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Circular RNAs (circRNAs) are new endogenous non-coding RNA family members that
arise during pre-mRNA splicing in a reversed order in which the 3′ and 5′ ends
are covalently closed. Compared to the comprehensive investigation of circRNAs in
animals, circRNA research in plants is still in its infancy. Genome-wide identification and
characterization of circRNAs have recently been performed in several plant species.
CircRNAs are ubiquitously expressed and abundant in plants. The expression of
circRNAs is often dependent on cell-type, tissue, and developmental stage, and it is
particularly stress-inducible in plants. CircRNAs might play important roles in various
biological processes in plants, including development and the response to biotic and
abiotic stresses. Here, we review the current literature and provide a brief overview of
circRNAs and their research status in plants, as well as the bioinformatic tools and
database resources for circRNA analysis.
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INTRODUCTION

Unlike the better-known linear mRNAs formed by linear splicing, circular RNAs (circRNAs) are
novel members of the non-coding RNA family and are generated during post-transcriptional
processes via backsplicing of precursor messenger RNAs (pre-mRNAs) (Figures 1A,B) (Jeck et al.,
2013). CircRNAs could be derived from any genomic location, such as exonic, intronic, and
intergenic regions (Chen, 2016). In animals, circRNAs are widespread and are the predominant
isoform of exons originating from protein-coding genes spliced in a non-canonical order (Salzman
et al., 2012; Westholm et al., 2014; Rybak-Wolf et al., 2015). Unlike normal linear RNAs, circRNAs
form covalently closed loop structures with neither 5′–3′ polarities nor polyadenylated tails. Thus,
circRNAs are resistant to RNase R, which is a strong 3′–5′ exoribonuclease that is able to efficiently
degrade linear RNAs. Therefore, circRNAs can be segregated and enriched from eukaryotic total
RNAs by RNase R digestion (Suzuki and Tsukahara, 2014; Chen and Yang, 2015).

Although the existence of circular transcripts has been observed for decades, such as the hepatitis
δ virus and some plant viroids, circRNAs were typically regarded as rare byproducts of errant
splicing during mRNA processing in eukaryotic cells (Sanger et al., 1976; Kos et al., 1986; Memczak
et al., 2013). Due to the recent developments in high-throughput deep sequencing technology,
exonuclease-based enrichment strategies, and novel bioinformatic tools, numerous circRNAs have
been discovered and identified in many organisms, such as humans (Jeck et al., 2013), mouse
(Fan et al., 2015), zebrafish (Shen et al., 2017), archaea (Danan et al., 2012), rice (Lu et al., 2015),
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and Arabidopsis (Ye et al., 2015), leading to the consensus that
circRNAs are ubiquitous and abundant in eukaryotes.

Plant circRNAs possess features that differ from animal
circRNAs. For example, reverse complementary elements, which
are important for circularization, are enriched in the flanking
introns of circRNAs in animals (Jeck and Sharpless, 2014). In
contrast, in plants, most of the identified circRNAs contain
comparatively fewer repetitive and reverse complementary
sequences in the flanking introns that bracket the circRNAs (Lu
et al., 2015; Ye et al., 2015). Additionally, in animals, certain
circRNAs have been reported to act as miRNA sponges to regulate
the expression of target genes. However, studies of circRNAs
in plants have not implied the potential suitability of circRNAs
as miRNA sponges (Hansen et al., 2013; Memczak et al., 2013;
Westholm et al., 2014). Thus, plant circRNAs might possess
different mechanisms of biogenesis and have different functional
roles from animal circRNAs.

In this review, we present a concise and up-to-date overview
of circRNAs in plants. Particularly, we focus on the abundance
and expression patterns of circRNAs in various plant species
and then discuss the available bioinformatic resources that can
be used to characterize circRNAs based on high-throughput
sequencing data. Finally, the potential functionality of circRNAs
in plants is explored.

CircRNA ABUNDANCE IN PLANTS

It is challenging to separate circRNAs from other RNAs, such as
miRNA and mRNA, based on size or electrophoretic mobility.
Due to the lack of a free polyadenylated tail, circRNAs have
evaded recognition by poly (A) enrichment approaches. Thus,
although circRNAs have been observed in eukaryotic cells for
decades, it has not been possible to comprehensively evaluate
them. Recent developments in high-throughput deep sequencing
coupled with exonuclease-based enrichment strategies and
computational approaches have resulted in the identification
of thousands of circRNAs in animals, including in Drosophila

FIGURE 1 | CircRNA biogenesis. (A) mRNA variants via alternative linear
splicing. All mRNAs have polyA tails. (B) CircRNA variants formation via
backsplicing.

