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Visual assessment of colour-based traits plays a key role within field-crop breeding
programmes, though the process is subjective and time-consuming. Digital image
analysis has previously been investigated as an objective alternative to visual
assessment for a limited number of traits, showing suitability and slight improvement
to throughput over visual assessment. However, easily adoptable, field-based high-
throughput methods are still lacking. The aim of the current study was to produce
a high-throughput digital imaging and analysis pipeline for the assessment of colour-
based traits within a wheat breeding programme. This was achieved through the
steps of (i) a proof-of-concept study demonstrating basic image analysis methods in a
greenhouse, (ii) application of these methods to field trials using hand-held imaging, and
(iii) developing a field-based high-throughput imaging infrastructure for data collection.
The proof of concept study showed a strong correlation (r = 0.95) between visual and
digital assessments of wheat physiological yellowing (PY) in a greenhouse environment,
with both scores having similar heritability (H2 = 0.85 and 0.76, respectively). Digital
assessment of hand-held field images showed strong correlations to visual scores for
PY (r = 0.61 and 0.78), senescence (r = 0.74 and 0.75) and Septoria tritici blotch (STB;
r = 0.76), with greater heritability of digital scores, excluding STB. Development of the
high-throughput imaging infrastructure allowed for images of field plots to be collected
at a rate of 7,400 plots per hour. Images of an advanced breeding trial collected with this
system were analysed for canopy cover at two time-points, with digital scores correlating
strongly to visual scores (r = 0.88 and 0.86) and having similar or greater heritability.
This study details how high-throughput digital phenotyping can be applied to colour-
based traits within field trials of a wheat breeding programme. It discusses the logistics
of implementing such systems with minimal disruption to the programme, provides a
detailed methodology for the basic image analysis methods utilized, and has potential
for application to other field-crop breeding or research programmes.
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INTRODUCTION

Visual assessment of traits within field trials is subjective
and laborious. However, it is an essential process for plant
breeders who wish to observe the phenotype of material within
their programme and determine genotype-by-environment
effects. In recent years numerous high-throughput digital
phenotyping methods have been proposed (Busemeyer et al.,
2013; White and Conley, 2013; Andrade-Sanchez et al., 2014;
Deery et al., 2014; Bai et al., 2016; Underwood et al., 2017;
Jimenez-Berni et al., 2018), all of which offer to alleviate the
current visual phenotyping bottleneck which exists within
modern plant breeding programmes (Cobb et al., 2013; Araus and
Cairns, 2014). Despite this, truly high-throughput systems which
are easily integrated within large-scale breeding programmes are
yet to be developed and used.

Typically, these phenotyping platforms are equipped with
an array of sensors, with popular choices including red, green
and blue (RGB) cameras, multi-spectral cameras, normalised
difference vegetation index (NDVI) sensors and LiDAR. RGB
cameras, in particular, have a long history with field phenotyping
and in a number of studies have been effective in estimating
canopy cover of field crops (Lukina et al., 1999; Casadesús et al.,
2007; Liu and Pattey, 2010; Mullan and Reynolds, 2010). The
popularity of these methods, from both a research and farmer
perspective, has culminated in the development of a simple
mobile application, which enables users to conduct simple in-situ
estimates of canopy cover from their mobile devices (Oklahoma
State University, 2015). The use of RGB cameras as a phenotyping
tool has focused on digital images to estimate canopy cover or
as an alternative to NDVI (Casadesús et al., 2007; Morgounov
et al., 2014). However, they have also been used to a lesser extent
to assess senescence (Adamsen et al., 1999; Hafsi et al., 2000),
crop nitrogen content (Li et al., 2010), early vigour (Kipp et al.,
2014) and soil water evaporation (Mullan and Reynolds, 2010).
Image analysis techniques used to asses this range of traits also
have the potential to be applied to other colour-based traits, such
as disease assessment, which may provide wheat breeders with
an objective system of assessment for specific traits within their
breeding programme.

In the current study, we collected data on four traits
[physiological yellowing (PY), senescence, Septoria tritici blotch
(STB), and canopy cover] from within a Southern Australian
bread wheat breeding programme, using high-throughput image
collection and basic, open-source, image analysis.

Physiological yellowing of bread wheat (Triticum aestivum L)
and durum wheat (T. durum) can have a number of possible
causes, however, there is little literature surrounding the trait,
with only a single study and two industry fact sheets exploring
the effect (Australian Grain Technologies, 2013, 2016; Schwenke
et al., 2015). Further to the reported yield impacts, farmer
perception often marks material expressing PY as undesirable,
due to its “disease-like” symptoms.

