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Papaya is a climacteric fleshy fruit characterized by fast ripening after harvest. During the 
relatively short postharvest period, papaya fruit undergoes several changes in metabolism 
that result in pulp softening and sweetening, as well as the development of a characteristic 
aroma. Since papaya is one of the most cultivated and appreciated tropical fruit crops 
worldwide, extensive research has been conducted to not only understand the formation 
of the quality and nutritional attributes of ripe fruit but also to develop methods for 
controlling the ripening process. However, most strategies to postpone papaya ripening, 
and therefore to increase shelf life, have failed to maintain fruit quality. Ethylene blockage 
precludes carotenoid biosynthesis, while cold storage can induce chilling injury and 
negatively affect the volatile profile of papaya. As a climacteric fruit, the fast ripening of 
papaya is triggered by ethylene biosynthesis. The generation of the climacteric ethylene 
positive feedback loop is elicited by the expression of a specific transcription factor that 
leads to an up-regulation of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) 
and ACC-oxidase (ACO) expression, triggering the system II ethylene biosynthesis. The 
ethylene burst occurs about 3 to 4 days after harvest and induces pectinase expression. 
The disassembling of the papaya cell wall appears to help in fruit sweetness, while glucose 
and fructose are also produced by acidic invertases. The increase in ethylene production 
also results in carotenoid accumulation due to the induction of cyclases and hydroxylases, 
leading to yellow and red/orange-colored pulp phenotypes. Moreover, the production of 
volatile terpene linalool, an important biological marker for papaya’s sensorial quality, is 
also induced by ethylene. All these mentioned processes are related to papaya’s sensorial 
and nutritional quality. We describe the understanding of ethylene-triggered events that 
influence papaya quality and nutritional traits, as these characteristics are a consequence 
of an accelerated metabolism during fruit ripening.
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INTRODUCTION

Papaya (Carica papaya L.) is a typical climacteric fleshy fruit 
that is appreciated worldwide because of the sweetness and 
characteristic flavor of its soft yellow or orange/red pulp 
(Fabi et  al., 2007, 2010b). Tropical countries from Asia are 
the main producers of papaya, accounting for 56% of worldwide 
production. However, countries from South America (16%), 
Africa (10%), and Central America (9%) are also important 
producers of papaya (Food and Agriculture Organization of 
the United Nations (FAOSTAT), 2017). As papayas have a 
relatively short shelf life compared to other fruits, maintaining 
fruit quality during transport from producing countries to 
consumer centers (e.g., USA and Europe) is a challenge. In 
2016, the main countries that produced papayas for exportation 
were Mexico (47%), Guatemala (14%), and Brazil (11%, Food 
and Agriculture Organization of the United Nations 
(FAOSTAT), 2017), with Mexico being the main supplier to 
the United States and Brazil the main supplier to Europe 
(Evans and Ballen, 2012).

European recommendations for papaya exporting countries 
take into account fruit softening as a determinant factor in 
fruit shelf life (CBI Ministry of Foreign Affairs, 2018), since 
the fast softening during papaya ripening facilitates physical 
injury during handling and transportation. Thus, as the 
susceptibility of papayas to disease increases proportionally 
with softening (Manrique and Lajolo, 2004), the recommendation 
for exportation is to maintain the fruit at 10°C during shipping 
to prevent overripening due to heat (CBI Ministry of Foreign 
Affairs, 2018). However, as will be  discussed later, low 
temperatures negatively impact some fruit quality attributes of 
ripe papayas.

