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Climate response of tree-species growth may be influenced by intra- and inter-specific
interactions. The different physiological strategies of stress response and resource use
among species may lead to different levels of competition and/or complementarity, likely
changing in space and time according to climatic conditions. Investigating the drivers
of inter- and intra-specific interactions under a changing climate is important when
managing mixed and pure stands, especially in a climate change hot spot such as the
Mediterranean basin. Mediterranean tree rings show intra-annual density fluctuations
(IADFs): the links among their occurrence, anatomical traits, wood growth and stable
isotope ratios can help understanding tree physiological responses to drought. In this
study, we compared wood production and tree-ring traits in Quercus ilex L. dominant
trees growing in two pure and two mixed stands with Pinus pinea at two sites in
Southern Italy, on the basis of the temporal variation of cumulative basal area, intrinsic
water use efficiency (WUEi), δ18O and IADF frequency in long tree-ring chronologies. The
general aim was to assess whether Q. ilex trees growing in pure or mixed stands have
a different wood production through time, depending on climatic conditions and stand
structure. The occurrence of dry climatic conditions triggered opposite complementarity
interactions for Q. ilex growing with P. pinea trees at the two sites. Competitive reduction
was experienced at the T site characterized by higher soil water holding capacity
(WHC), lower stand density and less steep slope than the S site; on the opposite,
high competition occurred at S site. The observed difference in wood growth was
accompanied by a higher WUEi due to a higher photosynthetic rate at the T site, while by
a tighter stomatal control in mixed stand of S site. IADF frequency in Q. ilex tree rings was
linked to higher WUEi, thus to stressful conditions and could be interpreted as strategy
to cope with dry periods, independently from the different wood growth. Considering
the forecasted water shortage, inter-specific competition should be reduced in denser
stands of Q. ilex mixed with P. pinea. Such findings have important implications for forest
management of mixed and pure Q. ilex forests.
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INTRODUCTION

Wood growth in mixed vs. pure stands depends on several
factors, such as species composition, stand density, age and
climatic conditions (Forrester, 2014). During the development
of mixed stands, there might be changes in the dominance
of species with different growth and physiological strategies
(Forrester, 2015). Interactions between species could be ascribed
to competition, with a negative effect of one species on the other,
to competitive reduction, when inter-specific competition is less
than intra-specific one because of a differentiation in resource use
strategies, or to facilitation, with a positive effect of one species
on the other (Forrester, 2014). Many studies have shown that
mixed stands under stressful conditions (e.g., very high stand
density, poor water supply, drought or nutrient shortage), are
more productive than pure ones (Amoroso and Turnblom, 2006;
Erickson et al., 2009; Pretzsch et al., 2013a,b; del Río et al.,
2014), following the assumption of the stress gradient hypothesis
(SGH). SGH hypothesis suggests that facilitation is favored when
the environmental conditions become harsher (Bertness and
Callaway, 1994). However, this is not always the case and mixed
stands are not always better adapted to climate constraints if
compared to monospecific stands. Complementarity, which is the
set of competition and facilitation interactions possibly occurring
in mixed and pure populations, may show variations due to
climatic factors depending on: the different species reactivity
to stand density (Forrester et al., 2013), tree size (Forrester,
2015), site conditions (Binkley, 2003; Pretzsch et al., 2010;
Coates et al., 2013; Dieler and Pretzsch, 2013), microclimatic
differences (Lebourgeois et al., 2013), and the severity of
climatic extremes.

The Mediterranean region is foreseen to be strongly affected
by global warming, leading to enhanced drought stress for
trees in many ecosystems (Giorgi, 2006; Somot et al., 2008;
IPCC, 2017). The increased intra-annual frequency and duration
of drought periods in the Mediterranean Basin may lead to
changes in water use efficiency (WUE) depending on the
species, stand density, tree size and age, and growth rate
(Brienen et al., 2017). The latter is reported to scale positively
with WUE (Huxman et al., 2008). However, fast-growing
trees in mixed stands could suffer from drought more than
slower growing trees in monocoltures since they generally use
more water (Law et al., 2002; Schume et al., 2004; Forrester,
2015). Tree responses to the changing environmental conditions
can be reconstructed with the study of tree-ring features in
chronologies of tree-ring width, anatomical traits or stable
isotope composition (McCarroll and Loader, 2004; Čufar, 2007;
Fonti et al., 2010). The combination of carbon and oxygen stable
isotope analysis with tree-ring growth provides information
about tree ecophysiological processes in response to stress,
suggesting which physiological process, namely carbon uptake
or water loss, prevailed in determining the variation in WUEi
(Scheidegger et al., 2000), expecially in severely water-limited
ecosystems (Gessler et al., 2014; Altieri et al., 2015; Moreno-
Gutiérrez et al., 2015; Battipaglia et al., 2016b). Grossiord
et al. (2014a,b) found that the stand-level δ13C declined with
increasing diversity in temperate beech and thermophilous