Senescence is yellowing of green leaves and the eventual
browning and drying of leaf material as a crop matures.
Senescence occurs naturally with time and can be used
as indicator of maturity or the impact of abiotic stress
(Distelfeld et al., 2014).

Septoria tritici blotch is a foliar disease of wheat due to
infection by the fungus Zymoseptoria tritici. Resistance for STB
is actively sought within breeding programmes (Brown et al.,
2015). Expression of STB is observed as yellow/brown lesions
on leaves, containing small black fruiting bodies (pycnidia).
Assessment of STB in breeding programmes typically occurs
in inoculated disease nurseries to ensure there is adequate
incidence of the disease.

Canopy cover is the proportion of soil covered by the crop
canopy, and is primarily used for the assessment of early vigour.
It is associated with the reduction of soil water evaporation
(Rebetzke et al., 2004; Mullan and Reynolds, 2010) and weed
competitiveness (Lemerle et al., 1996; Coleman et al., 2001). In
a more crude form it is also used to identify plant establishment
issues in field trials.

While each of the traits investigated in the current study
is physiologically different, they are linked through the colour-
based nature of their visual assessment. Visual assessment for
each of these traits is typically achieved through either a
percentage score, or through a 1–9 scale of severity. This type of
assessment lends itself to the application of image analysis, where
percentage area within images can be calculated.

The aim of the current study was to develop a high-throughput
digital imaging system capable of assessing colour-based traits
observed within a wheat breeding programme. This was achieved
in three stages:

(i) A proof of concept study in a greenhouse to develop
a method and examine how effectively freely available
image analysis software and consumer digital cameras can
estimate colour-based traits.

(ii) Applying these concepts of hand-held digital imaging and
basic image analysis to field trials to demonstrate their
application in breeding programmes.

(iii) Using the results of i and ii to develop a field-based
high-throughput imaging infrastructure, with a basic
image analysis pipeline.

The first two years of the current study involved the
development and testing of data capture and processing systems,
and the third year tested these systems within a wheat
breeding field trial.

MATERIALS AND METHODS

The three stages of the current study were conducted during
the seasons of 2015, 2016, and 2017 using a combination of
hand-held and high-throughput RGB imaging in greenhouse
and field trials (Table 1). Images were collected opportunistically
within a large-scale wheat breeding programme, across seven
experiments, for PY, senescence, STB and canopy cover. While
multiple traits were observed in the field, it is proposed that
the image analysis methods can be applied to any colour-based
trait of interest.

Greenhouse Imaging
Imaging of a potted experiment investigating the expression
of PY was conducted to establish the feasibility of assessing
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TABLE 1 | Summary of trials assessed in the current study.

Trial Environment Location Position Trait Measured Observations (n) Replicates

Greenhouse Controlled Roseworthy 34◦31’58.40"S, 138◦41’20.60"E Physiological Yellows 72 (plants) 3

A Field Roseworthy 34◦30’33.51"S, 138◦40’26.03"E Physiological Yellows 432 2

B Field Roseworthy 34◦30’33.51"S, 138◦40’26.03"E Physiological Yellows 432 2

C Field Roseworthy 34◦30’33.51"S, 138◦40’26.03"E Senescence 240 Partial (25%)

D Field Roseworthy 34◦30’33.51"S, 138◦40’26.03"E Senescence 648 Partial (25%)

E Field Turretfield 34◦32’13.81"S, 138◦50’36.55"E Septoria Tritici Blotch 202 2

F Field Winulta 34◦15’12.41"S, 137◦53’3.21"E Canopy Cover 288 3

a colour-based trait with basic open-source image analysis
methods. The experiment consisted of individually potted plants
arranged in a randomised block design of three replicates, with
treatments of genotype and presence/absence of chlorine (Cl−)
as described by Schwenke et al. (2015). Plants were grown
in a greenhouse on the University of Adelaide, Roseworthy
Campus. Further details of this experiment are described by
Australian Grain Technologies (2016).

The severity of symptoms was assessed shortly after anthesis
[Zadoks Growth Scale 69 (Z69) (Zadoks et al., 1974)], as the
percentage of leaf area affected by PY, i.e., a visual estimate of
the percentage of leaf material that was yellow. To obtain image
analysis scores, RGB images were captured for every plant using
a commercial digital camera (Canon 100D) at a resolution of
3456 × 5184 pixels (18 MP), with auto exposure. Plants were
placed in front of a white background, to allow for simplified
image processing and analysis. Images were captured from the
side of pots, allowing for large amount of leaf area to be visible,
with minimal occlusion.