(Westholm et al., 2014), humans (Salzman et al., 2012), mouse
(Fan et al., 2015), and zebrafish (Shen et al., 2017).

Similarly, limited studies on higher plants have revealed that
circRNAs are also widespread and abundant in plant species
(Table 1). The genome-wide identification of plant circRNAs was
first performed in Oryza sativa and Arabidopsis thaliana. Ye et al.
(2015) identified 12,037 circRNAs from the root and shoot tissues
of O. sativa and 6,012 circRNAs from the leaves of A. thaliana.
Furthermore, Ye et al. (2017) also identified 2,806 circRNAs
in the root tissues of rice seedlings. Lu et al. (2015) reported
2,354 circRNAs in the panicles and mature leaves of rice at
different flowering time stages. In addition to the two well-known
model plants, circRNAs have also been identified from the other
monocotyledon and dicotyledon species, such as barley, tomato,
wheat, soybean, and kiwifruit (Table 1). Darbani et al. (2016)
reported 62 circRNAs in the leaves and immature seeds of barley,
while Zuo et al. (2016) identified 854 circRNAs from mesocarp
samples at the mature green stage of tomato. Additionally, Tan
et al. (2017) also identified 796 circRNAs from the fruits of
tomato. Using an RNase R-treated enrichment approach, Wang
et al. (2017) detected 88 circRNAs in the leaves of wheat seedlings.
Zhao et al. (2017a) identified 5,372 circRNAs in the leaves,
stems, and roots of soybean seedlings, and another study also
identified 5,367 circRNAs associated with resistance to defoliating
insects in soybean leaves (Zhao et al., 2017b). Wang et al.
(2017) identified 3,582 circRNAs from the leaf, root, and stem
tissues of four kiwifruit materials originating from three species
belonging to the genus Actinidia. Chen et al. (2018) detected
2,804 circRNAs in the seedling leaves of maize. In summary,
an abundance (95,143) of circRNAs has been identified from
various plant species (Chu et al., 2018); however, regrettably, only
a few circRNAs have been verified by experimental approaches.
With the development of high-throughput technology and new
bioinformatic tools, we anticipate that more circRNAs will be
identified in plants in the future.

FEATURES OF PLANT circRNAs

The size of circRNAs ranges from smaller than 100 nt to larger
than 4 kb. For example, the majority of human circRNAs are a
few hundred nucleotides in length, while soybean circRNAs are
mainly between 150 and 600 bp, and only a few are greater than
2 kb (Jeck et al., 2013; Zhang et al., 2014; Zhao et al., 2017a).

A conserved feature in animals and plants is that the
genesis of circRNAs depends on RNA polymerase II-mediated
transcription and backsplicing reactions of pre-mRNAs (Sun
et al., 2016). Previous studies have demonstrated that the
reverse complementary sequences were significantly enriched in
the flanking introns bracketing circRNAs and that these short
intronic repeat sequences could facilitate circRNA production in
animals (Jeck et al., 2013; Chen and Yang, 2015; Chen, 2016). For
example, in humans, circularized exons are typically bracketed by
long introns, which contain abundant Arthrobacter luteu (Alu)
elements (Jeck et al., 2013). However, there are comparatively
fewer of these repetitive elements in plant circRNAs. For example,
the proportion of reverse complementary sequences was only 6.2,
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TABLE 1 | Studies showing the genome-wide identification of circRNAs in plants.

No Year Publication Plant species Number of Tissues/ Approach Stimuli/Biological

Details and circRNAs Developmental Process

Reference No. Stages
Abiotic Stress Biotic Stress

1 2015 Ye et al., 2015
New Phytol.

Oryza sativa
(Rice)

12,037 Roots and shoots
the following time

rRNA-depleted
RNA-Seq

Pi-starvation

2 2015 Lu et al., 2015
RNA

Oryza sativa
(Rice)

2,354 Panicles and
mature leaves at
the flowering time

rRNA-depleted/RNase
R-treated RNA-Seq

3 2017 Ye et al., 2017
RNA Biol.

Oryza sativa
(Rice)

2,806 Roots of seedlings rRNA-depleted/RNase
R-treated RNA-Seq

4 2015 Ye et al., 2015
New Phytol.

