

The significantly higher surface area of the lateral roots compared to their parental roots is 
a major determinant that is instrumental for water uptake in maize (Ahmed et  al., 2016). 
Lateral roots are efficient in the short-distance exploitation and transport of water from soil 
to the vasculature in young and adult maize plants (Ahmed et  al., 2016, 2018).  
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Genotypic differences in lateral root branching and their vertical 
distribution along the root system are a measure for drought 
tolerance in soil (Hund et  al., 2009). Maize genotypes with 
reduced lateral root branching have been shown to be  highly 
tolerant against drought under both greenhouse and field 
conditions (Zhan et  al., 2015). A possible explanation for this 
observation is the negative correlation between lateral root 
branching and axial root elongation (Lynch, 2015). In maize, 
distinct orders of lateral roots make up the majority of total 
length of the root system (Lynch, 2013). Different plant species 
display distinct responses to nitrogen and phosphorus starvation 
with respect to their lateral root branching patterns, although 
dicot and monocot plants show similar patterns of lateral 
root spacing along the primary root under optimal conditions 
(Chen et  al., 2018). The optimal branching density of lateral 
roots in maize has been predicted by the functional-structural 
model SimRoot based on the observation that nutrient acquisition 
is proportional to the spatial availability and mobility of 
resources in the soil profile (Postma et  al., 2014). Genotypes 
with sparsely distributed and long lateral roots are optimal 
for nitrate acquisition, whereas genotypes with densely spaced 
and short lateral roots are optimal for phosphorus acquisition 
in maize (Postma et  al., 2014). Recent results in maize have 
indicated that genotypes with higher lateral root branching 
density display significantly increased phosphorus acquisition 
under phosphorus-deficient conditions (Liu et  al., 2013; Jia 
et  al., 2018). By contrast, maize genotypes with few and long 
lateral roots are more competent for nitrogen uptake than 
genotypes with many and short lateral roots under suboptimal 
nitrogen concentrations in soil (Zhan and Lynch, 2015). Thus, 
availability of soil nutrients and water determines compensatory 
growth and patterning of lateral roots along the parental 
root axes.

LATERAL ROOT BRANCHING IN 
RESPONSE TO PATCHY  
SOIL RESOURCES

Lateral root branching patterns reflect the uneven distribution 
of water and nutrients in soil (Robinson, 1994). Plants adapt 
to heterogeneous water conditions by altering their lateral root 
branching in contact with water by using “hydropatterning” 
response (Bao et al., 2014; Robbins and Dinneny, 2018). High-
resolution non-invasive microcomputed tomography imaging 
has revealed that the formation and patterning of lateral roots 
is highly responsive to local water availability in A. thaliana 
and crop species (Bao et  al., 2014; Robbins and Dinneny, 
2015; Orman-Ligeza et  al., 2018). Xerobranching, describing 
the repression of lateral root branching when root tips are 
not in contact with wet soil, suggests that abscisic acid is 
involved as key signal regulating branches of lateral roots in 
their local microenvironment (Orman-Ligeza et  al., 2018). For 
hydropatterning, high availability of water results in the induction 
of auxin biosynthesis and transport, independent of endogenous 
abscisic acid signals (Bao et  al., 2014; Figure 1A). A recent 
study with A. thaliana demonstrated that hydropatterning is 

dependent on SUMO-mediated posttranslational regulation of 
auxin signaling pathway (ARF7/IAA3) controlling lateral root 
branching pattern in response to water availability (Orosa-
Puente et  al., 2018; Figure 1A). ARF7 transcription factor 
induces asymmetric expression of its target gene LATERAL 
ORGAN BOUNDARIES (LOB) domain 16 (LBD16) in lateral 
root founder cells (Orosa-Puente et  al., 2018; Figure 1A). 
Future work will be  necessary to understand how the water 
and nutrient signals are integrated to regulate lateral root 
branching in response to local water/nutrients availability (Giehl 
and von Wirén, 2018). Through a combination of empirical 
and mathematical-modeling approaches in maize, it has been 
shown a central role of tissue growth and developmental 
competence, which is necessary to sustain the normal 
hydropatterning, although the molecular mechanism is unknown 
in crop plants (Robbins and Dinneny, 2018). This result implies 
that the water requirement for fast developing tissue is an 
important contribution process on water perception and 
developmental reprogramming during the postembryonic 
root development.

