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The history of life consists of a series of major evolutionary transitions, including
emergence and radiation of complex multicellular eukaryotes from unicellular ancestors.
The cells of multicellular organisms, with few exceptions, contain the same genome,
however, their organs are composed of a variety of cell types that differ in both structure
and function. This variation is largely due to the transcriptional activity of different sets of
genes in different cell types. This indicates that complex transcriptional regulation played
a key role in the evolution of complexity in eukaryotes. In this review, we summarize
how gene duplication and subsequent evolutionary innovations, including the structural
evolution of nucleosomes and chromatin-related factors, contributed to the complexity
of the transcriptional system and provided a basis for morphological diversity.

Keywords: gene duplication, evolution, chromatin, transcriptional regulation, morphological complexity,
microbiota, symbiosis

INTRODUCTION

Early organisms on Earth were microscopic, and for the first 2500 million years (Myr), living
organisms rarely achieved a complexity higher than two or three cell types (Carroll, 2001). Around
500 Myr ago from the mid-Cambrian to early Ordovician, land plants that are a major focus
of this review likely evolved from a lineage of unicellular eukaryotes in charophyte green algae
(Stebbins and Hill, 1980; Kenrick and Crane, 1997; Harholt et al., 2016; Del-Bem, 2018; Morris
et al., 2018). With the evolution of land plants, these more complex organisms colonized the
Earth and transformed the biosphere providing habitable environments for terrestrial organisms
by supplying sufficient oxygen and nutrients (Hori et al., 2014). Recent evolutionary analyses
indicate that the cell wall, symbiotic signaling pathways, the RPB1 heptapeptide repeats, hormonal
biosynthesis or signaling pathways, and desiccation and UV radiation tolerance evolved in
charophyte green algae prior to land plants (Stebbins and Hill, 1980; Hajheidari et al., 2013;
Hori et al., 2014; Yang and Stiller, 2014; Delaux et al., 2015; Ju et al., 2015; Harholt et al., 2016;
Del-Bem, 2018). This demonstrates that charophyte green algae were preadapted to cope with
harsh terrestrial environments. The greater complexity of unicellular eukaryotes and the evolution
and diversification of land plants could not be possible without the existence of a high level
of cellular complexity and elaborate mechanisms for gene regulation in unicellular eukaryotic
ancestors (Figure 1).

Eukaryotes have a high degree of cellular complexity. The genomes of most eukaryotes are larger
than those of prokaryotes, however, in eukaryotes, in contrast to prokaryotes, genome size does
not show a good correlation with gene number (Valentine, 1978; Gregory, 2005). Furthermore,
an increase in genome size or gene number is not a good criterion for developmental and
morphological complexity. For example, the genome of the bryophyte Physcomitrella patens is
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FIGURE 1 | Diversification and expansion of histones, chromatin remodelers and modifiers in the domains of life. Filled circles denote presence of orthologs in all
lineages. Semi-filled circles indicate factors present in part of the lineage. Gradients indicate presence of homologs. White circles indicate the lack of homologs.

about 480 MB and possesses approximately 35,938 genes,
while Arabidopsis thaliana, with much higher morphological
complexity, has a smaller genome (∼135 MB) containing about
27,235 genes (Rensing et al., 2008). To understand the evolution
and diversification of morphological complexity two questions
should be addressed. First, which factors were the major
genetic resources underpinning morphological complexity? And
secondly, how does morphological diversity evolve? We know
that all cells of a complex multicellular organism contain the
same genome, however, their organs are composed of a variety
of cell types that differ dramatically in both structure and
function. The distinctiveness of a given cell type is determined by
controlled transcriptional activity of distinct sets of genes in a cell
lineage. Complexity is a term with different definitions (Carroll,
2001). However, the number of cell types is broadly considered
an indicator for morphological/organismal complexity (Carroll,
2001; Levine and Tjian, 2003; Chen et al., 2014). This suggests
that complex transcriptional regulation plays a key role in the
evolution of complexity in eukaryotes. This is in agreement with
a higher proportion of transcription factors in more complex
organisms with high evolutionary distances within each kingdom
(Table 1). Moreover, the rate of expansion of transcriptional
regulators is faster than linearly for every gene added to the
genome (Levine and Tjian, 2003; Charoensawan et al., 2010a;
Rensing, 2014). However, in many cases evolution is not
necessarily accompanied by higher morphological complexity
or with an increased number of transcriptional regulators
(Wolf and Koonin, 2013).