The ripening of fleshy fruits is a physiological process that 
alters appearance, texture, flavor, and aroma. These changes 
function to attract seed-dispersing organisms (Giovannoni, 
2004). In climacteric fruit, such as tomatoes, bananas, and 
papayas, the onset of ripening coincides with an increase in 
respiration and ethylene production, the latter being essential 
to induce molecular mechanisms responsible for accelerating 
senescence and for the physiological changes that occur during 
ripening (Abeles et al., 1992; Gapper et al., 2013). The ripening 
process in climacteric fruits induces changes in both sensorial 
and nutritional qualities that are essential for consumer 
acceptability. Some climacteric fruits are harvested unripe and 
treated with exogenous ethylene or ethylene-derived molecules 
to precipitate ripening. Thus, ethylene appears to be  the main 
hormone responsible for regulating the molecular pathways 
that influence the development of the sensorial and nutritional 
attributes of climacteric fruits (Lü et  al., 2018). It has long 
been known that the safe and effective control of ethylene-
mediated responses could extend the postharvest shelf life of 
climacteric fruits (Wills et al., 1981). However, interfering with 
natural ethylene-mediated responses during ripening could also 
negatively impact fruit quality.

While the mechanism by which ethylene is involved in 
fruit ripening has been thoroughly studied, efforts are still 
needed to fully understand this process. The ethylene burst 

in climacteric fruit is controlled by an autocatalytic mechanism, 
named system II, that synthesizes ethylene (McMurchie et  al., 
1972; McManus, 2012). Ethylene synthesis involves the conversion 
of S-adenosyl methionine (SAM) to 1-aminocyclopropane-
1-carboxylic acid (ACC) by the action of 1-amino cyclopropane-
1-carboxylic acid synthase (ACS), in which ACC is converted 
to ethylene by ACC oxidase (ACO) (Yang and Hoffman, 1984). 
ACS and ACO enzymes have already been identified in papayas, 
and their responses are increased with ethylene production 
and reduced when ethylene is blocked (Razali et  al., 2013). 
A decrease in ACS and ACO occurs in papayas stored at low 
temperatures, but levels are restored after exogenous ethylene 
treatment (Zou et al., 2014). The ethylene downstream cascade 
involves multiple transcription factors, including ethylene 
response factors (ERFs), that are involved in the control of 
plant growth, defense, responses to the environment, and plant 
hormones (Xie et  al., 2016), including those involved in the 
papaya ripening process (Li et  al., 2013). Transcription factors 
of the MADS-box, NAC, and AP2/ERF gene families are also 
involved in the control of papaya ripening (Fabi et  al., 2012). 
More recently, a NAC transcription factor, rather than MADS 
transcription factors, was found to regulate ACS and ACO 
expression during papaya ripening (Lü et  al., 2018). Papaya 
has not undergone whole-genome duplication, unlike other 
climacteric fruits where this process has been utilized to duplicate 
the MADS transcription factors that form the ripening circuits 
(Périn et  al., 2002; Lee et  al., 2013). NAC is one of the largest 
plant-specific transcription factor families, with members involved 
in many developmental processes such as senescence, stress, 
cell wall formation, and embryo development (Lü et  al., 2018). 
Lü et al. (2018) have suggested that instead of neofunctionalization 
of the duplicated MADS genes, plants without whole-genome 
duplication may have repurposed their carpel senescence NAC 
to generate a positive feedback loop where ethylene regulates 
ripening, as is the case with papayas. They also suggested that 
ethylene generated by this feedback loop is autocatalytic. A 
NAC transcription factor expressed in climacteric fruits, such 
as papayas and peaches, binds to the promoter regions of 
some of the key ripening-related genes stimulating their 
expression in pigment accumulation, volatile secondary 
metabolite production, cell wall softening, and sugar accumulation 
(Lü et  al., 2018).

Therefore, the ethylene-mediated effects in fruit metabolism 
that influence the softening, sweetness, flavor, and color of 
papaya pulp during ripening will be  further discussed.