Field Imaging
Following the testing of imaging in the potted greenhouse
experiment, imaging methods were adapted and deployed within
six wheat breeding field trials which examined a number of
different traits (Table 1). Field plot trials consisted of small
plots 1.32 m × 3.2 m (trials A–D, F) or 0.45 m × 1 m (trial
E) in size, with each trial containing a single treatment of
genotype, with varying levels of replication (Table 1), arranged
in a completely randomised design. Field plots were managed
by Australian Grain Technologies (AGT) within their wheat
breeding programme, with plots in trial E grown within an
inoculated STB nursery.

Visual and digital scores were recorded as percentage of
yellow leaf area, with visual scores collected in the field following
imaging. Exceptions to this were trial E, where visual STB severity
was assessed using a 1:9 scale at the time of imaging and trial F,
where visual scores were recorded as percentage canopy cover
obtained by a visual estimate of canopy cover in individual
images, and digital scores were calculated as the percentage of
image area that was green.

Images of plots in trials A–E were captured at a nadir angle
by using a hand-held camera (Canon 100D) over each plot,
approximately 1.5 m above ground level. Images were captured at
a resolution of 3456× 5184 pixels (18 MP), with exposure settings
adjusted ad-hoc. Nadir images were chosen because lateral images

reveal only the first few plants in each row, with the rest of the
plot being occluded. Images of plots in trial F were collected at
a nadir angle using the High-throughput Imaging Boom (HIB;
described in detail below). Plots were imaged early in the season
(approximately Z25) and following anthesis (approximately Z69)
to observe plot establishment and canopy cover. Images were
captured automatically using the HIB at both time-points, with
cameras set to 1/1000 and 1/2000 of a second shutter speed at the
first and second time-points, respectively, f 8.0 aperture and auto
ISO to allow for exposure compensation.

Image Analysis
All images were processed in the FiJI distribution
(Schindelin et al., 2012) of the open-source software ImageJ
(Schneider et al., 2012), using the Threshold Colour plugin
(Supplementary Data 1). Central regions of interest were
applied to greenhouse images and field images, where plant
material did not fill the frame.

A two-stage thresholding process was then used to separate
firstly, all plant material from background material (i.e., white
corflute in greenhouse and soil in field), and secondly yellow
plant material from green. Examples of this process are shown
for PY in Figure 1. Yellow thresholding was not required for
the estimation of canopy cover. Thresholding was conducted
using Hue, Saturation and Brightness (HSB) values, with these
being visually determined for each experiment to obtain the
most suitable thresholds. Once threshold images had been
created, the number of plant material pixels and yellow pixels
were counted, allowing the percent yellow leaf area score
(or percent image area green) to be calculated. Detailed
methods for thresholding and batch processing of images
are available in Supplementary Data 1. Examples of processed
images for senescence, STB and canopy cover are available in
Supplementary Data 2.

Images obtained from field trials were resized to 25% of
their longest edge (∼1 MP), to increase processing speed
and avoid RAM limitations, when batch processing large
numbers of images.

High-Throughput Imaging Boom
Development
The High-throughput Imaging Boom shown in Figure 2 was
designed for the express purpose of integration into a large-
scale wheat breeding programme. It features four commercially
available digital cameras (Canon 70D) mounted inside weather
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FIGURE 1 | Stages of the thresholding process for single plants grown in the greenhouse (top) and whole plots grown in the field (bottom). Depicted are the original
image (A), segmented plant material (B), binary plant material threshold (C), segmented yellow material (D), and binary yellow material threshold (E).

FIGURE 2 | The High-throughput Imaging Boom (HIB) developed and deployed as part of the current study, parked in a maintenance pathway of a wheat field trial.
Annotations outline major components of the system.

sealed boxes on the boom arms. This setup allows two images per
plot to be captured simultaneously, and the potential for future
work to investigate applications of stereo imaging.

Image capture is triggered by a single relay, which is controlled
by a laptop computer in the tractor cab. The laptop uses
proprietary software to monitor GPS output from a Trimble
FM1000 RTK GPS unit and trigger the relay from a set
of predefined GPS coordinates, camera trigger delay and the
distance between GPS receiver and the cameras. GPS coordinates
are computed based on three corner coordinates of the trial
site and the number of plot rows and columns present at the
site. The HIB is driven to each of these three corners and the
cameras positioned over the end plot. Once in position the GPS
coordinates are saved within the software. After collecting the

three GPS coordinates, individual triggering coordinates for each
plot are interpolated from the three corner positions. A text file
containing all trigger coordinates is saved and can be loaded into
the software for every imaging event, meaning this setup process
need only be completed once per field site.