GENE DUPLICATION - A MAJOR DRIVER
IN THE EVOLUTION OF
MORPHOLOGICAL COMPLEXITY

Genomic studies have revealed notable increases in the
number of genes, intergenic regions, intragenic regions
(introns), and transposons from prokaryotes to multicellular
eukaryotes. Whole-genome and small-scale duplications are
known as essential sources for the evolution of functional
novelty and morphological complexity (Ohno, 1970;

Lynch and Conery, 2003; Gregory, 2005; Bratlie et al., 2010).
Increases in organismal complexity are repeatedly coupled
to short-term large-scale increases in gene number in the
history of eukaryotes (Ohno, 1970; Gu et al., 2002; McLysaght
et al., 2002; Maere et al., 2005; Vanneste et al., 2014). For
example, eukaryotic RNA polymerases (PolI, PolII, and PolIII)
evolved due to massive gene duplications during the transition
from an archaeum to a fully fledged eukaryote (Koonin,
2015). Whole-genome duplications in plants normally lead
to genomic instability, alteration of gene expression and cell
division abnormalities (Comai, 2005). On the other hand, the
genomic plasticity of polyploids is higher than diploids and
this may lead to increased tolerance of polyploidy in a broader
range of environmental conditions. Recent studies suggest
that challenging environmental conditions may positively
enhance short-term polyploid establishment and survival
(for a detailed review see, Van de Peer et al., 2017). After
genome duplication, duplicated genes can have different
evolutionary fates. Duplicated genes predominantly become
pseudogenes/silent due to non-adaptive accumulation of
deleterious mutations (non-functionalization) within a few Myr
(Lynch and Conery, 2003; Maere et al., 2005). In an evolutionary
study in rodents, it was shown that one copy of duplicates,
which is usually the novel daughter copy, experiences a fivefold
higher divergence rate within 4–12 Myr after duplication.
Subsequently, the divergence rate decreases and after 40.5 Myr
returns to preduplication levels (Pegueroles et al., 2013). A subset
of duplicates may stay active by different mechanisms. For
example, an increase in the expression of duplicates can be
beneficial (gene dosage) or both duplicates can be essential to
keep the ancestral function (subfunctionalization). In addition,
duplicates can be important to maintain the stoichiometric
balance (gene balance) or to prevent interference between the
products of paralogs (paralog interference). Duplication can also
lead to the evolution of novel functions. Neofunctionalization
arises after gene duplication resulting in one gene copy keeping
the ancestral function and the second copy becoming fixed
by positive selection. In addition, functional novelty can also
arise due to escape from adaptive conflict (EAC). In this case,
the evolution of a novel function in the ancestral copy before
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TABLE 1 | Organismal/morphological complexity correlates with the proportion of transcriptional regulators within each kingdom when the evolutionary distance
between organisms is high.

Kingdom Species No. of cell types Genome size No. of genes No. of TFs Proportion of TFs

Metazoa Homo sapiens 264.5 ∼ 3.3 GB ∼ 22997 ∼ 1508 0.0656

Mus musculus 130.5 ∼ 2.7 GB ∼ 23873 ∼ 1426 0.0597

Tetraodon nigroviridis 119.5 ∼ 390 MB ∼ 27991 ∼ 1362 0.0487

Drosophila melanogaster 59 ∼ 175 MB ∼ 14141 ∼ 601 0.0425

Caenorhabditis elegans 28.5 ∼ 100 MB ∼ 20140 ∼ 698 0.0347

Nematostella vectensis 22 ∼ 450 MB ∼ 27273 ∼ 701 0.0257

Trichoplax adhaerens 4 ∼ 50 MB ∼ 11520 ∼ 233 0.0202

Viridiplantae Zea mays 100 ∼ 2.5 GB ∼ 45796 ∼ 2689 0.0587

Arabidopsis thaliana 27.25 ∼ 135 MB ∼ 27235 ∼ 1356 0.0498

Selaginella moellendorffii 25 ∼ 100 MB ∼ 22273 ∼ 665 0.0299

Physcomitrella patens 21 ∼ 480 MB ∼ 35938 ∼ 823 0.0229

Marchantia Polymorpha NA∗
∼ 225 MB ∼ 32718 ∼ 586 0.0179

Klebsormidium nitens 1 ∼ 117 MB ∼ 16215 ∼ 273 0.0168

Chlamydomonas reinhardtii 1 ∼ 107 MB ∼ 15256 ∼ 213 0.0140

Chlorella sp. NC64A 1 ∼ 46.2 MB ∼ 9791 ∼ 131 0.0134

The arrangement of organisms within each kingdom is based on organismal complexity. Proportion of transcriptional factors (TFs) represents the ratio of number of
TFs to number of genes. Data were mostly obtained from transcription factor prediction database, only the longest transcript per gene was included in this study
(http://www.transcriptionfactor.org) (Valentine et al., 1994; Bell and Mooers, 1997; McCarthy and Enquist, 2005; Vogel and Chothia, 2006; Charoensawan et al., 2010b;
Burdo et al., 2014; Chen et al., 2014; Hori et al., 2014; Matsumoto et al., 2016; Jiao et al., 2017). ∗NA, not available.