Arabidopsis
thaliana

6,012 Leaves of
3–4 weeks old
plants

rRNA-depleted
RNA-Seq

Light

5 2016 Sun et al., 2016
FEBS

Arabidopsis
thaliana

970 NA rRNA-depleted
RNA-Seq

6 2016 Darbani et al., 2016
Frontiers in Plant
Science

Hordeumvulgare
(Barley)

47 Leaves and
immature seeds at
the growth stage
18 ± 2 days after
anthesis

rRNA-depleted
RNA-Seq

7 2016 Zuo et al., 2016
BBRC

Solanumlycopersicum
(tomato)

854 Mesocarp samples
at mature green
stage

rRNA-depleted
RNA-Seq

Chilling

8 2017 Wang et al., 2017
Frontiers in Plant
Science

Triticum aestivum
(Wheat)

88 Leaves of seedlings rRNA-depleted/RNase
R-treated RNA-Seq

Dehydration

9 2017 Zhao et al., 2017b
OCS

Soybean 5,367 Leaves at mature
green stage

rRNA-depleted
RNA-Seq

Cotton
bollworm

10 2017 Wang et al., 2017
Frontiers in Plant
Science

Kiwifruit 3,582 Leaf, root, and
stem tissues of
seedlings

rRNA-depleted
RNA-Seq

Pseudomonas
syringae pv.
actinidiae

11 2017 Zhao et al., 2017a
Sci. Rep.

Soybean 5,372 Leaf, root, and
stem tissues of
seedlings

rRNA-depleted
RNA-Seq

12 2017 Tan et al., 2017
Sci. Rep.

Solanumlycopersicum
(tomato)

796 Fruits rRNA-depleted
RNA-Seq

13 2018 Chen et al., 2018
New Phytol.

Maize 2804 B73 seedling leaves rRNA-depleted
RNA-Seq

2.7, and 0.3% in the intronic sequences flanking exonic circRNAs
in rice, soybean, and A. thaliana, respectively (Lu et al., 2015; Ye
et al., 2015; Zhao et al., 2017a). In maize, sequences related to
LINE1-like elements (LLEs) and their Reverse Complementary
Pairs (LLERCPs) are significantly enriched in the flanking regions
of circRNAs, which indicates that transposons may be involved in
the formation of circRNAs in plants (Wang et al., 2017).

CircRNAs are generated when the pre-mRNA splicing
machinery backsplices to join a down-stream splice donor to an
upstream splice acceptor. The 3′ and 5′ ends normally present
in a linear mRNA molecule have been joined together covalently
in circRNAs. The U2-dependent spliceosome is responsible for
the splicing of the vast majority of introns in both plants and
animals, with GT and AG terminal dinucleotides at their 5′
and 3′ termini, respectively (Szczesniak et al., 2013). However,
the mechanisms of selection for certain sequences to circularize
by spliceosomes are poorly characterized. The analysis of splice
signals of circRNAs in humans has revealed that most of the

exonic circRNAs contain canonical GT/AG splicing signals, while
some also harbor non-GT/AG splicing signals (Ye et al., 2017).
In plants, the splice signals of circRNAs differ between monocot
and dicot species. In rice, only a small portion (7.3%) of circRNAs
possess canonical GT/AG (CT/AC) splicing signals, and a large
number of circRNAs share diverse non-GT/AG splicing signals,
such as GC/GG, CA/GC, GG/AG, GC/CG, and CT/CC (Ye
et al., 2017). In A. thaliana, among the 803 identified circRNAs
with the GT-AG signal, the majority showed the canonical
splicing signal GT/AG, while only 9 circRNAs were generated
from non-canonical splicing signals (Sun et al., 2016). However,
these diverse splice signal patterns should be further verified in
more plant species.

CircRNAs are conserved and have various isoforms that are
generated by alternative circularization in plants (Figure 1B).
In O. sativa and A. thaliana, 6,074 and 5,152 circRNA-host
genes could generate exonic circRNAs, of which 12.2 and 14.5%
constitute orthologous genes. Furthermore, over 300 orthologous
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circRNA-host genes could generate circRNAs from a similar
position (Ye et al., 2015).