deciduous forests but not in hemiboreal, mountainous beech
and Mediterranean forests. Within the Mediterranean region,
studies analyzing the complementarity effects between mixed
and pure stands are scarce. Grossiord et al. (2014c) found that
Quercus cerris L. trees did not reduce transpiration in response
to drought when growing in pure stands, but significantly
reduced transpiration and increased WUEi in mixed stands
with Quercus petraea (Mattuschka) Liebl. Battipaglia et al.
(2017) showed a higher wood productivity and WUE in
mixed stands of Quercus robur L. and Alnus cordata Loisel.
in comparison with Q. robur pure stands, due to the positive
N-fixation effect of A. cordata. Understanding which factors
drive inter- and intra-specific interactions under a changing
climate is necessary when managing mixed and pure stands,
since one of the priority in forestry is to acquire knowledge
on the capability of different forest ecosystems to adapt
to short- and long-term climatic variability (Brooker, 2006),
especially in so called climate-change hot spots such as the
Mediterranean. Quercus ilex L. forests widely occur throughout
the Mediterranean basin, both in pure stands or in mixed forests
with Mediterranean pines such as Pinus pinea L. (Terradas,
1999), differing in light demand, root system and physiological
strategies in response to drought. It is still unknown whether
mixed stands would be more capable to acclimate to forecasted
increase in intra-annual climate variability in the Mediterranean,
if compared to pure stands.

Mediterranean trees often form peculiar anatomical traits
in tree rings called intra-annual density fluctuations (IADFs),
which have been linked to intra-annual frequency of dry periods
(De Micco et al., 2016). They have been considered either
an hydraulic adjustment of trees to drought or a strategy
to take advantage of favorable conditions of growth after a
drought event (Battipaglia et al., 2016a). Finding the link
between IADF occurrence and facilitation or competition effects
at different sites, under different micro-climatic conditions,
may be useful to add insights on the ecological role of these
tree-ring traits. In this study, we aimed to (1) analyze the
dynamics of complementarity effects of Q. ilex dominant trees
growing in a pure and in a mixed stand with P. pinea at
two study sites differing for tree age, stand density, slope
and soil characteristics, on the basis of tree-ring growth and
stable isotope ratio variations, (2) analyze the different tree
growth response to climatic factors, (3) find the link between
wood anatomical recurrent traits, such as IADFs and tree
growth in the different study sites. In order to reach these
aims, we investigated the temporal variation of cumulative
basal area, intrinsic WUE (WUEi) assessed through δ13C and
δ18O in tree rings (Moreno-Gutiérrez et al., 2012; Altieri
et al., 2015; Battipaglia et al., 2016b), in each pure stand
in comparison with mixed ones, calculating annual indexes
of complementarity. We hypothesize that: (1) Q. ilex tree
growth is higher in pure than in P. pinea-mixed stands,
accompanied by a higher WUEi; (2) precipitation is the main
factor influencing Q. ilex tree growth at all the Mediterranean
study sites; (3) IADFs occur where wood growth is lower,
because linked to stressful conditions of growth rather than
to favorable ones.
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MATERIALS AND METHODS

Study Sites
The study sites are located within the Mediterranean region,
in the Vesuvio National Park, southeast from Naples, Southern
Italy. The two sites are located on two opposite slopes, one in
the southwest-faced “Tirone Alto-Vesuvio” Forest State Reserve
and the other on the northeast-faced Mount Somma slopes,
differing by stand density, slope, aspect (Table 1) and soil
characteristics. In each site, a pure Q. ilex stand (TP – Tirone
Pure stand; SP – Somma Pure stand) and a mixed Q. ilex-
P. pinea stand (TM – Tirone Mixed stand; SM – Somma Mixed
stand) with comparable age of trees, soil and stand characteristics
were sampled (Figure 1). The stands are forests and P. pinea
trees were planted.

Both pure stands (TP and SP) are dominated by Q. ilex with an
understory consisting in Q. ilex trees and the sporadic presence
of Robinia pseudoacacia L., a non-native invasive species. Both
mixed stands (TM and SM) are covered by P. pinea dominant
trees with a Q. ilex understory and the sporadic presence of
R. pseudoacacia. SP and SM stands are characterized by smaller
trees and have higher stand density and steeper slope than TP
and TM (Table 1). Moreover, P. pinea trees of the SM stand are
taller than Q. ilex trees, while P. pinea and Q. ilex trees have a
similar height at TM (Table 1). At the S site, total stand density
and canopy cover are higher at the pure than at the mixed stand,
while the slope is less steep at the pure than at the mixed one. At
the T site, total stand density and canopy cover are lower while
slope is steeper at the pure than at the mixed stand.

As regards soil, there were no significant differences in water
content (WC), available water capacity (AWC) and water holding
capacity (WHC) between the mixed and pure stand at each site.
However, there were significant differences between the two sites
in terms of AWC and WHC, with both the parameters higher
at the T site (AWC mean value = 33.07 ± 12.87%; WHC mean
value = 24.27 ± 7.33%) in comparison to S site (AWC mean
value = 20.27 ± 5.33%; WHC mean value = 16.71 ± 3.79%)
(P < 0.05). WC, AWC, and WHC were determined in autumn

by taking six samples per site (three samples per each stand) and
following standard procedures (USDA, 1996).