duplication has reduced the ability of the gene to carry out the
original function and after duplication each copy can freely
optimize the ancestral or the novel function (Ohno, 1970; Lynch,
2000; He and Zhang, 2005; Conant and Wolfe, 2008; Des Marais
and Rausher, 2008). It has been shown that the decay rates of
paralogs derived from small-scale duplications are considerably
higher than those derived from large-scale duplications (Maere
et al., 2005; Freeling, 2009). Furthermore, after whole genome
duplication the retention rate of different genes is not similar. For
example, genes that are involved in transcriptional regulation,
signal transduction, and development have a higher retention
rate than other functional categories (Blanc, 2004; Seoighe and
Gehring, 2004; Maere et al., 2005). On the other hand following
a large-scale duplication and emergence of polyploid organisms,
most of the duplicates are deleted or non-functionalized over
time and genome size reduction is accompanied by extensive
genome reorganization. This process is called diploidization
and leads to the conversion of polyploids to diploids over a
period of several Myr and species that emerge by diploidization
following polyploidization are called palaeopolyploids. All extant
angiosperms are indeed palaeopolyploid (Olsen and Wendel,
2013; Dodsworth et al., 2016). It is also important to consider that
whole-genome duplication in animals in general is less common
than in plants (Hallinan and Lindberg, 2011; Nossa et al., 2014;
Clarke et al., 2015; Schwager et al., 2017; Li et al., 2018).

ALTERATION OF GENE EXPRESSION
PATTERNS AND MORPHOLOGICAL
COMPLEXITY

Pioneering studies in molecular evolutionary biology revealed
that there is relatively little protein divergence among

mammalians such as chimps and humans, although their
phenotype and behavior are very different (Britten and
Davidson, 1971; Wilson et al., 1974; King and Wilson, 1975).
These studies led to the proposal that the evolution of complexity
occurred more by altering gene regulation than by changing
protein sequences. In agreement with this proposal, later studies
showed that many homologous proteins, despite long term
(∼ 500 Myr) independent evolution in different lineages, are
often functionally equivalent (Grens et al., 1995; Halder et al.,
1995). Furthermore, vital roles are attributed to conserved
protein sequences and their mutations are deleterious or lead to
pleiotropic effects and are thus under purifying selection (Grens
et al., 1995; Halder et al., 1995; Hoekstra and Coyne, 2007).
However, alteration of their expression level or pattern is usually
non-deleterious and this is mostly due to the modular nature of
cis-regulatory elements (Hoekstra and Coyne, 2007).

The morphological complexity of multicellular organisms
relies on spatio-temporal patterns of developmentally important
regulatory factors (Spitz and Furlong, 2012). The precise
expression patterns of master developmental regulators are
mostly governed by enhancers/cis-regulatory modules that
integrate signaling and tissue-specific inputs to specify times
and locations of gene expression (Shen et al., 2012). Enhancers
are short DNA sequences that contain multiple sites for
sequence-specific transcription factors (Shlyueva et al., 2014).
In prokaryotes, enhancer-dependent gene regulation is less
common and the regulatory regions of prokaryotes and
unicellular eukaryotes are usually composed of short sequences
in the vicinity of the core promoter (Gralla, 1996; Wyrick and
Young, 2002). However, enhancers in multicellular eukaryotes
are scattered across the genome and found upstream and
downstream of genes. The birth of enhancers is mediated
by various mechanisms during evolution. Duplication and
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rapid/subsequent diversification of enhancers is an important
source for the genesis of new enhancers (Goode et al., 2011;
Vlad et al., 2014). New enhancer sequences can emerge
from non-regulatory sequences or older enhancer elements
via random genetic drift or adaptive selection (Frankel et al.,
2011; Rebeiz et al., 2011; Duque and Sinha, 2015; Villar
et al., 2015). Transposable elements (TEs) are also important
material for tinkering with eukaryotic transcriptional regulatory
systems (Jordan et al., 2003; Cao et al., 2016). Enhancers
can control genes that are located far away; therefore,
one gene can be regulated by multiple distal and close
enhancers with different spatiotemporal activities. Furthermore,
one enhancer may regulate the activity of multiple genes.
These features facilitate a vast combinatorial complexity of
transcriptional regulation with a relatively limited set of genes
(Long et al., 2016).

It is important to consider that alteration in heritable gene
expression patterns is due either to diversification of cis-
regulatory elements or trans-regulatory factors (transcription
regulators and non-coding RNAs). Recent studies have quantified
the relative contribution of cis- and trans-regulatory factors to
the evolution of gene expression, which as shown above is a
key player in the evolution of morphological complexity. These
studies suggested that trans-regulatory factors have a higher
contribution to gene expression alteration than cis-regulatory
factors within a given species. However, as sequence divergence
or evolutionary distance increase, cis-regulatory differences
become the dominant contributor in gene expression alteration.
This relative contribution of cis-regulatory elements and trans-
regulatory factors in the regulation of gene expression varies
amongst taxa (Metzger et al., 2017; Osada et al., 2017).