PULP SOFTENING IS THE MAIN 
BIOCHEMICAL MODIFICATION THAT 
OCCURS DURING PAPAYA RIPENING

In climacteric fleshy fruits, researches and producers give special 
attention to ethylene-induced textural changes during ripening, 
as changes in peel and pulp not only influence softening, 
crispness, and juiciness (Chaïb et  al., 2007) but also increase 
postharvest losses (Manrique and Lajolo, 2004). In fact, textural 
changes in most of the fleshy fruits result from complex 
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mechanisms that primarily influence plant cell wall architecture, 
whose breakdown is considered as the major factor responsible 
for the pulp-softening process (Brummell, 2006).

The cell wall architecture of fleshy fruits is comprised of 
complex polysaccharides, such as pectin, hemicellulose, and 
cellulose, as well as minor components including proteins and 
phenolic compounds (Carpita and Gibeaut, 1993). Cellulose is 
comprised of long, rigid, and inextensible microfibrils of 1,4-β-d-
glucose (Glc) residues, which are bound tightly together by 
hydrogen bonds (Brummell, 2006). Hemicelluloses represent a 
diverse range of structural polymers that constitute the plant 
cell wall within fruit pulp (Scheller and Ulvskov, 2010). In 
dicotyledonous plants, such as papayas, xyloglucan (XYL) is 
the major hemicellulose (Tucker et al., 2017). As with cellulose, 
XYL consists of a backbone of 1,4-β-d-Glc residues such as 
cellulose, but smaller and substituted with 1-6-α-d-xylose (Xyl) 
side chains. Furthermore, these Xyl side chains can be substituted 
at the O-2 position with β-galactose (Gal) or α-arabionse (Ara; 
Scheller and Ulvskov, 2010). Pectin is a complex and heterogeneous 
polysaccharide that is mainly comprised of α-1,4-d-galacturonic 
acid (GalA) residues that have varying degrees of acetyl and 
methyl esterification, and these residues are called 
homogalacturonan (HG). Xylosylation may further modify HG 
into xylogalacturonans (XGs). Pectin also contains structures 
made up of repeating units of intercalated GalA (1,4-α-d-GalpA) 
and rhamnose (1,2-α-l-Rhap) called rhamnogalacturonan 
type I  (RG-I). These structures have side groups of arabinose 
(arabinan), galactose (galactan), and type I  arabinogalactan at 
the O-4 position of the Rha residues (Mohnen, 2008; Maxwell 
et  al., 2012). Rhamnogalacturonan type II (RG-II) structures 
are less common in papayas and are composed of HG molecules 
with side groups of up to 13 different sugars and more than 
20 types of glycosidic linkages (Mohnen, 2008; Bar-Peled et  al., 
2012). The firmness of fleshy fruits results from turgor pressure 
maintenance by the cell wall while also maintaining cellular 
adhesion (Wang et  al., 2018). Pulp softening occurs by the 
water dissolution of the majority of these polysaccharides from 
the primary cell wall and middle lamella, with pectin being 
the main one (Brummell and Harpster, 2001).

Structural changes that occur in the cell wall during ripening 
are regulated by hydrolases responsible for degrading cell wall 
polysaccharides (Gapper et  al., 2013; Balic et  al., 2014), whose 
expression is generally regulated by ethylene production (Tucker 
et  al., 2017). Fruit softening is a complex event that involves 
several enzymes including pectinases and hemicellulases; however, 
pectinases, such as polygalacturonases (PGs), pectate lyases 
(PLs), and pectin methyl esterases (PMEs) appear to be  the 
major enzymes that act on fleshy fruit softening. 
Polygalacturonases remove the galacturosyl residues from pectin 
(Atkinson et  al., 1998), PLs cleave de-esterified pectin (Marín-
Rodríguez et  al., 2002), and PMEs hydrolyze methyl-groups 
of esterified polyuronides (Wakabayashi et al., 2003). Furthermore, 
side chains of pectin can be  degraded by other glycosidases, 
such as β-galactosidases, which remove the galactosyl  
residues from pectin and from XYL (Smith et  al., 2014); 
α-arabinofuranosidases, which remove arabinosyl from pectin 
(Sozzi et al., 2002; Itai et al., 2003); and rhamnogalacturonases, 

which remove α-1,2 linkages between galacturonosyl and 
rhamnosyl residues (Wong, 2008).