The climate is Mediterranean with dry summer and mild
winter. Climate data of minimum, maximum and mean monthly
temperature and total monthly precipitation from the nearest
meteorological stations were interpolated and compared to the
CRU TS3.23 gridded dataset at 0.5◦ resolution data (Harris
et al., 2014). Since the correlation between the two data series
was significant (as shown in Zalloni et al., 2018a), we used the
CRU climate data for the analyses. Mean annual temperature
and precipitation of the period 1985–2005 selected for statistical
analysis are 16.4◦C and 710 mm, respectively (Figure 1). The
wettest month is November, with an average of 114 mm of
cumulative precipitation, while the driest month is August, with
an average of 24 mm of cumulative precipitation and the highest
temperature of 30◦C. The lowest mean temperatures are recorded
in January, with an average of 9 ◦C (Figure 1). A dry season lasts
from the middle of May to the end of August.

Tree-Ring Growth Analysis
Two cores per tree were extracted at breast height from 20
dominant Q. ilex trees per stand in the “Tirone Alto-Vesuvio”
site (T) and from 14 dominant Q. ilex trees per stand in the
Mount Somma site (S). Being the sites in a Natural Park, the
minimum number of trees to get a good EPS value was sampled.
The cores were collected during September 2015 at the mixed
sites, while during September 2016 at the pure ones. The number
of cored trees per site is different because of the different
availability of dominant trees. The cores were air dried, mounted
on wooden supports and sanded. A Leica MS5 light microscope
(Leica Microsystems, Germany) fitted with a LINTAB measuring
system (Frank Rinn, Heidelberg, Germany) was used to measure
ring-width chronologies with a resolution of 0.01 mm. After
being visually cross-dated, tree-ring width chronologies were
statistically checked with the TSAP-Win (Time Series Analysis
and Presentation; Rinntech) and COFECHA (Holmes, 1983)
softwares. Mean tree-ring width chronologies were developed per
each stand. The Dendrochronology Program Library within the

TABLE 1 | Coordinates, altitude and structure features of the four selected stands.

TP TM SP SM

Latitude, longitude (◦) 40.49050 N, 14.24124 E 40.812909 N, 14.402956 E 40.49902 N, 14.27067 E 40.832987 N, 14.454074 E

Altitude (m a.s.l.) 528 505 669 569

Mean Q. ilex stem diameter ± SE (cm) 34 ± 0.81 38 ± 1.49 24 ± 1.64 19 ± 1.67

Mean Q. ilex tree height ± SE (m) 16 ± 0.49 17 ± 0.48 13 ± 0.74 13 ± 0.82

Q. ilex stand density (tree/ha) 11000 10000 33000 9000

Total stand density (tree/ha) 11000 13000 33000 19000

Canopy cover (Leaf area index –
LAI ± Standard error of the LAI
determinations – SEL)

1.2 ± 0.07 1.69 ± 0.05 2.6 ± 0.04 2.25 ± 0.13

Slope (%) 20 0 50 100

Mean P. pinea stem diameter ± SE (cm) – 53 ± 1.72 – 44 ± 1.74

Mean P. pinea tree height ± SE (m) – 17 ± 0.45 – 16 ± 0.53

TP and TM are the pure and the mixed stand, respectively, at the “Tirone Alto-Vesuvio” site, while SP and SM are the pure and the mixed stand, respectively, of the
Mount Somma site.
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FIGURE 1 | Location of the study sites and climatic diagram of the period 1985–2005, from the CRU TS3.23 gridded dataset at 0.5◦ resolution data (Kahle and
Wickham, 2013). Pure stands are in gray, mixed stands are in black. TP, tirone alto vesuvio pure stand; TM, tirone alto vesuvio mixed stand; SP, somma pure stand;
SM, somma mixed stand.

software R (dplR; Bunn, 2008, 2010) was used to calculate the
expressed population signal (EPS) (Wigley et al., 1984), the mean
RBAR (that is the is the mean correlation coefficient among tree-
ring series) and the signal-to-noise ratio (SNR) in order to assess
chronology quality (Table 2).

In order to compare radial growth of the dominant trees
between stands, correctly dated tree-ring width chronologies
were converted into tree basal area increment (BAI) chronologies
with the following formula:

BAIt = πR(t2) − πR(t−12), (1)

where Rt and Rt−1 are the stem radius at the end and at the
beginning of the annual increment, respectively, and BAIt is the
annual ring area at year t. Cumulative mean basal area was then
calculated for each stand summing the average basal area. BAI
instead of ring-width time series were chosen because they reduce
tree-size and age effect on growth trends, keeping the high and
low frequency signals of tree-ring width series at the same time
(Tognetti et al., 2000; Biondi and Qeadan, 2008).

Stable C and O Isotope Analysis
Five correctly dated cores of Q. ilex without defects per stand
were chosen for isotopic analyses. Carbon and oxygen stable
isotope analysis were conducted over the common period 1985–
2005 for all the stands, where a change in wood growth was
found between pure and mixed stands at both sites. Tree rings
were manually split with annual resolution using a scalpel
under a dissection microscope, and the derived samples of
the five cores per species and per stand were then pooled

together in order to maximize sample size. Preliminary analyses
showed that comparable results are obtained by using either
whole wood or cellulose (Borella et al., 1998; Korol et al.,
1999; Barbour et al., 2001; Warren et al., 2001; Loader et al.,
2003; Verheyden et al., 2005; Weigt et al., 2015), thus we
decided to proceed on whole wood, without any chemical pre-
treatment. The collected samples were milled with a centrifugal
mill, weighted in silver capsules (aliquots of 0.8/1.0 mg) and
pyrolyzed at 1450◦C, (PYRO-cube, Elementar, Hanau, Germany).
The annual δ13C and δ18O values of the obtained CO were

TABLE 2 | Dendrochronological characteristics of Q. ilex tree-ring width
chronologies of the four stands.