Many studies have shown evolutionary changes through
diversification of regulatory elements or protein-coding
sequences (Stern, 1998; Arnaud et al., 2011; Vlad et al., 2014;
Kusters et al., 2015; Sicard et al., 2016; Vuolo et al., 2016; Jiang
and Rausher, 2018). Reduced complexity (RCO) evolution is an
interesting example in plants that shows how gene duplication
and subsequent diversification in regulatory elements and coding
sequences played a key role in the evolution of morphological
diversity within the Brassicaceae family. Vlad et al. (2014)
discovered that a tandem duplication of the LATE MERISTEM
IDENTITY 1 (LMI1) gene has given rise to two new copies
in Cardamine. One of the copies has become a pseudogene
owing to accumulation of deleterious mutations, whereas
another copy located immediately downstream of the LMI1gene
locus is active. LMI1 is expressed in the margins of leaflet,
stipules, and flowers. In contrast to LMI1, the novel active
copy RCO is essential for the formation of the complex leaves
in C. hirsuta. It is expressed at the base of the leaflet and
promotes leaflet formation through local growth repression.
RCO was lost in the lineage that gave rise to A. thaliana
leading to simplification of the leaves in this species. When
the RCO promoter drives the expression of the LMI1 gene at
the base of leaflets, the LMI1 gene acts similar to RCO and
represses the growth at the flank of developing leaflets. This
demonstrated that neofunctionalization has occurred due to
diversification of regulatory elements. Later studies uncovered

that indeed RCO enhancer evolution likely coevolved with a
single amino acid change. This change led to the reduction of
RCO protein stability, which is required for minimizing the
pleiotropic effects of the RCO enhancer (Vuolo et al., 2016).
The evolution of domesticated maize (Zea mays ssp. mays)
from its wild relative teosinte (Z. mays, ssp. Parviglumis) is
also an excellent example of morphological evolution through
directional selection during domestication. Since the crop
plant maize and teosinte are morphologically very different,
taxonomists once placed them in separate genera (Doebley
et al., 1997). However, later studies demonstrated that these
plants are close relatives and expression alteration of a few
transcription factors led to great morphological divergence and
played a substantial role in the emergence of cultivated maize
from teosinte. Diversification of regulatory elements of teosinte
branch1 (tb1) and barren stalk1 (ba1), which encode bHLH
transcription factors, had a great impact on positioning of the
male inflorescence and conversion of lateral branches of teosinte
into the maize ear (Doebley et al., 1997; Gallavotti et al., 2004;
Clark et al., 2006). In teosinte, kernels are tightly sealed in a
stony casing, while the kernels of crop maize are naked and
could readily be consumed by animals or humans. Surprisingly,
just a single amino acid change in the SBP-box transcription
factor teosinte glume architecture1 (tga1) was the cause of the
liberation of kernels from the hardened cupulate fruitcases
(Wang et al., 2005, 2015).