Alternative circularization constitutes another circRNA
formation mechanism that can generate a variety of additional
circRNAs from one gene (Zhang et al., 2014). A previous
study demonstrated that over 50% of gene loci produced
circRNAs through alternative circularization in human and
mouse cells (Zhang et al., 2014). Similarly, in rice, a large
number of circRNA isoforms are produced by the same locus,
and over half of the circRNAs in rice were generated by
alternative circularization (Ye et al., 2015). For example, the gene
LOC_Os11g02080 was predicted to generate 41 isoforms, while
the gene LOC_Os12g02040 was predicted to generate 38 isoforms,
which were further validated by the successful sequencing of
reverse transcription (RT)-PCR products (Ye et al., 2015).

BIOINFORMATIC RESOURCES FOR
PLANT circRNAs

The advances in high-throughput deep sequencing technology
have enabled scientists to generate millions of sequencing reads
in a short time period. In response to the mass generation
of RNA sequencing (RNA-Seq) data, new computational
algorithms for the precise and efficient identification of circRNAs
have been developed (Szabo et al., 2015). Several different
bioinformatic tools, such as circRNA finder (Westholm et al.,
2014), CIRCexplorer (Zhang et al., 2014), CIRI (Gao et al.,
2015), find circ (Memczak et al., 2013), Mapsplice (Wang
et al., 2010), PcircRNA_finder (Chen L. et al., 2016), and
circseq-cup (Ye et al., 2017), have been developed specifically
for this purpose (Table 2). However, these bioinformatic
tools perform differently in terms of precision and sensitivity
when identifying circRNAs from RNA-Seq data and also
differ in computational costs. PcircRNA_finder was specially
developed for plant circRNA identification and provided a more
comprehensive, sensitive, and precise prediction method for
plant circRNAs, while the other algorithms were established
for animals (Chen L. et al., 2016). Hansen et al. (2016)
comparatively analyzed circRNA prediction tools. They found
that different tools could produce highly divergent results with
high false positive ratios; however, combining the output of
the different tools could reduce the false positive fraction
significantly (Hansen et al., 2016). Zeng et al. (2017) also
comprehensively evaluated different circRNA detection tools
using four different datasets, including a positive dataset,
background dataset, mixed dataset, and real datasets. Generally,
CIRI, CIRCexplorer, and KNIFE perform better in terms of
achieving a balance between precision and sensitivity. These
comparison results proved valuable for improving algorithms
and have provided useful guidelines for current algorithms used
for data interpretation by researchers.

Increasing numbers of circRNA datasets have been produced,
which has urgently necessitated the efficient organization
and management of these datasets. Currently, several animal
circRNA databases have been established, such as circ2Traits
(Ghosal et al., 2013), nc2Cancer (Chen et al., 2015), circBase

(Glažar et al., 2014), starBase v2.0 (Li et al., 2014), CircNet
(Liu Y.C. et al., 2016), deepBase v2.0 (Zheng et al., 2016),
CircInteractome (Dudekula et al., 2016), and circRNADb (Chen
X. et al., 2016) (Table 3). Comparatively, only one plant-specific
circRNA database, PlantcircBase1, has been created recently (Chu
et al., 2017). PlantcircBase records published and unpublished
circRNAs with universal identifiers from different plants species,
including O. sativa, A. thaliana, Zea mays (Z. mays), Solanum
lycopersicum (S. lycopersicum), Glycine max (G. max), Camellia
sinensis (C. sinensis), Gossypium arboreum (G. arboreum),
Gossypium hirsutum (G. hirsutum), Gossypium raimondii
(G. raimondii), Ptelea trifoliata (P. trifoliata), Symphytum
tuberosum (S. tuberosum), Triticum aestivum (T. aestivum), and
Hordeum vulgare (H. vulgare). PlantcircBase also provides
a visualization of specific circRNA structures, potential
interaction networks involving circRNA-miRNA-mRNA in
the corresponding species, and validation information by Sanger
sequencing. However, more significant information on functional
annotation, tissue expression, interaction with other molecules,
and phylogenetic conservation are still needed, which would
make PlantcircBase a more comprehensive resource for research
into plant circRNAs. The development of high-throughput
sequencing technologies and the growing availability of various
bioinformatic resources will greatly promote circRNA research.