TP TM SP SM

Timespan 1948–2015 1949–2014 1966–2015 1965–2014

Lenght (years) 68 66 50 50

Tree-ring width (mm)
(Mean value ± SE)

2.38 ± 0.16 2.62 ± 0.14 2.47 ± 0.12 2.36 ± 0.2

EPS∗ 0.99 0.98 0.90 0.92

RBAR∗∗ 0.86 0.70 0.45 0.50

SNR∗∗∗ 118.84 42.84 9.62 11.13

TP and TM are the pure and the mixed stand, respectively, at the “Tirone Alto-
Vesuvio” site, while SP and SM are the pure and the mixed stand, respectively,
at the Mount Somma site.∗Expressed population signal (EPS) is a measure of the
common variability in a chronology and it is commonly acceptable for value >0.85;
∗∗RBAR is the mean correlation coefficient among tree-ring series, ranging from−1
to +1 (the higher the value, the stronger is the underlying common signal); ∗∗∗The
signal-to-noise ratio (SNR) informs about the ratio between the signal (short-term
variation) and the noises (long-term variation) contained in chronologies.
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determined simultaneously by a Delta Plus XP isotope ratio
mass spectrometer (ThermoFinnigan MAT, Bremen, Germany)
via a pyrolysis unit by a ConFlo III interface (ThermoFinnigan
MAT). A subset of samples that covered the whole range of the
expected δ13C values was measured again via oxygen combustion
with an EA1110 elemental analyzer (CE Instruments, Milan,
Italy) coupled to a Delta-S isotope ratio mass spectrometer
(ThermoFinnigan MAT), in order to make a correction of the
δ13C values. The δ13C signal obtained by pyrolysis is dampened
because of “memory effects” compared to the more usually
measured one obtained by oxygen combustion (Woodley et al.,
2012). The formula used to correct the pyrolysis δ13C data was
the following: δ13Ccorr = 1.2526 × δ13Cpyro + 5.0032, where
δ13Ccorr is the corrected final δ13C value and δ13Cpyro is the value
measured by pyrolysis and corrected with internal standards.
Furthermore, δ13C values were corrected for the Suess effect,
which is a shift in the atmospheric concentrations of carbon
isotopes due to increasing fossil-fuel derived CO2 (Keeling,
1979). The corrected series were used for the subsequent
statistical analyses.

WUEi Calculation From δ13C
Isotopic 13C-fractionation during CO2-fixation can be
calculated as:

δ13Cplant = δ13Cair − a− (b− a) ∗ (ci/ca) , (2)

where δ13Cair is the carbon isotope ratio of atmospheric CO2, a is
the fractionation factor due to CO2 diffusion through stomata
(4.4%), b is the fractionation factor due to the Rubisco enzyme
during photosynthesis (27.0h), ci is the intercellular leaf CO2
concentration, ca is the atmospheric CO2 concentration and
δ13Cplant is the carbon isotope ratio of plant organic matter,
e.g., in tree-rings. WUEi chronologies for each stand were then
calculated following the formula reported by Ehleringer and
Cerling (1995):

WUEi = A/gs = (ca − ci) /1.6, (3)

where A is the photosynthetic rate, gs is the stomatal conductance
and 1.6 is the ratio of diffusivity of water and CO2 in the
atmosphere. This can be solved as ci is known from Eq. (2).
In particular, the following formula was used:

WUEi = (ca − ci) /1.6 =
[
ca − ca

(
1− a/b− a

)]
1/1.6

= ca
[(

1−
(
1− a/b− a

))
1/1.6

]
, (2)

where 1 is the carbon isotope discrimination which represents
the difference between δ13Cair and δ13Cplant, and using Eq. (1) ci
is equivalent to

ca
[
(1− a) /

(
b− a

)]
, (4)

while ca annual values were taken from the NOAA database
(1Mauna Loa station). The parameter 1 was calculated as:

1 =
(
δ13Cair − δ13Cplant

)
/
(
1+ δ13Cplant/1000

)
. (5)

1http://www.esrl.noaa.gov/

δ13Cair values were taken from the ones estimated by
McCarroll and Loader (2004) and the measured ones available
online2, while δ13Cplant are the values measured in tree
rings of our samples.

Complementarity Calculations
In order to assess inter-specific facilitation and competition
interactions for comparison of wood growth, WUEi and
δ18O of Q. ilex in pure and mixed stands, an annual index
of complementarity was calculated for the period 1985-2005
for each site with the following formula (Forrester, 2015;
Battipaglia et al., 2017):

Complementarity (%) = [(XM − XP) /XP)] ∗ 100, (6)

where X is annual basal area, WUEi or δ18O, M is related to
mixed stands and P is related to pure stands. The index is positive
when wood growth, WUEi or δ18O are higher in mixed than in
pure stands, while negative when they are higher in pure than
in mixed stands.

To compare the two sites, in terms of WUEi, δ18O, and BAI,
characterized by different number of samples, U-test was used
through SPSS 13.0 statistical package (SPSS Inc., Chicago, IL,
United States) (Spiegel, 1975).