THE STRUCTURAL EVOLUTION OF THE
NUCLEOSOME AS A PREREQUISITE
STEP FOR MORPHOLOGICAL
COMPLEXITY

To the best of our knowledge, all domains of life rely on DNA
to store and inherit genetic information. Factors that alter the
conformation of DNA to make it fit inside the cell/nucleus are
present in all kingdoms of life and have the potential to influence
transcription. Bacteria lack histones and contain nucleoid-
associated proteins (NAPs) that are major DNA-binding factors
facilitating chromosomal domain formation and organization
(Figure 1; Luijsterburg et al., 2008). In bacterial cells, there
is no inherent barrier for RNA polymerases to gain access to
the DNA (Struhl, 1999; Dillon and Dorman, 2010). Archaeal
cells also have circular DNA, as in bacteria. The phylum
Crenarchaeota in the archaea domain generally lack histone
proteins and their chromosome organization relies on Alba
proteins, which are NAPs. However, the phylum Euryarchaeota
in archaea mainly contain histone proteins that lack flexible
tails at their N-terminus (Williams and Embley, 2014; Peeters
et al., 2015). Methanopyrus kandleri and Halobacterium NRC1
in Euryarchaeota contain unusual “doublet histones” that have
evolved through an end-to-end duplication of the histone fold.
The ancestral gene encoding a doublet histone was split and
diverged into H3 and H4 to form H3–H4 tetramers. H2A and
H2B likely evolved later through a second specialization of a
doublet as well (Ng et al., 2000; Malik and Henikoff, 2003).
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Eukaryotic histones are derived from a common ancestor shared
with Archaea. Archaeal chromatin-like structure is apparently
important for DNA protection from thermal denaturation
(Reeve, 2003; Sandman and Reeve, 2005). Eukaryotic cells
contain very stable, compact, and at the same time very dynamic
chromatin. Nucleosomes are the fundamental units of chromatin
that consist of ∼147 base pairs of DNA wrapped around a core
of eight histone proteins comprising two copies of histone H3,
H4, H2A, and H2B. The tails of core histones protrude from
the nucleosome core particle and many residues in these tails
can be post-translationally modified, influencing all DNA-based
processes, including transcription (Venkatesh and Workman,
2015). Chromatin also contains linker DNAs (∼10–90 bp)
that connect nucleosomes and interact with histone H1 (Han
and Grunstein, 1988; Szerlong and Hansen, 2011; Zhou et al.,
2013). In higher eukaryotes, H1 histones have three domains,
a highly conserved central globular domain, an unstructured
short N-terminal domain, and a long basic C-terminal domain
(Ramakrishnan et al., 1993). Linker histone-like proteins are
found in eubacteria, which are likely the provenance of H1
histones (Kasinsky et al., 2001). These proteins are similar to
the C-terminal domain of H1 histones in higher eukaryotes,
however, they have no globular domain. Linker histones are
diverse and perform various roles in processes such as chromatin
organization, genome stabilization, transcriptional regulation,
and embryogenesis (Hergeth and Schneider, 2015; Kotliński et al.,
2016; Bayona-Feliu et al., 2017). In contrast to prokaryotes,
the compact structure of chromatin in eukaryotes generated an
inherent barrier for DNA-based processes. This was one of the
key prerequisite steps in the evolutionary trajectory of complex
multicellular organisms.

EVOLUTION OF CHROMATIN
REMODELERS AND MODIFIERS

The compact structure of chromatin in eukaryotes prevents free
access of transcription factors to cis-regulatory DNA elements. In
addition to transcription factors, proteins involved in replication
and repair must be able to access DNA. To tackle this barrier,
it was necessary for early eukaryotes to evolve and expand
classes of chromatin modifiers and remodelers to facilitate access
to DNA (Figure 1). Due to the possession of mitochondria,
Eukaryotes had more available energy to encode a higher
level of proteins. This together with genome expansion likely
generated evolutionary pressure for co-evolution of high density
chromatin packaging and chromatin-modifying factors in early
eukaryotes (Flaus et al., 2006; Lane and Martin, 2010; Garg
and Martin, 2016; Koster et al., 2015; Martin and Sousa,
2016). Chromatin modifiers and remodelers further expanded
and diversified in eukaryotes. This led to the establishment
of distinct classes of chromatin-modifying factors with unique
functional complexes that facilitate binding of transcription
factors to cis-regulatory DNA elements in a cell-type-specific
manner in higher eukaryotes (Gentry and Hennig, 2014;
Sarnowska et al., 2016; Zhou et al., 2016). The major chromatin-
modifying factors are DNA methyltransferases (DNMTs), histone

deacetylases (HDACs), histone acetyltransferases (HATs), histone
methyltransferases (HMTs), histone demethylases (HDMs), and
chromatin remodelers.

DNA Methyltransferases
In prokaryotes, as a part of the restriction-modification (RM)
systems DNA methylases cooperate with restriction enzymes
to protect the genome against foreign DNA. Prokaryotic DNA
methylases evolved from ancient RNA-modifying enzymes and
are the provenance of eukaryotic DNA methylases. In eukaryotes,
multiple independent duplications, losses, and divergences
led to the emergence of distinct types of DNA methylases,
which are involved in a range of activities, including gene
and transposon silencing, imprinting, transcriptional activation,
and post-transcriptional regulation (Law and Jacobsen, 2010;
Blow et al., 2016; Lyko, 2018). In Arabidopsis, de novo
cytosine methylation is catalyzed by DOMAINS REARRANGED
METHYLTRANSFERASE2 (DRM2) and the DNA methylation
pattern is maintained by METHYLTRANSFERASE 1 (MET1)
and CHROMOMETHYLASE 3 (CMT3), as well as DRM2.
Interestingly, DNA methylation could create a basis for
morphological diversity by regulating DNA binding affinity of
transcription factors. For example, epigenetic mutation of the
Lcyc gene inhibits its expression and modifies the symmetry of the
flowers from bilateral to radial in Linaria vulgaris (Cubas et al.,
1999). DNA hyper-methylation in the promoter region of a SBP-
box transcription factor, COLORLESS NON-RIPENING (Cnr),
leads to colorless and abnormal ripening of fruits in tomato
without changes in nucleotide sequence (Manning et al., 2006).
DNA methylation in eukaryotes can also be guided by non-
coding RNAs. Small RNA-directed DNA methylation (RdDM)
pathways play a key role in maintenance of genome stability
and developmental regulation (Castel and Martienssen, 2013;
Matzke and Mosher, 2014). The canonical RdDM model suggests
that the target loci are transcribed by Pol IV and the primary
transcripts are converted to dsRNAs by RDR2. These dsRNAs are
processed into mature 24nt repeat-associated siRNA (ra-siRNA)
by DCL3, methylated by HEN1, and loaded into RISC-like RITS
(RNA-induced transcriptional silencing) complexes containing
AGO4 and Pol V, which scan the genomic DNA to drive DNA
methylation at target loci carrying complementary sequences
(Cao et al., 2003; Zilberman et al., 2003; Wierzbicki et al., 2008;
Law and Jacobsen, 2010).