Lateral root formation in response to systemic and local 
nitrate signaling has been recently summarized in A. thaliana 
(Sun et al., 2017). A series of experiments have demonstrated 
that local nitrate supply can considerably stimulate lateral 
root production also in crops, such as maize (Wang et  al., 
2004; Guo et  al., 2005; Liu et  al., 2008, 2010), rice (Huang 
et  al., 2015), barley (Drew et  al., 1973), and wheat (Hackett, 
1972). Hydroponics allows local nutrient application under 
well-controlled conditions, which can also avoid influences 
of other factors such as physical properties of soil and 
microbes. Local application of nutrients in hydroponics 
includes two strategies: one is the vertical split system that 
the middle part of the root was supplied with high nutrients 
along the longitudinal axis (Drew et  al., 1973); another 
strategy is horizontal split system that the axial roots are 
separated into different compartments or rhizoslides with 
diverse nutrient levels (Yu et  al., 2014b; Dina in’t Zandt 
et  al., 2015). The complex nature of the root system of 
maize plants makes split-root experiments challenging. Most 
common ways to carry out such experiments is by placing 
the primary root into one compartment and the other root 
types are placed into the other one (Yu et  al., 2014b, 2015, 
2016b) or the crown roots are equally separated and cultured 
in different compartments after removing the primary and 
seminal roots (Wang et  al., 2004; Guo et  al., 2005; Liu et  al., 
2008, 2010). Vertical hydroponics experiments by Drew and 
his colleagues demonstrated that lateral root formation in 
barley depends on the dose and type of nutrient application 
(reviewed in Yu et  al., 2014a). Both length and density of 
lateral roots are significantly induced by local high nitrate 
(control: 0.01  mM; high nitrate 1  mM) in barley seedlings 
(Drew et al., 1973). By contrast, only elongation of the lateral 
roots on primary root is induced in maize seedlings split 
supplied by local high nitrate (control: 0.5  mM; high nitrate 
4  mM) in 7-day-old maize seedlings grown in the left-right 
hydroponic system (Yu et  al., 2014b). This is consistent with 
the lateral root formation from the crown roots of maize, 
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that localized nitrate mainly induced lateral root formation 
but little effects on the density of lateral roots in both 
hydroponics (Liu et  al., 2010) and rhizoslides (Dina in’t 
Zandt et  al., 2015). This is further validated by a microarray 
analysis of pericycle cells indicating common mechanisms 
for lateral root initiation in maize primary and crown roots 
(Jansen et  al., 2013). Different responses on lateral root 
branching between barley and maize can be  explained by 
species-specific responses to nitrate but also by different 
developmental stages of root types surveyed in these plant 
species. Thus, lateral root specific responses to local nitrate 
depend on the developmental stage when certain root type 
is formed. For instance, shoot-borne roots specifically initiated 
during silking form more lateral roots in response to localized 
nitrate supply than other root types including the shoot-
borne roots formed before silking (Yu et  al., 2015, 2016b). 
This divergent finding can be  explained by the higher shoot 
demand for nutrients during and after silking (Yu et  al., 
2014b) but also the possibility of specific hormone signaling 
from the reproductive process (Yu et al., 2016b). For example, 
basipetal auxin transport is facilitated by ZmPIN1a and 
ZmPIN1c in response to local nitrate supply (Yu et al., 2016b; 
Figure 1B). Moreover, monocot-specific PIN9 gene in phloem 
pole cells of shoot-borne roots at silking modulates auxin 
efflux to pericycle cells and subsequent cell cycle activation 
by alleviating the inhibition of Kip-related proteins (KRP) 
coding genes in maize (Yu et al., 2016b; Figure 1B). Moreover, 
CPP-like (cysteine-rich polycomb-like) transcription factors 

have been found specifically enriched in brace roots of maize, 
which may play an important role in development of 
reproductive organs and control of cell division in plants 
(Yu et  al., 2016b). It would be  interesting to compare the 
responses of different root types to local nitrogen supply at 
the flowering stage in order to answer whether in maize 
this divergent response is root type specific and/or 
developmental stage dependent.