IADF Frequency Analysis
Intra-annual density fluctuation occurrence was detected within
the rings of all the Q. ilex dated cores under a reflected light
microscope. IADFs were identified by detecting variations in
cell lumen area, frequency and wall density different from the
“standard” transition from earlywood to latewood of Q. ilex
described in Wheeler (2011), as found in Campelo et al. (2007)
and defined in Zalloni et al. (2018b) (Figure 2). Relative annual
IADF frequency chronologies of each stand were calculated as the
ratio between the number of cores with an IADF and the total
number of cores for each year. Stabilized annual IADF frequency
chronologies were then calculated according to Osborn et al.
(1997) as f = F ∗ n0.5 where F is the relative IADF frequency
value and n is the total number of cores for each year, in order
to stabilize the variance overcoming the problem of the changing
sample depth over years. A percentage of IADF occurrence was
calculated for each stand as the number of rings with IADF on
the number of total rings for the period 1985–2005.

Climate Analysis
The period 1985–2005 was selected for statistical analysis in
order to match BAI data with isotope ones for comparisons,
considering that in those years (more specifically 1996–
1997) a change in wood growth was found between pure
and mixed stands at both sites. In order to investigate the
relations between growth traits and climate parameters, a
Pearson’s linear correlation function analysis (P < 0.05) was
implemented between cumulative mean annual BAI, WUEi,
and δ18O annual values of the whole study period (1985–
2005) and temperature and precipitation data. A Pearson’s

2http://www.esrl.noaa.gov/gmd/
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FIGURE 2 | Light microscopy views of cross sections of tree rings of Quercus ilex without (a) and with IADFs (b). Arrowheads point the boundaries of tree rings;
arrows point to the IADF. Bar: 100 µm.

linear correlation function analysis (P < 0.05) was also
implemented between mean annual BAI of the period 1985–
1996, mean annual BAI of the period 1997–2005 and temperature
and precipitation data, in order to investigate whether and
what climate factor significantly influenced tree growth at
the pure and mixed stands of the two sites, and their
ecophysiological responses. Temperature and precipitation data
were seasonally grouped from December of the previous year
to February of the next year, in order to certainly cover
all the season (winter, spring, summer, autumn, and winter
again) of the current year which could influence tree-ring

growth in Mediterranean species (Cherubini et al., 2003;
Vieira et al., 2015; Balzano et al., 2018). The analyses were
performed using Excel©.

RESULTS

Tree-Ring Growth, WUEi and δ18O Trends
The dendrochronological characteristics ofQ. ilex tree-ring width
chronologies for the four stands are summarized in Table 2. Tree-
ring chronologies of Q. ilex trees covered the timespan from 1949
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FIGURE 3 | Cumulative basal area increment of Q. ilex growing in pure (in
gray) and mixed (in black) stands, in the “Tirone Alto-Vesuvio” (A) and in the
Mount Somma (B) sites. The gray bars delimit the period chosen for isotope
and statistical analysis.

to 2014 at the two stands of the T site, while the shorter timespan
(from 1966 to 2014) was found at the S site (Table 2 and Figure 3).

The mean annual BAI for the period 1985–2005 of SM
stand was the lowest (1063.31 ± 311.26 mm2, mean value ±
standard error), followed by TP (1257.38 ± 360.67 mm2),
SP (1274.51 ± 298.34 mm2), and TM stands (1665.08 ±
407.62 mm2).

The cumulative BAI of wood growth of the dominant trees
of the stands revealed an opposite shift in wood growth of pure
and mixed stands between the two sites from the year 1997 to
2014 (Figure 3). More specifically, a wood growth increase of
dominant trees in the mixed compared to the pure stand was
recorded at the T site (Figure 3A), while the opposite was found
at the S site (Figure 3B). At the T and S sites, the basal area of
Q. ilex accounted, respectively, for the 38.51 and 14.54% of the
total basal area of the mixed stand.

At the T site, WUEi was significantly higher along the
whole study period in the dominant trees of the mixed (mean
value = 84.15 ± 2.22 µmol mol−1) compared to the pure
stand (mean value = 78.04 ± 2.86 µmol mol−1) (P < 0.05)
(Figure 4A). At the S site, this applied in the 71.43% of the
cases (SM mean value = 79.91 ± 2.37 µmol mol−1; SP mean
value = 77.2± 2.9 µmol mol−1) (P < 0.05) (Figure 4B).

At each site, δ18O values were similar between dominant
trees growing in pure and mixed stands, while significantly
absolute higher values of δ18O were found in both pure and
mixed stand at the S site (SP mean value = 25.75 ± 0.49h;
SM mean value = 25.87 ± 0.5h) compared to the T site (TP
mean value = 25.04± 0.29h; TM mean value = 25.05± 0.36h)
(P < 0.05) (Figures 4C,D).

Finally, a Pearson’s linear correlation function analysis
(P < 0.05) implemented between WUEi and δ18O values, showed
a significant positive correlation only at the SM stand, during the
period 1997–2005 (Pearson’s correlation value = 0.95).

Complementarity Effects
After the year 1992, the complementarity effect analysis pointed
out the difference between facilitation/competition interactions
of the dominant trees of mixed and pure stands at the two
sites. More specifically, from 1992 to 2005, Q. ilex wood growth
was higher in the mixed than in the pure stand at the T site,
while it was higher in the pure than in the mixed stand at the
S site (Figure 5).