The MORC ATPase family is an evolutionary conserved
protein family that is prevalent in both prokaryotes and
eukaryotes (Iyer et al., 2008). However, in eukaryotes, especially
in the plant kingdom it greatly expanded through gene
duplication (Dong et al., 2018). Using contextual information,
Iyer et al. (2008) suggested that MORC proteins may play a
substantial role in the bacterial RM system. MORC proteins
are required for meiotic division in animals and pathogen-
associated molecular pattern (PAMP)-triggered immunity in
plants (Watson et al., 1998; Kang et al., 2012; Liu et al., 2016;
Dong et al., 2018). The Arabidopsis genome contains seven
MORC genes (AtMORC1-7). It has been demonstrated that
MORC1, MORC2, and MORC6 are involved in gene silencing
and transposon suppression without changing genome-wide
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DNA methylation patterns (Moissiard et al., 2012, 2014;
Bordiya et al., 2016). However, MORC-mediated transcriptional
silencing depends, at least in part, on the interaction with the
RdDM components (Lorković et al., 2012; Brabbs et al., 2013;
Liu et al., 2016).

Histone Modifiers
Post-translational modification of histones also plays a key role
in the regulation of chromatin dynamics. Transcriptionally
active chromatins usually contain trimethylated histone
H3K4 and highly acetylated histone H3 and H4. In contrast,
transcriptionally silent chromatins are enriched in the
methylation of lysine 9 and/or 27 of histone H3 (Hebbes
and Thorne, 1988; Jenuwein and Allis, 2001; Fischle et al.,
2003). Histone methylation is catalyzed by three distinct
protein families; the SET domain-containing protein family,
the non-SET domain proteins Dot1/Dot1L, and the PRMT1
family. In contrast to histone acetyl/ deacetyltransferases and
based on early phylogenetic analysis, it was concluded that
the SET domain-containing methyltransferases evolved in the
eukaryotic lineage and the bacterial SET domain was the result
of horizontal gene transfer from a eukaryotic host (Stephens
et al., 1998; Iyer et al., 2003). However, a recent phylogenetic
study using an expanded collection of prokaryotic genomes
showed that the SET domain is found in free-living bacteria
as well as in pathogenic bacteria. Interestingly, these enzymes
are involved in the synthesis of secondary metabolites, such
as antibiotics in bacteria (Iyer et al., 2011; Alvarez-Venegas,
2014). Thus, the SET domain is also an ancient catalytic domain.
The SET-domain proteins are grouped into seven families (Ng
et al., 2007) and are members of different complexes with broad
functions. For example, polycomb group proteins (PcG) that
act as chromatin-based transcriptional repressors, generally
form two multimeric complexes, the polycomb repressive
complexes 1 (PRC1) and PRC2. The histone methyltransferase
Enhancer of Zeste [E(z)], which is the catalytic subunit of
PRC2, catalyzes the trimethylation of histone H3 lysine 27
(H3K27me3) via its SET domain (Goodrich et al., 1997; Cao
et al., 2002; Czermin et al., 2002). Arabidopsis consists of
three H3K27me3 HMTs, CURLY LEAF (CLF), SWINGER
(SWN), and MEDEA (MEA). The loss of function mutation
of CLF and SWN that act, at least in part, redundantly
leads to development of embryo- or callus-like structures
in Arabidopsis (Goodrich et al., 1997; Grossniklaus et al.,
1998; Chanvivattana et al., 2004). The prior positioning of
H3K27me3 by the PRC2 complex is normally required for the
recruitment of PRC1 and subsequent monoubiquitylation of
histone H2A on lysine 119 (H2AK119ub1). However, PRC2
recruitment through PRC1-dependent H2A119ub1 has also
been reported (Landeira et al., 2010; Blackledge et al., 2014).
In contrast to PcG, the TRithoraX Group (trxG) proteins
activate transcription by catalyzing methylation of histone
H3 on lysine 4 (H3K4) via their SET domain. PcG and trxG
proteins are essential in establishment and maintenance of
cell identity and organ development in higher eukaryotes
through permanent/dynamic transcriptional regulation of
developmentally important genes (Alvarez-Venegas, 2010;

Schuettengruber et al., 2017). Thus, they play a substantial
role in morphological complexity. Phylogenetic analysis of
the SET-domain proteins suggests that four families of the
SET-domain proteins were present before the divergence of
plants, metazoans, and fungi and later highly expanded and
diverged in each kingdom mostly due to large-scale duplication
(Zhang and Ma, 2012).