Despite multiple glycoside hydrolases seeming to 
be  responsible for papaya softening, the main enzymes that 
play a central role in pulp softening are the PGs (Fabi et  al., 
2014). Some contribution of hemicellulose degradation to 
pulp softening appears to occur as an increase in endoxylanase 
expression occurs during papaya ripening (Huerta-Ocampo 
et  al., 2012). Furthermore, β-galactanases are also related to 
papaya pulp softening through the hydrolysis of both the 
pectic and the hemicellulosic fractions (Lazan et  al., 2004; 
Fabi et  al., 2014). In order to understand the role of ethylene 
in the expression of cell wall-degrading enzymes, researchers 
have treated papayas with 1-methylcyclopropene (1-MCP), 
an ethylene antagonist. As expected, this had a strong effect 
on pulp softening (Fabi et  al., 2007). The pulp firmness of 
1-MCP-treated papayas decreased marginally during ripening, 
although not enough to reach an edible state, and there was 
no detectable PG activity. Notably, 1-MCP-treated papayas 
were unable to soften at the same rate as untreated papayas 
(Fabi et  al., 2007, 2009; Sañudo-Barajas et  al., 2009).  
Treatment with 1-MCP also reduced endoxylanase protein 
levels (Huerta-Ocampo et  al., 2012).

To confirm that ethylene affects PG activity and, therefore, 
pulp softening during papaya ripening, Fabi et al. (2009) found 
that treatment with exogenous ethylene had induced PG 
expression with a concomitant increase in pulp softening. 
Furthermore, agroinfiltration of PG1 in 1-MCP-treated papayas 
significantly enhanced pulp softening compared with 
1-MCP-treated papayas that were agroinfiltrated with an empty 
vector (Fabi et  al., 2014).

Papaya cell wall structural changes during ripening involve 
pectin with the solubilization of long chains of galacturonans 
and a decrease in the molecular weight of polysaccharides (Lazan 
et  al., 1995; Manrique and Lajolo, 2004; Shiga et  al., 2009). 
Polygalacturonases act on papaya pulp softening by mobilizing 
high-molecular weight pectin from less soluble to more soluble 
cell wall fractions, especially pectin that is tightly bound to 
cellulose/hemicellulose, and pectins that are bound to each other 
by calcium bridges (do Prado et  al., 2016). Furthermore, the 
degree of methyl esterification in papaya pectin changes during 
ripening since unripe papaya pectin has a lower degree of methyl 
esterification compared to ripe papaya pectin (Manrique and 
Lajolo, 2002, 2004; do Prado et  al., 2017; Prado et al., 2019). 
This variation during papaya ripening was first associated to 
higher PME activity (Manrique and Lajolo, 2004). However, no 
increase in gene expression of PME appears to occur during 
papaya ripening (Fabi et  al., 2010a, 2012, 2014; do Prado et  al., 
2016), and the activity of PG does not require the simultaneous 
removal of methyl-esterified groups from pectin (Fabi et  al., 
2014). Therefore, recent studies support the hypothesis that the 
increase in the degree of methyl esterification during papaya 
ripening is a result of the enrichment of the water-soluble pectin 
fraction that comes from the insoluble fraction due to the massive 
action of PG rather than an association with increased PME 
activity (Figure 1; Fabi et al., 2014; do Prado et al., 2016, 2017). 
The resulted high-methylated low-molecular pectin found in 
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ripe  papayas showed anticancer effects in diverse in vitro tests 
(do  Prado  et  al., 2017; Prado et al., 2019).