A study with A. thaliana mutants with reduced number of 
lateral roots indicate that complex architecture and branching 
pattern of lateral roots are mainly required for the acquisition 
of immobile resources, such as phosphate, whereas mobile ions 
like nitrate can be  effectively taken up even by restricted root 
systems (Fitter et  al., 2002). This raises the hypothesis that 
root proliferation in nutrient-rich patches could be  more 
important for the enhanced capture of immobile than mobile 
ions. In fact, field studies have suggested that enhanced root 
proliferation in nutrient-rich patches of ammonium and 
phosphate during seedling stage and adult development is 
essential for improving phosphate uptake and ultimately grain 
yield (Jing et  al., 2010; Li et  al., 2012, 2016; Ma et  al., 2013). 
One possible explanation for this observation could be  indirect 
effects of solubilization of mineral phosphate by rhizosphere 
acidification using ammonium fertilization. Alternatively, fine 
lateral root proliferation substantially increases exudate secretion 
to the rhizosphere, which can be  used as the carbon source 
for beneficial interactions of the microbiome at the root-
soil interface.

A

B

FIGURE 1 | Schematic illustration of lateral root branching response to availability of water in A. thaliana (A) and of nitrate in maize (B). ARF, auxin response factor; 
IAA3, Aux/IAA3 (Aux/indole-3-acetic acid protein 3); KRP, Kip-related protein; LBD, LATERAL ORGAN BOUNDARIES (LOB) domain; LR, lateral root; LRE, lateral 
root emergence; LRP, lateral root primordia; PIN, PIN-Formed; SUMO, small ubiquitin-like modifier.
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ROOT TYPE-SPECIFIC BRANCHING 
PATTERNS

Recent experiments highlight root type-specific transcriptomic, 
anatomical, and physiological differences in maize (Tai et  al., 
2015; Ahmed et  al., 2018). Distinct root types of maize show 
diverse branching responses to nitrate and also host different 
fungal taxa in their axial and lateral roots (Yu et  al., 2016b, 
2018). A novel phenotyping approach demonstrates distinct 
growth rates of three types of lateral roots contribution to the 
random patterning of lateral root formation in pearl millet 
and maize (Passot et  al., 2018). This phenomenon raises the 
question whether lateral root types with divergent lengths show 
distinct competences of their corresponding pericycle cells for 
dividing. To further study this question, diverse inbred lines 
with natural variation for lateral root patterning and spacing 
could be  studied in maize.

CONCLUSIONS AND PERSPECTIVES

Lateral root branching of maize plants grown in soil is 
root type specific and depends on hormonal crosstalk and 
signal transduction based on local sensing of water and 
nutrients. Nevertheless, these molecular processes have not 
been understood in full detail at the cellular level. Therefore, 
systemic cell-type-specific analyses in different root types 
will be  instrumental to clarify the identity of pericycle and 
endodermis cells in maize in response to local water and 

nutrient supply (Kortz et  al., 2019). In particular, root type 
has to be  considered when studying the mechanism of 
lateral root formation as maize has a unique architectural 
pattern in comparison to the other crop species (Burton 
et  al., 2013; Tai et  al., 2015; Yu et  al., 2016a). Signal 
transduction induced by water and nutrients at the root-
soil interface needs to be explored in large genetic populations 
on the molecular level and by advanced in situ imaging 
(van Dusschoten et  al., 2016; Tardieu et  al., 2017). To this 
end, understanding the reprogramming of lateral root 
formation and architectural plasticity in response to water 
and nutrient availability in the context of yield acquisition 
and resource use efficiency can be  relevant for rational 
breeding approaches.
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