The boom on which the cameras are mounted features arms
of adjustable height, which fold in for transport, mimicking
a standard spray boom used for plot maintenance within the
wheat breeding programme. To further strengthen the concept of
integrating the HIB within a field-crop breeding programme, the
tractor to which it is attached can use the GPS autosteer function
of the RTK GPS unit, adhering to the predefined maintenance
pathways within the trial. These pathways are typically used for
standard management practises such as fertiliser, herbicide and
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fungicide application. This reduces operator error while driving
the tractor, and allows repeated image capture throughout the
season with a spatial accuracy of 2 cm. To operate the HIB the
tractor is driven down maintenance pathways within each field
trial, with boom arms placing the cameras centrally over one plot
each side of the tractor.

As the tractor drives, image capture occurs automatically,
with images stored on SD cards within individual cameras.
The software running on the laptop computer monitors GPS
message output from the RTK GPS unit, with this information
being used to determine triggering of the relay in conjunction
with the pregenerated trigger coordinate text file. This process
accounts for tractor speed (calculated from GPS coordinates),
signal travel time between laptop and camera shutter trigger
(predefined within the software) and the distance between the
GPS receiver and cameras. The tractor continues to travel along
maintenance pathways in a serpentine manner, until all plots
have been imaged.

The HIB was driven at 5 km/h during image capture.
Cameras had manually set exposures, with a shutter speed of
1/1000 or 1/2000 of a second (for images at Z25 and Z69,
respectively), an aperture of f 8.0 and auto ISO to allow for
exposure compensation. Images were captured in JPEG format
for ease of post processing, and because of limitations in image
write speed and buffer capacity of the cameras for RAW images.

Statistical Analysis
All statistical analysis was conducted in the R software package
(R-Core Team, 2017). Mixed linear models were used to analyse
all data sets through univariate and bivariate analyses of visual
and digital measurements using ASReml (Butler et al., 2009).
Pearson’s correlations between raw data were calculated within
univariate analyses, while genetic and residual correlations were
calculated from bivariate analyses. Broad-sense trait heritability
(Eq. 1), which can be described as the proportion of observed trait
variation attributable to genetics (Visscher et al., 2008), was also
calculated within univariate analyses.

H2
=

σ2
G

σ2
G + σ2

E
(1)

where H2 is broad-sense heritability, σ2
G is the variance

attributable to genetic effects and σ2
E the environmental variance.

Linear regressions between visual and digital measurements
are presented from raw data, with regression equations calculated
using Model II Linear Regression (Ludbrook, 1997, 2012).

RESULTS

Proof of Concept
The image analysis methods proposed in Supplementary Data 1
were able to efficiently and consistently segment both plant
material from the background image, and yellow plant material
from total plant material (Figure 1 top). Digital scores correlated
strongly (r = 0.95) with visual scores assessed from individual
plants (Figure 3), with genetic and residual correlations being

FIGURE 3 | The relationship between Digital Yellow Leaf Area and Visual
Physiological Yellowing (PY) scores, for individually potted plants within a
Greenhouse. Dashed line represents the linear regression
between measurements.

similarly, strong (Table 2). Heritability for both measurements
showed similarly, high values, with visual scores being slightly
higher (Table 2).

RGB Imaging in Field Conditions
Following the success of applying the proposed image analysis
methods to individual plants in a greenhouse environment,
hand-held images of field plots were collected to further test
the application of the methods and investigate their robustness
under field conditions. As with greenhouse images, the image
analysis methods proposed in the current study were capable of
segmenting plant and background pixels, in this case from soil
rather than a plain background, as well as separating yellow plant
material from total plant material.

Significant correlations (p < 0.001) were observed between
digital and visual scores across all field trials (Figure 4). A slightly
weaker correlation between visual and digital scores was observed
in trial A (r = 0.61), with trials B, C, D, and E having
slightly stronger correlations (r = 0.74 – 0.78). For each trial,
genetic correlations were stronger than raw correlations between
visual and digital measurements, with residual correlations being
smaller than raw correlations. For all but trial E, the heritability
of the digital score was higher than that of the visual score
(Table 2). This was particularly the case for trials A and B where
the digital scores had heritability 0.28 and 0.27 units higher than
the respective visual scores.