Although the use of MCP-1 is useful in gaining further 
insight into the role of ethylene in papaya softening, cold 
storage is another way to decrease ethylene action after harvesting. 
This latter approach is useful as a postharvest technique as it 
decreases fruit ripening rates and, therefore, pulp softening 
(Gomes et  al., 2016). The storage of “Golden” papaya at 10°C 
for 10 days had been found to be effective in reducing ethylene 
production and fruit ripening. Notably, after a 10-day cold 
storage, fruits can be  stored at room temperature to restore 
ethylene production and pulp softening (Gomes et  al., 2016). 
However, when cold storage occurs for a longer period (e.g., 
20  days at 11°C), ethylene production did not recover when 
the fruit was subsequently stored at ambient temperatures (Bron 
and Jacomino, 2009). It seems that the prolonged inhibition 
of ethylene, either by the inhibition of receptor sites (1-MCP) 
or by prolonged storage at low temperatures, strongly affects 
the recovery of the ethylene-mediated response, which negatively 
influences the pulp softening that is crucial to the quality of 
the ripe fruit.

PULP SWEETNESS AS A RESULT OF 
PAPAYA PRIMARY METABOLISM

The qualitative and quantitative composition of primary 
soluble sugars is crucial to papaya sweetness, although fruit 
firmness also plays a role as there is a correlation between 
pulp softening and the perception of sweetness during 
consumption (Gomez et  al., 2002). Thus, it is necessary to 
understand the key regulatory enzymes involved in the 
metabolism of soluble sugars, as well as the endogenous 
and exogenous factors that influence these biochemical 
pathways, so as to improve both preharvest management 
and postharvest handling to increase the final sensorial quality 

of ripe papayas. In papayas, the increment in soluble sugars 
occurs mainly during fruit growth while still attached to 
the plant (Zhou and Paull, 2001).

In most fleshy fruits, there are three main enzymes that 
have a key regulatory role in the accumulation of soluble 
sugars: sucrose phosphate synthase (SPS), sucrose synthase 
(SS), and acid invertase (AI; Zhou and Paull, 2001). In 
papayas, sugar accumulation begins after seed maturation 
and is accompanied by increased activity of SS during fruit 
development. Acid invertase also appears to increase 
throughout papaya development (Zhou and Paull, 2001), 
and its expression is reduced in harvested unripe papayas. 
Another increase in AI expression has also been observed 
after the onset of ethylene production during ripening (Gomez 
et  al., 1999). Sucrose phosphate synthase activity remains 
low throughout papaya development however (Zhou and 
Paull, 2001). After harvesting, SPS activity follows the tendency 
of sucrose formation, since the ratio between SPS activity 
and sucrose content is constant throughout the papaya 
ripening process (Gomez et  al., 2002). SPS is a highly 
conserved glycosyltransferase in dicots that catalyzes the 
transfer of glucose from uridine diphosphate glucose (UDP-
Glc) to D-fructose-6-phosphate, thereby forming D-sucrose-
6-phosphate (Castleden et  al., 2004). As SPS also catalyzes 
the reversible reaction, it is considered as a key control 
point of sucrose biosynthesis in both monocots and dicots 
(Huber and Huber, 1996). Sucrose synthase is also a 
glycosyltransferase, but it catalyzes the reversible formation 
of UDP-Glc and d-fructose from UDP and d-sucrose (Zheng 
et  al., 2011). Although SS could act in Glc linked to other 
nucleotide diphosphate sugars than UDP, such as adenosine 
diphosphate glucose (ADP-Glc), UDP is the preferred substrate 
in plants (Kleczkowski et  al., 2004). Finally, AI can control 
the balance between sucrose, glucose, and fructose in fleshy 
climacteric fruits by an irreversible reaction that cleaves 
sucrose (Moriguchi et  al., 1992).