EXPRESSION PATTERNS OF PLANT
circRNAs

CircRNAs usually exhibit specific cell-type, tissue, and
developmental stage expression patterns in animals (Westholm
et al., 2014; Fan et al., 2015). For example, in Drosophila,
circRNAs originate from neural genes and exhibit enhanced
accumulation in neural tissues (Westholm et al., 2014). Using
single-cell universal poly(A)-independent RNA sequencing
technology, Fan et al. (2015) discovered 2,891 circRNAs in
mouse preimplantation embryos, of which a large proportion
showed developmental-specific expression patterns.

In plants, circRNAs also exhibit specific expression patterns, as
observed in animals (Lu et al., 2015; Darbani et al., 2016). Darbani
et al. (2016) treated field-grown barley plants with a foliar
application of iron or zinc solution and collected the seed transfer
cells using laser capture micro-dissection for RNA-Seq analysis.
They ultimately identified 62 transfer cell-specific circRNAs and
demonstrated that these circRNAs could respond to the foliar
application of micronutrients in barley (Darbani et al., 2016). Lu
et al. (2015) validated 30 rice circRNAs experimentally, of which
three and four circRNAs showed panicle-specific and leaf-specific
expression, respectively.

Plant circRNAs also exhibit stress-inducible expression
patterns. Ye et al. (2015) found that 27 circRNAs were
differentially expressed under phosphate-sufficient -sufficient
and -starvation conditions in rice. Additionally, by comparing
the expressions of the circRNAs between low- and high-
light stress conditions, they found that many circRNAs

1http://ibi.zju.edu.cn/plantcircbase/
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TABLE 2 | An overview of the bioinformatics tools available for the prediction of circRNAs.

Tools Latest version Mapper Websites Reference

circRNA finder N/A STAR https://github.com/orzechoj/circRNA_finder Westholm et al., 2014

CIRCexplorer 1.1.10 Bowtie1 and 2 https://github.com/YangLab/CIRCexplorer Zhang et al., 2014

CIRI 1.2 Bwa https://sourceforge.net/projects/ciri/files/ Gao et al., 2015

find circ v2 Bowtie2 https://github.com/marvin-jens/find_circ Memczak et al., 2013

Mapsplice 2.2.1 Bowtie1 http://www.netlab.uky.edu/p/bioinfo/MapSplice2 Wang et al., 2010

circseq-cup 1.0 STAR http://ibi.zju.edu.cn/bioinplant/tools/circseq-cup.htm Ye et al., 2017

KNIFE 1.4 Bowtie, Bowtie2 https://github.com/lindaszabo/KNIFE Szabo et al., 2015

Segemehl 0.2.0 Segemehl http://www.bioinf.uni-leipzig.de/Software/segemehl/ Hoffmann et al., 2014

UROBORUS 0.0.2 Bowtie, Bowtie2, tophat2 http://uroborus.openbioinformatics.org/en/latest/ Song et al., 2016

were specifically expressed following high-light treatment in
Arabidopsis (Ye et al., 2015). In tomato, approximately 19%
(163/854) of circRNAs exhibited chilling responsive expression
patterns (Zuo et al., 2016). In wheat, 62 circRNAs were
differentially expressed in dehydration-stressed seedling leaves
(Wang Y. et al., 2016).

In addition to abiotic stress, circRNAs were also reported
to be responsive to biotic stresses. For example, in soybean,
199 circRNAs were found to be differentially expressed between
resistant and susceptible samples under defoliation damage by
cotton bollworm feeding (Zhao et al., 2017b). Another study in
kiwifruit revealed that 584 circRNAs were differentially expressed
during Pseudomonas syringae pv. actinidiae (Psa) infection
(Wang et al., 2017). These results suggest that circRNAs might
play important and diverse functional roles in response to biotic
and abiotic stresses in plants.

PUTATIVE FUNCTIONS OF PLANT
circRNAs

Although the abundance of circRNAs has been recognized, their
functions have remained largely unclear. However, accumulating
evidence suggests that circRNAs could play important functional
roles in various biological processes, such as miRNA binding,
protein binding, and transcriptional regulation (Hansen et al.,
2013; Memczak et al., 2013; Chen, 2016).