Images were collected by hand at a rate of approximately one
image every four seconds across all field trials, or approximately
900 plots per hour. Image analysis took approximately 10 min per
trial, with the bulk of this time spent finessing threshold values.
Computer processing time was approximately 0.02 sec per image
(0.12 sec per image when including the process of importing
images to FiJI). Visual scores (Trials A–E) took over double that
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TABLE 2 | The correlation coefficients (r) for raw data, genetic and residual correlations between visual and digital scores, and the heritability (H2) of individual data sets
collected for the traits physiological yellowing (PY), senescence, Septoria tritici blotch (STB) and canopy cover.

Trait Trial Raw
Correlation

Genetic
Correlation

Residual
Correlation

H2 – Visual H2 – Digital

Physiological Yellows Greenhouse 0.95 0.98 0.92 0.85 0.76

A 0.61 0.86 0.32 0.46 0.74

B 0.78 0.86 0.66 0.46 0.73

Senescence C 0.74 0.83 0.43 0.76 0.81

D 0.75 0.92 0.44 0.67 0.74

Septoria tritici blotch E 0.76 0.86 0.47 0.73 0.59

Canopy Cover F – Time 1 (Z25) 0.88 0.82 0.82 0.11 0.08

F – Time 2 (Z69) 0.86 0.92 0.75 0.59 0.72

time, with one score recorded approximately every nine seconds
or 400 plots per hour.

Deploying Digital Phenotyping Methods
on a High-Throughput Infrastructure
The final step in the current study was to deploy the
digital phenotyping methods (Supplementary Data 1) on
high-throughput infrastructure designed to work effectively
within a field-crop breeding programme. Advanced yield plots
were imaged using the HIB to assess canopy cover.

Both early and late assessments of canopy cover
(approximately Z25 and Z69, respectively) showed strong
correlations between digital and visual scores (r = 0.88 and
0.86, respectively) (Figure 5). Early assessment of canopy cover
produced genetic and residual correlations of equal strength,
both of which were slightly weaker than the raw correlation,
though for assessment at Z69 genetic and residual correlations
were, respectively, stronger and weaker than the raw correlation
(Figure 5). Heritabilities were low for digital and visual scores at
Z25, though slightly higher for visual scores, but greatly increased
at Z69, with the digital score having a greater heritability than
the visual score (Table 2).

The HIB achieved a throughput of approximately 7,400
plots per hour, with the 9,600 plot trial site containing trial F
being imaged in 80 min; equating to approximately two unique
images per second. Analysis of plot images took approximately
10 min. Accurate in situ visual assessment of canopy cover is
challenging due to the oblique perspective of the scorer, however,
a throughput of approximately 400 plots per hour would be
expected, based on scoring rate of other traits in the current study.

DISCUSSION

Image analysis as a phenotyping tool is a common practise
within greenhouse and controlled environment experiments,
and a number of commercial platforms and facilities offer
streamlined approaches for data collection and analysis (for
example the LemnaTec Scanalyzer1, and the Australian Plant
Phenomics Facility2). These systems allow the collection of high

1https://www.lemnatec.com/products/high-throughput-phenotyping-solutions/
greenhouse-scanalyzer/
2https://www.plantphenomics.org.au/

temporal resolution data with ease, and are commonly used
for the assessment of green leaf area, and subsequently for the
assessment other traits such as of the rate of senescence (Atieno
et al., 2017). However, these systems are expensive to establish
and are limited to assessment of plants grown in controlled
environments within pots.

The image analysis methods proposed in the current study
offer a low-budget, open-source alternative to the controlled
environment systems described above, and are suitable for
the collection of digital scores comparable to visual scores
of colour-based traits. The example presented in the current
study shows the application of these methods to PY. However,
as shown by the results of Objectives 2 and 3, these
methods are robust across other colour-based traits. The strong
correlation between digital and visual assessments of PY in
the greenhouse experiment is unsurprising, as the imaging
of individual plants in front of a uniform white background
provides ideal conditions to implement this type of image
analysis. There is little occlusion present, and plant material
pixels can be easily segmented within the images due to the
vastly different hue values of plant and background material
pixels. Despite these ideal conditions, there are limitations to
the use of the proposed methods for assessing colour-based
traits which do not express uniformly across all plant organs,
as the proposed methods are basic and not capable of
isolating individual plant organs for analysis. In the case of
the current study, stems and ears of plants often remained
green while leaves expressed PY, resulting in images still
containing a many green pixels. This ultimately reduced the
percentage of the plant classed as yellow, leading to a slope
<1 for the linear regression between visual and digital scores
(Figure 3). Regardless of this limitation, the high heritability
of PY for both digital and visual scores in the greenhouse
experiment demonstrated the accuracy that is achievable under
ideal conditions.