FIGURE 1 | Ethylene production and PG activity during papaya ripening: papaya pectin cell wall solubilization. Ethylene triggers PGs that massively solubilize  
high-molecular weight pectin by action in the non-methylated areas and releasing the low-molecular weight fractions that will be enriched in methylated fractions 
due to the lower activity of PME in ripe papayas. PG, polygalacturonase.
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Climacteric fruits, such as bananas, commonly increase 
soluble sugars content after harvesting through starch 
degradation, which directly correlates with pulp sweetening 
(Shiga et al., 2011; Aquino et al., 2016). Since unripe papayas 
have low starch content (less than 3% by fresh weight; Oboh 
et al., 2015), most of the soluble sugars in papayas accumulate 
during fruit development. However, there is also an increase 
in sucrose, glucose, and fructose, as well as a pattern of 
expression and activity of both AI and SPS during ripening 
(Gomez et  al., 1999, 2002). These results suggest a possible 
role for ethylene-mediated effects on soluble sugar 
accumulation in ripe papayas. This hypothesis was confirmed 
by a previous study of our group (Fabi et  al., 2007), which 
demonstrated that 1-MCP-treated papayas have a distinct 
pattern of sucrose synthesis during ripening compared to 
untreated papayas. More recently, Shen et  al. (2017) showed 
that other genes related to soluble sugar metabolism, including 
UDP-galactose transporter 3 (UTR3), sugar transporter (STP), 
and β-fructofuranosidase (BFF), were induced during the 
ripening of ethylene-treated papaya and reduced in 
1-MCP-treated papaya. However, despite ethylene appearing 
to be important in enhancing UTR3, STP, and BFF expression, 
it is unknown whether ethylene-induced changes in the 
expression pattern of these enzymes affect soluble sugar 
metabolism during ripening and, therefore, the sensorial 
quality of papaya.

During papaya ripening, the sucrose content appears to 
reduce after the onset of ethylene production, which is in 
agreement with the increase in AI expression (Gomez et  al., 
2002; Nogueira et al., 2012). In contrast, 1-MCP-treated papayas 
have been found to have a 10-fold higher level of sucrose 
compared to untreated ripe fruit (Fabi et  al., 2007). Thus, as 
AI activity appears to be  strongly regulated by ethylene during 
papaya ripening (Figure 2), exogenous treatments or conditions 
that affect ethylene production may affect the ratios between 
sucrose, glucose, and fructose, thereby influencing pulp sweetness.

The use of gamma irradiation in fleshly fruits such as guavas 
(Zhao et  al., 2017) and tomatoes (Guerreiro et  al., 2016) could 
represent an effective method for fruit decontamination, thus 
reducing postharvest losses (Farkas and Mohácsi-Farkas, 2011). 
Depending on the intensity of the applied gamma irradiation, 
the sensorial quality of fruits could be  negatively affected 
because of irradiation-induced changes in fruit metabolism. 
In papaya, the application of standard irradiation intensities 
between 0.5 and 1.0  kGy in unripe fruit did not appear to 
negatively influence fruit ripening (Paull, 1992). However, 
analysis of fruit metabolism revealed that these gamma irradiation 
intensities could reduce soluble sugars content in ripe papayas. 
This reduction appears to be related to a decrease in AI activity, 
and these changes are associated with reduced ethylene 
production throughout the ripening of the irradiated fruit 
(Gomez et  al., 1999).

In addition to gamma irradiation, ozone application has been 
proposed as a method for fruit decontamination. Furthermore, 
ozone treatment is used to extend shelf life by reducing oxygen 
concentrations during fruit storage and shipping, thereby delaying 
the ripening of climacteric fruits (Chrysargyris and Tzortzakis, 
2017). Thus, as ozone influences fruit respiration and therefore 
the onset of ethylene production in climacteric fruits, it is 
expected that this postharvest treatment will also affect soluble 
sugar metabolism during papaya ripening. Although a previous 
study did not report significant differences between the total 
soluble solid content of ozone-treated and untreated papayas 
(Bataller et  al., 2012), the soluble sugars ratio between sucrose 
and glucose/fructose in ripe fruits could be  altered. Recently, 
the treatment of unripe papaya with plant extracts, such as 
Neem (Azadirachta indica Juss), has been proposed as an 
alternative for maintaining food quality for a longer postharvest 
period (Freitas et  al., 2018). However, as with ozone treatment, 
the observation of fruit quality maintenance for a longer period 
was not accompanied by an evaluation of soluble sugar metabolism. 
Therefore, further studies are needed to confirm the effects of 