Previous studies in mammals demonstrated that circRNAs
can function as miRNA sponges or potent ceRNA molecules to
bind specific miRNAs to prohibit them from regulating their
target genes (Memczak et al., 2013). For example, in mouse,
the sex-determining region Y (Sry) is a highly expressed, testis-
specific circRNA that harbors 16 putative binding sites for
miR-138 and serves as a miR-138 sponge (Rybak-Wolf et al.,
2015). In humans, ciRS-7 (also termed CDR1as), as a circular
miR-7 inhibitor, functions as an efficient microRNA sponge. It
harbors more than 70 conventional miR-7 binding sites and
strongly suppresses miR-7 activity, resulting in increased levels
of miR-7 targets (Memczak et al., 2013). However, there is
no further evidence to support that miRNA sponge function
has been ascribed to the majority of circRNAs in animals.
Nevertheless, only 6.6 and 5.0% of circRNAs were predicted to
potentially target mimics of miRNAs in rice and Arabidopsis,

respectively (Ye et al., 2015). Recently, 24 tomato circRNAs and
6 wheat circRNAs were thought to act as miRNA sponges, which
requires further validation (Zuo et al., 2016; Wang et al., 2017).
Os08circ16564, a rice circRNA, was predicted to harbor the
target sites of miR172 and miR810 (Lu et al., 2015). Transgenic
analysis for the overexpression of Os08circ16564 showed that the
expression level of miR170 did not differ between Os08circ16564-
transgenic rice and the control (Lu et al., 2015). It is thus
unclear if miRNA inhibition is a general functional aspect of
circRNAs in plants and animals—a topic that requires further
experimental investigation.

It was previously thought that circRNAs could not produce
a natural protein since most of them were not associated
with polysomes (Guo et al., 2014). However, some engineered
circRNAs with an internal ribosome entry site (IRES) could
be translated in vivo (Wang and Wang, 2015). Recent
research findings in mammals and flies have revealed that
endogenous circRNAs containing IRES sequences and ATG
could produce proteins. For example, circMbl, a circRNA
that exists in the heads of flies, could generate a 37.04 kDa
protein (Pamudurti et al., 2017). The Circ-ZNF609 circRNA
in humans contains an intact open reading frame (ORF)
with start and stop codons that could be translated into a
protein in a splicing-dependent and cap-independent manner
(Legnini et al., 2017). Moreover, the circ-ZNF609-derived protein
plays important functional roles in myogenesis (Legnini et al.,
2017). To date, no plant circRNAs have been reported to
generate proteins. As research progresses, we expect that the
protein coding circRNAs and their potential functions will be
revealed in plants.

Previous studies revealed that circRNAs are associated
with various physiological and pathophysiological processes,
such as insulin biosynthesis and secretion (Xu et al., 2015),
neurological diseases (Satoh and Yamamura, 2004; Junn et al.,
2009; Lukiw, 2013), degenerative diseases (Ashwal-Fluss et al.,
2014; Liu Q. et al., 2016), cardiovascular diseases (Burd
et al., 2010; Wang K. et al., 2016; Du et al., 2017), and
cancers (Qu et al., 2015; Sand et al., 2016; Shang et al.,
2016; Xuan et al., 2016), which indicates that circRNAs might
be novel biomarkers for disease diagnosis and therapy in
humans. CircRNAs were also reported to serve as a class
of aging biomarkers in the central nervous system (CNS)
(Westholm et al., 2014). In plants, biomarkers have been widely
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TABLE 3 | Public circRNA databases.

Name Species Description/Main Features Website Reference

circ2Traits H. sapiens A comprehensive database for circRNA
potentially associated with disease and traits in
humans.
Not plant-specific.

http://gyanxet-beta.com/circdb/ Ghosal et al., 2013

nc2Cancer H. sapiens A comprehensive association between ncRNAs
and cancer in humans.
Not plant-specific.

Chen et al., 2015

circBase H. sapiens,
M. musculus,
D. melanogaster,
C. elegans,
L. chalumnae,
L. menadoensis

A comprehensive database of animal circRNAs.
Not plant-specific.

http://www.circbase.org/ Glažar et al., 2014

starBase v2.0 H. sapiens,
M. musculus,
C. elegans

A comprehensive database of CLIP-Seq
experimentally supported miRNA-ceRNA,
miRNA-ncRNA and protein-RNA interaction
networks.
Not plant-specific.

http://starbase.sysu.edu.cn Li et al., 2014

CircNet H. sapiens A database of tissue-specific circRNA
expression profiles and circRNA-miRNA-gene
regulatory networks in humans.
Not plant-specific.

http://circnet.mbc.nctu.edu.tw/ Liu Y.C. et al., 2016

deepBase v2.0 H. sapiens,
M. musculus,
C. elegans

An integrated knowledge database with
comprehensive collection and annotation of
non-coding RNAs including small RNAs,
LncRNAs, and circRNAs.
Not plant-specific.