Despite the high-quality data obtainable under controlled
conditions, field phenotyping is favoured within plant breeding
programmes, to gain an understanding of genotype performance
when subject to realistic and relevant environmental conditions
and to examine genotype-by-environment interactions
(Araus and Cairns, 2014). In contrast to controlled environment
imaging, field imaging occurs under conditions that are far
from ideal. The main contributing factors to this being the
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FIGURE 4 | The relationships between visual and digital scores for digital yellow leaf area and visual PY score in field trials (A,B) digital yellow leaf area and visual
senescence score for field trials (C,D) and digital yellow leaf area and visual Septoria tritici blotch (STB) severity score for field trial (E). Dashed lines represent the
linear regression between measurements.
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FIGURE 5 | The relationships between visual and digital scores for percent image area green and visual assessment of percentage canopy cover, for field trial F at
two time-points – Zadoks Growth Scale 25 (A) and 69 (B). Dashed lines represent the linear regression between measurements.

FIGURE 6 | Aerial image of an Australian large-scale wheat breeding site, annotated with dimensions of the site and the number of plot rows, plot ranges and travel
distances based on direction (A), and the serpentine path along site maintenance pathways, travelled by the HIB in the current study, allowing for two plots to be
imaged simultaneously (B). Image: Google, 2017, Digital Globe.

large amount of occlusion which occurs within the crop
canopy, preventing plant material in the lower canopy from
being fully visible (Casadesús et al., 2007), and the potential
for plant pixels and soil pixels to have similar hue values,
resulting in a more difficult segmentation process. Despite these
limitations, there are still strong similarities between image
analysis of greenhouse and field images, as can be seen in the
results of Objectives 1 and 2 in the current study. In the case
of PY, where images were obtained from both greenhouse
and field trials (A and B), direct comparisons can be made
around the quality of data collected. While the strongest
correlation between digital and visual data was observed
in the glasshouse experiment, the heritability of digital and
visual scores was similar. Weaker correlations were observed
between digital and visual scores within field trials, though the
heritability of digital scores was generally greater than for visual

scores, indicating that digital scores provide a more accurate
assessment of the trait.

The ability to apply the image analysis methods of the current
study to a range of traits across multiple field trials demonstrates
the robustness of these simple methods. For each field trial
(A–F) positive relationships were observed between digital and
visual scores, irrespective of the trait, with digital scores generally
resulting in a similar or improved heritability compared to
visual scores (Table 2). The high heritability of all traits assessed
digitally (excluding canopy cover at Z25) indicates the potential
to achieve genetic gain through selection for or against the
trait. Though heritability of canopy cover was low at Z25, this
does not necessarily mean that genetic gain cannot be made for
early canopy cover. The low heritability observed in the current
study can likely be explained by the variable germination and
establishment of plots within the trial, a result of variable soil
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and poor environmental conditions. These conditions resulted
in canopy cover scores being driven by equal levels of genetic
and residual variation, leading to a low heritability (Table 2). The
potential to achieve genetic gain through selection in these traits
is further supported by the relationship observed between raw,
genetic and residual correlations, where the raw correlation is
not driven purely by the residual, for any of the traits observed.
In each instance (excluding canopy cover at Z25) the genetic
correlation is greater than the raw and residual correlation,
with the residual correlation being weaker than the raw. In
trials where residual correlations were high, residuals could be
fitted as co-variates within breeding analyses to better model
non-genetic effects within the trial. Whether investigating the
genetics, or accounting for residual effects in trait performance,
the results of the current study show that digital methods can
be exchanged with visual methods, while producing greater or
maintaining similar heritability. The lower heritability of digital
scores, compared to visual scores, observed in trial E is likely
a result of (i) the amount of STB occluded from the camera
sensor – as the pathogen is spread from the bottom of the canopy
up, through rain-splash (Steinberg, 2015), and (ii) patches of
senesced grass weeds within the plots. The presence of weeds has
likely contributed to the lower heritability in the digital scores of
trial F at Z25, with small broadleaf weeds being present in images
and contributing to the amount of green pixels present. In both
trials E and F visual scores can easily account for occluded leaves
or the presence of weeds, which will result in a higher estimate
of heritability.