FIGURE 2 | Ethylene production and invertase activity during papaya ripening: papaya sucrose breakdown. Invertase activity is regulated by ethylene burst since 
sucrose is higher in unripe papayas or in papayas in which ethylene perception is blocked, with a subsequent increase in fructose and glucose after ripening/ethylene 
production. AI, acid invertase.
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ozone as well as other postharvest treatments that may affect 
ethylene production, since there is a clear role of ethylene on 
enzymes that orchestrate the metabolism of soluble sugars during 
papaya ripening.

CLIMACTERIC ALTERATION OF  
PAPAYA FLAVOR

Papayas have a characteristic sweet flavor that has been studied 
for more than half a century (Katague and Kirch, 1965; Flath 
and Forrey, 1977). The volatile profile of papaya consists of 
a mixture of compounds including esters, terpenes, alcohols, 
and ketones (Pino et  al., 2003; Fuggate et  al., 2010; Pino, 
2014; Jing et  al., 2015; Kelebek et  al., 2015). Although there 
is great heterogeneity among the volatile profiles of distinct 
papaya varieties (Ulrich and Wijawa, 2010; Jing et  al., 2015; 
Kelebek et  al., 2015), some compounds appear to 
be characteristic of the papaya aroma. In this context, linalool 
and their oxidative derivatives are generally regarded as the 
main volatile compounds in most of the distinct cultivars 
of papaya (Devitt et  al., 2006; Gomes et  al., 2016; Lieb et  al., 
2018) along with low-molecular weight esters, including ethyl 
butanoate and methyl butanoate (Almora et al., 2004; Balbontín 
et  al., 2007; Pino, 2014). Considering that the increase in 
volatile esters is significantly higher in harvested papayas 
compared to fruit that is still attached to the plant (Fuggate 
et  al., 2010), and considering the magnitude of difference 
between the volatile profiles of unripe and ripe papayas 
(Fuggate et  al., 2010; Gomes et  al., 2016), it appears that 
ethylene plays an important role in the development of flavor 
during papaya ripening.

Balbontín et  al. (2007) suggested that most of the volatile 
esters synthesized during papaya ripening are derived from 
primary and secondary metabolism compounds, such as fatty 
acids and amino acid. The release of these compounds is 
stimulated by ethylene treatment (Defilippi et  al., 2005; Li 
et  al., 2016). Ethyl acetate, ethyl octanoate, and methyl 
hexanoate were also found to not be induced in 1-MCP-treated 
papayas, whereas ethylene-induced papayas increased the 
amounts of these volatile esters throughout ripening (Balbontín 
et  al., 2007). Interestingly, volatile esters with a higher 
molecular weight, including butyl hexanoate and octyl acetate, 
reached higher values in 1-MCP-treated papayas compared 
to both untreated and ethylene-treated papayas. These results 
suggests that only the synthesis of the main esters related 
to aroma quality in ripe papaya—which are those  
volatile compounds with lower molecular weight produced 
from C1 and C2 alcohols and C6 and C8 acyl-coenzyme  
A—were enhanced during the onset of ethylene production 
(Balbontín et  al., 2007).

The volatile profile of ripe papayas also consists of branched-
chain volatiles (Rocha et  al., 2017; Lieb et  al., 2018) derived 
mainly from the amino acid precursors isoleucine and valine, 
which are responsible for the formation of ethyl-2-methyl and 
butyl-2-methyl esters. The synthesis of these branched-chain 
volatiles also appears to be  regulated by ethylene, as 

1-MCP-treated papayas have reduced ethyl-2-methyl butanoate 
levels (Balbontín et  al., 2007).