http:
//biocenter.sysu.edu.cn/deepBase/

Zheng et al., 2016

CircInteractome H. sapiens Interaction of circRNAs and proteins and
microRNAs in humans.
Not plant-specific.

http://circinteractome.nia.nih.gov Dudekula et al., 2016

circRNADb H. sapiens Human circular RNAs with protein-coding
annotations.
Not plant-specific.

http://reprod.njmu.edu.cn/
circrnadb/circRNADb.php

Chen X. et al., 2016

PlantcircBase 3.0 O. sativa
A. thaliana
Z. mays
S. lycopersicum
G. max
C. sinensis
G. arboreum
G. hirsutum
G. raimondii
P. trifoliata
S. tuberosum
T. aestivum
H. vulgare

A comprehensive database of plant circRNAs.
Plant-specific.

http://ibi.zju.edu.cn/plantcircbase/
index.php

Chu et al., 2017, 2018

used for both molecular fundamental research and applied
practices in crop breeding (Yang et al., 2011). CircRNAs could
also be potential biomarkers in plants due to their unique
characteristics, including resistance to degradation, long half-
lives, and the ease and specificity of detection (Lai et al.,
2018). A recent study revealed that circRNAs can function as
bona fide biomarkers of functional exon-skipped AS variants,
including in the homeotic MADS-box transcription factor family
in Arabidopsis (Conn et al., 2017). CircRNAs usually exhibit
specific cell-type, tissue, and developmental stage expression
patterns, and furthermore, the expression of circRNAs and
circRNA isoforms is often induced under diverse environmental
stresses, such as low- and high-light stresses, Pi-starvation

conditions, low temperature stress, dehydration stress, and
chewing injury stress by insects, which suggests that circRNAs
might play important roles in plant development or in
the response to biotic and abiotic stresses. One subclass of
circRNAs in human cells, EIciRNAs (exon–intron circRNAs),
was shown to enhance the transcription of the gene from
which they were derived through interaction with U1 snRNP
and RNA Polymerase II in the promoter region of the
circRNA-host gene (Li Z. et al., 2015). Thus, EIciRNAs have
the potential to act as transcriptional regulators to induce
the expression of circRNA-host genes. In plants, Zhao et al.
(2017b) discovered 293 EIcircRNAs, including 183 and 175
in resistant and susceptible samples, under defoliation damage
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stress by cotton bollworm feeding in soybean, which indicated
that EIcircRNAs might participate in the response to chewing
injury resistance processes in plants. In addition, some barley
circRNAs that are highly expressed in the mitochondria might
be involved in micronutrient homeostasis. The overexpression
of PSY1-circ1, a circRNA derived from Phytoene Synthase 1
(PSY1) in tomato, resulted in a significant decrease in lycopene
and β-carotene accumulation in transgenic tomato fruits, which
suggests the involvement of circRNAs in plant development (Tan
et al., 2017). However, the detailed mechanisms underlying their
regulatory roles in response to biotic and abiotic stresses are still
poorly understood.

FUTURE PERSPECTIVES

Interest in the identification and characterization of plant
circRNAs is growing. With abundance of circRNAs being
identified and new insights into circRNAs generated rapidly,
the biogenesis and functionality of circRNAs has become
a pertinent research topic. The expression of circRNAs is
usually specific to cell-type, tissue, and developmental stage,
and is also stress-inducible in both animals and plants, which
indicates that circRNAs may represent a new layer of post-
transcriptional gene regulation. Evidence in animals indicates
that circRNAs are potentially important regulators in various
biological processes and are associated with human disorders,
including cancers (Li Y. et al., 2015).

CircRNAs potentially represent another level of post-
transcriptional gene regulators. Although circRNAs were
previously regarded as a novel class of non-coding RNAs, several
studies have provided initial evidence for the coding of proteins

in animals by certain endogenous circRNAs (Legnini et al., 2017;
Pamudurti et al., 2017; Yang et al., 2017). However, the coding
potential of plant circRNAs has not been investigated thus far. In
the future, elucidating and understanding the functional roles
of circRNAs, such as in plant development, the response to
biotic and abiotic stresses, and in translation, might constitute
the primary research topic in plant circRNAs. Additionally, the
differences in circRNA biogenesis between plants and animals
would also be an interesting research avenue.
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