WUEi was found to be substantially higher in the dominant
trees in mixed than in pure stands during the whole study period
at both sites (Figure 6A).

Finally, the wood of the mixed stand is more enriched in δ18O
than the pure one at the S site in most years, while an unclear
pattern was shown for the complementarity index based on δ18O
values of the T site (Figure 6B).

IADF Frequency
The highest percentage of occurrence of IADFs in tree-rings of
dominant Q. ilex trees, for the period 1985–2005, was found in
both the stands of the S site. In particular, the highest one was
recorded in the mixed stand of the S site (26.41%), followed
by the pure one (16.61%), then the mixed stand of the T site
(14.76%) followed by the pure one, which showed a very low
IADF frequency (1.79%).

Climate Influence
Climate analysis with cumulative mean annual BAI of the whole
study period did not show significant correlations for any of
the stands. The same lack of significant correlation was found
for the analysis cumputed for the period 1985–1996. On the
contrary, a significant influence of summer (from June to August)
and autumn (from September to November) precipitation on
cumulative mean annual BAI of the period 1997–2005 was found
for all the stands, with higher Pearson’s coefficient values (r) for
autumn (TP = 0.82; TM = 0.82; SP = 0.85; SM = 0.85) than
for summer precipitation (TP = 0.69; TM = 0.71; SP = 0.71;
SM = 0.71) (P < 0.05). Climate analysis with WUEi and δ18O
of the whole study period showed that precipitation was the
main influencing factor. WUEi was positively correlated with
precipitation of winter of the previous year (from December of
the previous year to February of the current year) and negatively
with precipitation of current spring (from March to May) for
the TM stand (r = 0.43 and−0.47, respectively), while negatively
correlated with autumn precipitation for the SP stand (r =−0.45)
(P < 0.05). δ18O was negatively driven by autumn precipitation
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FIGURE 4 | WUEi and δ18O of Q. ilex growing in pure (in gray) and mixed (in black) stands for the period 1985–2005, at the “Tirone Alto-Vesuvio” (A,C) and at the
Mount Somma (B,D) sites.

for all the stands (r = −0.48 for TM; r = −0.57 for SP; r = −0.44
for SM) except for the TP one, where winter precipitation (from
December of the current year to February of the next year)
was the driving factor (r = −0.51) (P < 0.05). WUEi was also
positively correlated with summer temperature for the TM stand
(r = 0.61) (P < 0.05).

FIGURE 5 | Temporal dynamics of complementarity effect for the annual basal
area increment of Q. ilex growing in the pure stand compared to Q. ilex
growing in the mixed stand for the period 1985–2005, at the “Tirone
Alto-Vesuvio” (in black) and at the Mount Somma (in gray) sites.

DISCUSSION

Different Q. ilex Wood Growth of Pure
and Mixed Stands Within Each Site
Trends in Q. ilex cumulative BAI for the period 1985–2005,
suggested different wood growth dynamics of trees growing at
the two sites. More specifically, starting from the year 1997,
the slope of wood growth trends were inverted between mixed
and pure stands within each site; the mean BAI of Q. ilex of
the mixed stand at the T site presented higher wood growth
compared to the pure stand, while at the S site, the situation was
exactly the opposite, with the higher growth of the pure stand
than the mixed one. Such an inversion also fits well with the
temporal variability observed in the BAI-based complementarity
indexes. Summer and autumn precipitation seem to have driven
the observed shift in wood growth between dominant trees
in pure and mixed stands, since climate correlations with
cumulative BAI showed no significant influences until 1996,
while summer and autumn precipitation affected tree growth of
all the stands starting from 1997. After the year 1996 a decrease
in both summer and autumn precipitation accompanied by an
increase in temperature is recorded (Supplementary Figure S1),
which leads to drier conditions that have possibly triggered the
complementarity interactions.

In water-limited Mediterranean ecosystems, water availability
is the main factor affecting wood growth of Q. ilex, leading
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FIGURE 6 | Temporal dynamics of complementarity effect for WUEi (A) and
δ18O (B) of Q. ilex growing in the pure stand compared to Q. ilex growing in
the mixed stand for the period 1985–2005, at the Tirone Alto-Vesuvio (in
black) and at the Mount Somma (in gray) sites.

to changes in complementarity interactions, as shown by the
high value of the BAI-based complementarity index at the
T site associated with high summer precipitation in 1995.
Therefore, with the occurrence of drier climatic conditions, at
the T site an interaction effect of competitive reduction has
been likely experienced, thus resulting in increased Q. ilex wood
growth in the mixed than pure stand. This interaction, i.e.,
facilitation, between different species growing in the same stand
supports several studies which found mixed stands with increased
wood growth compared to monocoltures, being facilitated by
segregation niche (including many processes like the inter-
specific differences in phenology and physiology that reduce the
competition for resources) (Roupsard et al., 1999; Moore et al.,
2011; Schwendenmann et al., 2015). Different species growing
in mixed stands also likely use different water sources due to
differences in root architecture (Cherubini et al., 2003; Schume
et al., 2004; Schwendenmann et al., 2015). In our study case,
observed phenomena might be linked to different root systems
with Q. ilex extracting water from deeper soil layers than P. pinea,
or by different water use strategies. Indeed, the anisohydric
species Q. ilex resists drought, thus behaving differently from the
isohydric P. pinea which avoids drought to save water (Mayoral
et al., 2015; Zalloni et al., 2018b). Differences in Q. ilex wood
growth in pure and mixed stands, together with the occurrence of
drier climatic conditions after 1997, were also found at the S site,
even if with an opposite trend: competition outweighted any
complementary effects in the mixed stand, with a reduced wood