Histone demethylases are classified into two distinct
families, the KDM1/LSD1 and JmjC domain-containing
proteins. The catalytic domain of KDM1 genes is the AOD
domain. The AOD domain is found in prokaryotes suggesting
that prokaryotes are the provenance of eukaryotic KMD1-
type HDMs. The eubacterial Cupin genes are likely the
ancestor of all JmjC domain-containing proteins. Whole-
genome duplication was likely the major driving force for
the expansion and diversification of JmjC domain-containing
proteins in complex multicellular eukaryotes (Qian et al.,
2015). In contrast to eubacterial proteins that contain
only the JmjC domain, most of the eukaryotic proteins
contain complex architectural domains (Zhou and Ma, 2008;
Qian et al., 2015).

Histone acetyltransferases and deacetylases both contain
ancient catalytic domains, and members of the GCN5-
related N-acetyltransferase (GNAT) superfamily and the histone
deacetylase superfamily are found in all kingdoms of life.
However, these enzymes were greatly expanded and diversified in
multicellular eukaryotes (Leipe and Landsman, 1997; Gregoretti
et al., 2004; Boycheva et al., 2014; Marinov and Lynch, 2016).
HATs are grouped into two classes according to their intracellular
localization, i.e., into A-type and B-type. B-type HATs are
localized in the cytoplasm and catalyze acetylation of free
histones. However, A-type HATs are localized in the nucleus
and catalyze acetylation of the nucleosome core histones. In
Arabidopsis, A-type HATs are classified into four groups based
on their sequence and structural similarities (Eberharter et al.,
1996; Pandey et al., 2002): (1) Gcn5-related N-acetyltransferases
(GNATs), (2) The MYST-related HATs, (3) cAMP-responsive
element-binding protein (CBP), and (4) TATA-binding protein
associated factor (TAFII250). The HDACs are also classified into
four groups: (1) Reduced Potassium Dependency 3 (RDP3),
(2) Histone DeAcetylase 1 (HDA1), (3) Silent Information
Regulator 2 (SIR2), and (4) Histone Deacetylase 2 (HD2)
(Shen et al., 2015).

Chromatin Remodelers
Transcription-relevant chromatin remodeling ATPases are
classified into four distinct families (SWI/SNF, ISWI/SNF2L,
CHD/Mi-2, and INO80/SWR1) that are functionally and
genetically non-redundant based on their structure. The
catalytic/ATPase domain of remodelers consists of two
covalently linked RecA-like lobes. Chromatin remodeling
complexes hydrolyze ATP and convert the chemical energy
resulting from hydrolysis into mechanical motion, including
sliding of the nucleosomes along the DNA, disassembling
the nucleosome and exchanging histone variants (Flaus
et al., 2006; Bannister and Kouzarides, 2011; Zhou et al.,
2016). Phylogenetic studies have suggested that eukaryotic
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chromatin remodeling ATPases have likely evolved from the
ancestral Snf2-like proteins in bacteria after the innovation
of chromatin-binding domains in early eukaryotes (Flaus
et al., 2006; Koster et al., 2015). The Arabidopsis orthologs
of yeast SWI2/SNF2 are BRM, SYD, CHR12/MINU1, and
CHR23/MINU2. Structurally, BRM is the closest ortholog
to yeast SWI2/SNF2. It contains a helicase/SANT-associated
(HAS) domain upstream of ATPase that is a binding platform
for nuclear actin-related proteins (Szerlong et al., 2008) and
a C-terminal bromodomain, which is capable of binding to
acetylated lysine (Dhalluin et al., 1999; Jacobson et al., 2000).
In A. thaliana, SWI2/SNF2 proteins assemble into different
large complexes and control various activities such as plant
growth and development (Sarnowska et al., 2016). The ISWI
complexes were initially isolated from D. melanogaster. In
A. thaliana, CHROMATIN REMODELING11 (CHR11) and
CHR17 are orthologs of ISWI in D. melanogaster. They
contain an ATPase domain at their N-terminus and HAND,
SANT, and SLIDE domains at their C- terminus. AtISWI
proteins, which are functionally redundant, form different
complexes with the AtDDT (DNA-binding homeobox and
different transcription factors)-domain proteins and control
multiple developmental processes (Li et al., 2014). Proteins
from the CHD/Mi-2 family contain two tandemly arranged
chromodomains at the N-terminus that are able to interact
with methylated histones and/or DNA. The CHD/Mi-2 family
evolved soon after the onset of the eukaryotic lineage and further
expanded in higher eukaryotes (Hargreaves and Crabtree, 2011;
Gentry and Hennig, 2014; Koster et al., 2015). Saccharomyces
cerevisiae, A. thaliana, and humans consist of one, four, and nine
CHD genes, respectively (Koster et al., 2015). CHD remodelers
positively or negatively control transcription and are also
involved in mRNA processing (Murawska and Brehm, 2011;
Hu et al., 2014). The chromatin-remodeling complexes of the
INO80 group are INO80 and SWR1 in yeast. A single INO80
and SWR1/PIE1 (PHOTOPERIOD INDEPENDENT EARLY
FLOWERING 1) are present in Arabidopsis. The INO80/SWR1
complexes similarly, to other chromatin-remodeling complexes
work as transcriptional regulators. In addition, they are
implicated in the DNA-repair system and are required for DNA
recombination (Noh and Amasino, 2003; Fritsch et al., 2004;
Gerhold and Gasser, 2014).