Few studies have compared digital image analysis scores with
visual scores of the same trait, opting instead for comparisons
to sensor produced visual indices or alternative traits (Adamsen
et al., 1999; Lukina et al., 1999; Casadesús et al., 2007; Li et al.,
2010; Liu and Pattey, 2010; Mullan and Reynolds, 2010; Kipp
et al., 2014). However, direct comparisons between digital and
visual scores have been made by Hafsi et al. (2000) and Stewart
and McDonald (2014), where individual leaves were isolated
on a plain background to obtain images and visual scores. In
each of these studies digital scores were found to be effective at
estimating the trait of interest (senescence and STB, respectively),
corresponding to the results of the current study.

It should be noted that the studies mentioned above used a
variety of image analysis methods, some similar to the current
study, using thresholds and/or segmentation (Lukina et al., 1999;
Li et al., 2010; Liu and Pattey, 2010; Mullan and Reynolds, 2010;
Kipp et al., 2014; Stewart and McDonald, 2014). Others have used
numerical approaches across the whole image, looking at pixel
colour values and ratios (Adamsen et al., 1999; Hafsi et al., 2000;
Casadesús et al., 2007).

Despite the variety in previously described methods, image
analysis within field experiments is currently far from common
practise, with relatively few examples within the literature.
Perhaps the most extensive example of using image analysis
within large field trials, as well as in the context of plant
breeding, is presented by Mullan and Reynolds (2010) where four
bread wheat populations were repeatedly imaged and analysed
to provide canopy cover values over time. A further example
presented by Kipp et al. (2014) showed image analysis to be a

superior method of early vigour assessment, compared to spectral
sensing. The subject of image collection and processing time was
raised in each of these studies, with Mullan and Reynolds (2010)
stating an imaging rate of approximately one image every five
seconds and an image processing rate of approximately three
images per second. Kipp et al. (2014), on the other hand, merely
state that their image collection and processing methods are too
time consuming for application to large-scale field trials. The
processes of image collection and analysis in the current study
were conducted in similar times to those reported by Mullan and
Reynolds (2010). The combination of image capture and analysis
showed a time advantage over visual scores from field trials A–E
in the current study, in which images were collected using a
hand-held camera, with image collection taking approximately
half the time of visual scoring and image processing taking
approximately 10 min per trial. This shows that even in the
absence of high-throughput methods, digital imaging can save
time when scoring breeding or research experiments.

To be adopted by plant breeding programmes, or by large-
scale research in general, image analysis methods should be
highly automated. This has previously been acknowledged by
Casadesús et al. (2007) when investigating digital image analysis
for the derivation of visual indices, and is often satisfied through
batch processing of images. This was the approach taken in the
methods of the current study, greatly reducing the user input
required. Further reducing user input could be achieved through
the scripting of certain processing steps, however, manual input is
still required to correctly apply thresholds to a new set of images.
To apply true automation to this process avenues of computer
vision and machine learning would need to be explored, such as
in the work of Guo et al. (2017), however, such work requires a
highly specialised skill set to undertake.

Further to the requirements of automated data processing,
high-throughput data collection methods are essential. Platforms
for the high-throughput collection of field phenotypic data
have been proposed in the literature (Busemeyer et al.,
2013; White and Conley, 2013; Andrade-Sanchez et al.,
2014; Deery et al., 2014; Bai et al., 2016; Underwood
et al., 2017; Jimenez-Berni et al., 2018), though there are
currently limited commercial options available. As it stands, a
platform that is affordable, truly high-throughput, and easily
integrated into large scale breeding and research operations, has
yet to be produced.

The HIB used in the current study shows great potential for
future deployment within large scale research and plant breeding
programmes, meeting the requirements of affordability, high
throughput and ease of integration into current trial operations.
Traditionally high-throughput phenotyping platforms described
in the literature have travelled directly over plots (Busemeyer
et al., 2013; White and Conley, 2013; Andrade-Sanchez et al.,
2014; Deery et al., 2014; Bai et al., 2016; Underwood et al.,
2017; Jimenez-Berni et al., 2018), following the direction
of seeding. This allows for thorough data collection over
the entire plot, whether multiple images of the canopy
or other sensor data, though it greatly increases driving
distance and is difficult to implement within standard breeding
trials. This is illustrated in Figure 6, where travel along
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individual plot rows is nearly eight times the distance
of travelling along field maintenance tracks, where two
plots are imaged simultaneously (one either side of the
pathway), when traversing a large-scale field trial in a wheat
breeding programme.

Travelling along maintenance pathways within the field
trial also offers the benefit of integrating with current field
maintenance practises and can take advantage of tractor RTK
GPS autosteer profiles that have previously been generated
for the maintenance of trial sites. In the current study,
GPS coordinates and output from the tractor’s RTK GPS
autosteer system were used to automatically trigger image
capture. This allowed a “hands-off” data collection approach,
as well as ensuring that repeated imaging occurred in the
same position for each plot, with a 2 cm tolerance for error.
Further to this, the use of autosteer reduces the chance of
operator error, assisting in the prevention of accidental damage
to field trials.