growth in Q. ilex compared to pure stand. Tougher conditions
of growth with higher density and slope, and a soil with a lower
WHC could have concurred to make Q. ilex more affected by
P. pinea competitiveness at the S site. Moreover, stand density is
in favor of P. pinea in SM stand. This assumption would be in
contrast with the SGH, as well as with the CSR strategy theory,
which suggest that facilitation in spite of competition increases
between species when site conditions are harsher (Bertness and
Callaway, 1994; Grime, 2007). However, it would instead agree
with the resource-ratio theory described by Tilman (1985, 2007),
which implies that inter-specific competition may be stronger
where soil fertility and moisture is lower, as also showed by
Trinder et al. (2012) for grassland species and by Coates et al.
(2013) for Picea glauca (Moench) Voss associated with Pinus
contorta Douglas ex Loudon, 1838. To further support this
theory: Hunt et al. (1999) found that facilitation effects decreased
with increasing stand density in Eucalyptus nitens H.Deane &
Maiden stand mixed with Acacia dealbata Link, 1822 in Australia;
del Río and Sterba (2009) showed a lower growth in mixed than
in pure stands of Pinus sylvestris L., 1753 and Quercus pyrenaica
Willd. in Spain driven by forest density. As a late successional
species, Q. ilex at the pure stand at the S site could have
increased growth compared to the pine-oak ecosystem (Crow,
1988; Urbieta et al., 2011), moving toward a state of climax
community which is better adapted to stressed Mediterranean
conditions of growth (Sheffer, 2012).

Ecophysiological Responses of Pure and
Mixed Stands of Q. ilex
Precipitation seems to be the most important limiting factor
in controlling Q.ilex WUEi. Temperature showed only one
significant correlation with WUEi, indicating little influence
on inter-annual variations in water use efficiency. This is in
agreement with several previous studies on Quercus species in
the Mediterranean region (Ferrio et al., 2003; Ferrio and Voltas,
2005; Andreu et al., 2008; Maseyk et al., 2011). Autumn and
winter precipitation seem to play a key role and represent
the typical period for soil recharge in the Mediterranean area
(Pumo et al., 2008).

The analysis of the WUEi and the δ18O together with their
relative complementarity indexes, revealed that Q. ilex dominant
trees in mixed stands had a higher WUEi at similar δ18O at
both sites; moreover tree rings of dominant trees of both the
stands at the S site were more enriched in 18O than those at
the T one. This could indicate a tighter stomatal control in
trees growing at the S than the T site, probably linked to its
drier conditions with a soil characterized by less WHC thus
a higher vapor pressure deficit at the leaf level (Roden and
Ehleringer, 2000; Barbour et al., 2002). However, the higher
δ18O at the S than at the T site could be also due to the fact
that trees growing at the S site are younger and may rely on
water (mainly precipitation) from upper soil layers, compared
to the trees at the T site, which tend to capture less enriched
water from deep soil horizons (Dawson et al., 2002). Further,
a difference in WUEi not associated with a difference in δ18O
indicates that the high WUEi observed in Q. ilex trees of the
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mixed stands was due to higher photosynthetic rates rather
than lower stomatal conductance (Scheidegger et al., 2000). The
processes that improve light and nutrient availability or uptake,
which are driven by inter-specific differences in mixed stands,
can enhance WUEi enabling the plants to increase photosynthesis
and make more efficient use of water resources (Forrester, 2015).
Kunert et al. (2012) and Schwendenmann et al. (2015) found,
respectively, a higher WUE in wood growth, calculated as the
ratio between annual wood increment and water use, and a higher
diversity in the water uptake depth in mixed stands than in
monocoltures of tropical plants due to complementary water use.
Forrester et al. (2010) showed an enhanced WUE due to increased
N and P availability and light absorption in mixed stands which
increased photosynthesis in Eucalyptus globulus growing with
Acacia mearnsii. A high WUEi could be associated with the high
wood growth (Binkley et al., 2004; Binkley, 2012), as we found at
the mixed stand at the T site. On the other hand, the higher WUEi
found in the dominant trees in the mixed compared to the pure
stand at the S site, did not determine an increase in tree growth,
in agreement with other studies showing the lack of correlation
between WUEi and growth (Maseyk et al., 2011; Peñuelas et al.,
2011; Battipaglia et al., 2013; Moreno-Gutiérrez et al., 2015), or
even warming-induced growth reductions in spite of increasing
WUEi (Peñuelas et al., 2008; Linares and Camarero, 2012;
Granda et al., 2014) for several Mediterranean species during
drought periods. Indeed, carbon resources may be allocated to
reproduction, to primary growth or just to other tissues such
as roots (Dewar et al., 1994). During drought periods carbon
investments in below-ground growth are in fact of higher priority
than the above ground structures (Kotzlowski and Palladry, 2002)
because below-ground growth is favored to guarantee water
uptake (Saxe et al., 1998). The decrease in Q. ilex wood growth
at the SM stand, although the enrichment of WUEi, could be
due to reduced stomatal conductance after increasing warming-
related drought, as Brito et al. (2016) showed for P. canariensis
in Spain. Indeed, the positive correlation found between δ13C-
derived WUEi and δ18O for dominant trees growing at SM,
suggests that gs played a significant role (Scheidegger et al.,
2000; Moreno-Gutiérrez et al., 2012). According to the observed
cumulative BAI reduction, the less favorable growth conditions
at the S site, with a higher tree density, a steeper slope and a
lower soil WHC of the topsoil, could have concurred to intensify
the drought-induced stomatal closure reducing transpiration in
the mixed stand, at the price of reducing net assimilation rate,
as Brito et al. (2014) showed for P. canariensis at a treeline
site with low soil WHC. Q. ilex trees growing in the mixed
stand at the S site were probably more affected by competition,
given that P. pinea trees presence prevailed. Furthermore, young
Mediterranean trees could be more sensitive to limiting climatic
conditions than older ones (Rozas et al., 2009, 2013; Vieira et al.,
2009; Brito et al., 2016; Zalloni et al., 2016), confirming the
hypothesis that the younger Q. ilex trees at the S site suffered
from competition with P. pinea rather than being benefited from
facilitation. Coherently, WUEi and δ18O-based complementarity
indexes showed that competition prevailed over facilitation for
dominant trees in the mixed stand at the S site, where the
higher WUEi was, however, accompained by higher 18O ratios