SYMBIOSIS AND MULTICELLULARITY

It is well documented that mitochondria and chloroplasts of
eukaryotic cells, which are descended from α-proteobacteria-
like and cyanobacteria-like prokaryotes, respectively, arose
through endosymbiosis (Weeden, 1981; Gray et al., 1999).
Thus, endosymbiosis played a crucial role in the evolution
of cellular complexity. Multicellular organisms harbor a vast
diversity of microbes, comprising fungi, bacteria, protists, and
viruses, collectively called microbiota (Almario et al., 2017; Durán
et al., 2018). Molecular clock estimates of fungal phylogeny
suggest that Ascomycota, Basidiomycota, and Glomales, which

are major taxonomic groups of terrestrial fungi, were present
around 600 myr ago (Redecker et al., 2000) and fossilized spores
and fungal hyphae that are very similar to extant arbuscular
mycorrhizal fungi (AMF) with the age of 460–480 myr support
molecular estimates (Selosse and Le Tacon, 1998; Redecker
et al., 2000; Heckman et al., 2001). Considering that early land
plants colonized poorly developed soils and did not have true
roots, the establishment of AMF symbiosis supplying nutrients,
water, and enhancing tolerance to biotic and abiotic stresses was
a key event in the terrestrialization process (Redecker et al.,
2000; Heckman et al., 2001; Rausch et al., 2001; Kenrick and
Strullu-Derrien, 2014; Almario et al., 2017; Xue et al., 2018). In
addition to fungi, bacterial micribiota are a substantial part of
diverse assemblages of symbiotic microorganisms and are critical
for plant survival (Durán et al., 2018). Surprisingly, bacterial
symbiosis is required for cell division and morphogenesis in
Ulva mutabilis, which is a green macroalgae and an important
primary producer in coastal ecosystems (Wichard, 2015). Taken
together, these lines of evidences suggest that symbiosis played
an important role in the transition from water to land and
the evolution of multicellularity. Organism-associated microbes
had a great impact on phenotypic extension and host evolution.
In evolutionary studies, considering the host and its associated
microbiota as a biological entity, the holobiont could be key for a
better understanding of the evolution of multicellular organisms
(Shropshire and Bordenstein, 2016; Almario et al., 2017; Hassani
et al., 2018; Haag, 2018).

CONCLUSION

In early eukaryotes, due to an increase of genome size, high
density packaging of the DNA molecules into the confined
space of the nucleus and simultaneous evolution of novel factors
controlling the accessibility of DNA was a necessity to ensure
all DNA-based processes, including transcriptional regulation.
Increased genome size together with higher available energy
per gene likely led to the evolution of chromatin structure
and chromatin-modifying factors in early eukaryotes (Flaus
et al., 2006; Lane and Martin, 2010; Koster et al., 2015;
Garg and Martin, 2016; Martin and Sousa, 2016). Although,
the origins of catalytic subunits of chromatin remodelers and
modifiers can be traced back in prokaryotes, these catalytic
subunits and their interacting partners continuously expanded
and highly diversified and were finally coopted, while prokaryotes
lack chromatin-remodeling and –modifying complexes. The
innovation of these complexes was a key prerequisite step in the
evolutionary trajectory of complex multicellular eukaryotes. Both
symbiotic microbiota and epigenetics are critical for adaptation
to environmental conditions, plant survival, and their evolution.
However, our knowledge concerning how diversification and
expansion of chromatin-related factors and recruitment of
symbiotic microbiota led to the complexity of living organisms
is low. In addition, the functional links between symbiotic
microbiota and epigenetics is largely unknown. In future work,
a combination of approaches in ecophysiology, plant-microbe
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interaction, phylogenomics, molecular biology, systems biology,
cell biology, and biochemistry studies on a wide range of
unicellular and multicelluar organisms will shed more light on
the interrelationship of chromatin-related factors and microbiota
community structure and their contribution to the evolution of
complex multicellular organisms and the holobiont.
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