The small tolerance for error within the image capture system
will allow for the extension of this system to earlier stages of
the breeding programme, which is often grown in small plots or
individual plant rows (Halloran et al., 1979). As demonstrated
by the STB images in the current study, the image analysis
methods proposed are suitable for application to small plots
and are likely transferrable to single rows and potentially single
plants. This will be of great interest to plant breeders who wish
to conduct phenotypic selection within the early generations of
their breeding programme.

At the speed of 5 km/h driven in the current study
it was possible to image approximately 7,400 plots per
hour. While this is already exceptionally high throughput,
the system is capable of operating at higher speeds (with
10 km/h successfully tested). At higher speeds movement is
introduced into the boom arms when travelling on uneven
ground, and can result in plot images being off-centre.
However, these issues could be easily addressed through
modification to the boom or tractor, for example, auto-levelling
boom arms or lower tractor tyre pressure to reduce boom
arm and camera movement. The throughput of imaging
observed in the current study becomes even more impressive
when compared against the throughput of other systems.
Recent work by Khan et al. (2018) compared the throughput
of plot level RGB imaging from two systems; a low-cost
Mobile Ground Platform (MGP) and an Unmanned Aerial
Vehicle (UAV). In their study, throughputs of 120 plots
per hour and 1200 plots per hour were achieved for the
MGP and UAV, respectively. While these results show a
clear advantage in the throughput of UAVs compared to
ground platforms, the throughput achieved by the HIB in
the current study is over six times greater than that achieved
by Khan et al. (2018) with a UAV. This demonstrates that
truly high-throughput ground based, plot level, imaging is
achievable and, as described by Khan et al. (2018), can
deliver high-fidelity images of crop canopies not currently
achievable with UAVs.

Deployment of the HIB within a large-scale wheat breeding
programme during the 2017 growing season allowed for

images of individual plots to be captured with extremely high
throughput. While data from a single site is presented for the
assessment of canopy cover in the current study, the system was
deployed at eight trial sites across southern Australia and used
to collect 288,680 images from 74,880 unique field plots. Images
acquired with the HIB are suitable for the application of the image
analysis methods proposed in the current study, enabling wheat
breeders to efficiently and objectively assess colour-based traits.

Though the current study has focused on images collected
from RGB cameras mounted on the platform, it is possible
to expand the system for the collection of a greater variety
of data. Numerous sensors have been proposed as high-
throughput field phenotyping tools, such as LiDAR (Deery
et al., 2014; Bai et al., 2016; Underwood et al., 2017;
Jimenez-Berni et al., 2018), multispectral and hyperspectral
cameras (Busemeyer et al., 2013; Bai et al., 2016; Underwood
et al., 2017), thermal sensors/cameras (Crain et al., 2016;
Deery et al., 2016) and NDVI (Bai et al., 2016; Crain
et al., 2016; Underwood et al., 2017), all of which could be
integrated to the HIB.

CONCLUSION

The basic image analysis methods described in the current
study are effectively able to produce digital scores that correlate
well to visual scores for colour-based traits, with examples
being presented for PY, senescence, STB and canopy cover.
The methods described in the current study have a low barrier
to entry and utilise commercially available digital cameras
and open-source computer software. This, combined with
the strong correlations observed between digital and visual
data, the high heritability of assessments, and the associated
time savings, make for an attractive set of methods for the
assessment of colour-based traits within a wheat breeding
programme. Furthermore, they show potential for application
within other breeding programmes, particularly other cereals
and field crops.

To further encourage the adoption of image analysis
within plant breeding programmes, an effective system for
the high-throughput collection of images has been described,
including a clear pathway for integration into current field
maintenance practises. This system was deployed within a
wheat breeding programme and is capable of high-throughput
large-scale image collection, providing images suitable for the
analysis methods described in the current study. This ultimately
provides a rapid and objective data collection methodology,
enabling unprecedented levels of data collection from large-scale
plant breeding field trials.

There is further potential to increase the value of collected
images to breeding programmes, through the implementation
of more complex image analysis methods – focusing on other
applications such as seedling counting (Liu et al., 2016), ear
counting and flowering detection (Sadeghi-Tehran et al., 2017;
Virlet et al., 2017). High-throughput collection and processing of
such data, from large-scale field trials, will only further strengthen
the role of image analysis within plant breeding programmes.
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