compared to trees in the pure stand, suggesting a tighter stomatal
control of Q. ilex mixed with P. pinea, which was not shown
for Q. ilex growing alone. Conte et al. (2018) found that
Fagus sylvatica growing in a mixed stand with P. sylvestris had
high WUEi but low productivity not only due to competition
but also due to other factors, such as nutrient limitation and
forest management.

The highest percentage of IADFs was found in tree rings of
Q. ilex dominant plants growing at the S site, where harsher
growth conditions, due to the higher stand density, steeper slope,
a soil with a lower WHC, and a tighter stomatal control, were
observed. A higher frequency of IADFs in tree rings enriched
in 18O at a site with drier growth conditions, compared to a
wetter site, was also found in Erica arborea L. tree-rings by
Battipaglia et al. (2014), showing that the formation of these
peculiar wood anatomical traits is an indicator of the ability
of trees to face stressful conditions. Furthermore, within the
two sites, more IADFs occurred in tree rings in dominant trees
in the mixed stands compared to the ones in the pure ones:
the high IADF occurrence could thus be also related to the
higher WUEi recorded in tree rings of Q. ilex growing at the
mixed stands. A high WUEi is often influencing the ability of
a species to withstand water stress (Battipaglia et al., 2014), and
interpreted as an adaptation to drought-prone environments
(Raven, 2002). In this view, the higher IADF frequency in tree
rings of mixed stands than pure ones, accompanying the higher
WUEi, is a further support that IADFs should be considered
a sign of the ability of a species to avoid stress conditions; in
such a way, a positive carbon balance under dry conditions
would be maintained through a high WUE, regardless of
differences in wood growth.

CONCLUSION

The observed differences between wood growth of Q. ilex
dominant trees in pure and mixed stands growing at two
sites, highlighted the importance of local site conditions in
determining the inter- and intra-specific interactions underlying
the growth response to environmental variability. The occurrence
of drier climatic conditions from 1997 was shown to trigger
opposite complementarity interactions for Q. ilex growing with
P. pinea trees at the two sites characterized by different soil WHC,
stand density and slope. Competitive reduction was experienced
at the site with higher soil WHC, lower stand density and
less steep slope, while competition became a limiting factor at
the other site. WUEi increased in trees of both mixed stands
at the two sites, but the isotopes showed completely different
ecophysiological processes behind tree growth. At the T site, the
increase in WUEi was mainly related to higher photosynthetic
rates that lead to an increase in wood growth. Differently, at
the S site, WUEi increase was related to a more conservative
strategy saving water through stomata closure, thus not leading
to wood growth increase. IADF frequency in Q. ilex tree-
rings seemed to be linked to stressful conditions rather than
to favorable ones, and could be interpreted as an adaptation
aimed at avoiding dry periods, independently from wood growth
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differences. The analysis of a combination of different tree-ring
parameters helped to find plausible physiological causes of the
observed interactions. The findings of this study case highlight
the importance of considering site conditions in planning forest
management strategies in the view of forecasted increase in water
shortage for mixed and pure forests of Q. ilex and P. pinea.
Based on our results, at those specific sites, thinnings of P. pinea
mixed stands with Q. ilex, where trees are young and stand
density is high, could be a good choice to limit inter-specific
competition for resources and to promote Q. ilex wood growth.
On the contrary, when good conditions of stand density are
present, promoting the co-existence of Q. ilex and P. pinea could
facilitate complementarity in resource use, while thinning pure
Q. ilex stands could limit intra-specific competition. To draw
general strategies in planning forest management, further case
studies, which also take dominated trees into account, are needed.
These would help assessing the influence of stand structure, soil
and environmental conditions on complementarity interactions
in Mediterranean Q. ilex mixed stands, also analyzing IADF
occurrence as an indicator of species capability to avoid
stressful conditions.
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FIGURE S1 | Summer (from June to August) (a) and autumn (from September to
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