The abovementioned results regarding the synthesis of volatile 
compounds during ripening provide insights into the development 
of aroma in ripe papayas. However, little is known about 
the relationships among the metabolism of these volatile 
compounds and the sensorial quality of the ripe fruit. In 
this context, a recent study applied a gas chromatography-
olfactometry (GC-O)-assisted approach to optimize the 
extraction and detection of the main volatile compounds 
responsible for the aroma of ripe papayas (Rocha et al., 2017). 
In GC-O, a panel of human assessors describes the aroma of 
each of the volatile compounds from a sample that has been 
previously separated through gas chromatography, allowing the 
identification of the main peaks responsible for the overall aroma 
of the sample (Brattoli et  al., 2011). In summary, GC-O refers 
to the use of human assessors as sensitive and selective detectors 
of odor-active compounds (Delahunty et  al., 2006), and it is a 
useful tool to assess the contribution of each volatile compound 
to a fruit’s aroma. Studies have successfully applied GC-O-assisted 
approaches or aroma dilution analysis to assess the volatile profile 
of papayas (Jirovetz et  al., 2003; Pino, 2014; Rocha et  al., 2017). 
Jirovetz et  al. (2003) and Pino (2014) found linalool as the 
major compound in papaya flavor. However, the major compounds 
considered as odor-active and contributors to the typical papaya 
aroma found in other studies were δ-octalactone (sweet and 
herbal), benzyl isothiocyanate (papaya), methyl butanoate (fruity), 
and ethyl butanoate (fruity; Pino, 2014; Rocha et  al., 2017).

Gomes et  al. (2016) explored the volatile profile of papayas 
in response to cold storage, which clearly affects ethylene 
production (Bron and Jacomino, 2009). The authors explored 
if the cold storage of papayas at temperatures in which the 
fruit is resistant to cold injury influenced the volatile profile 
in ripe papayas. The authors found that when papayas were 
left at 10°C for 10  days and then subsequently at ambient 
temperature to complete the ripening process, the fruits were 
able to restore ethylene production, as well as the development 
of the loss of green color and the increase in pulp softening 
to a similar extent to that of fruit stored at ambient temperature, 
but the process was postponed by a few days. However, there 
were striking differences between the volatile profiles of the 
two groups. Interestingly, the synthesis of linalool, regarded in 
GC-O as one of the main volatile compounds in papaya, was 
affected by cold storage. These reduced linalool levels in cold-
stored papayas appeared to be  related to the down-regulation 
of linalool synthase (LIS) expression (Gomes et al., 2016). Façanha 
(2016) also found reduced levels of linalool throughout the 
ripening of 1-MCP-treated papayas and increased levels of this 
volatile compound in ethylene-treated papayas. Thus, as LIS 
uses geranyl diphosphate (GPP) to synthesize linalool in a single-
step reaction (Gutensohn et al., 2013), the reduced LIS expression, 
and therefore reduced levels of linalool in both cold storage 
papayas and in 1-MCP-treated papayas, strongly suggests a 
possible role of ethylene in linalool biosynthesis through 
modulation of LIS expression.

GPP originates from the plastid-localized 2-C-methyl- 
D-erythritol 4-phosphate (MEP) pathway, which is important 
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not only in the biosynthesis of linalool and other volatile 
compounds, including β-ionone and 6-methyl-5-hepten-2-one, 
but also in carotenoid biosynthesis and in the development 
of the characteristic of pulp color in ripe papayas.

PULP COLOR CHANGES IN RIPENING 
PAPAYAS AS A CONSEQUENCE OF 
CAROTENOID SYNTHESIS

The characteristic color of ripe papaya pulp (yellow or orange/red) 
is due to different types of carotenoids. Carotenoids are molecules 
with a general structure that consists of a 40-carbon acyclic 
polyene chain containing 9–11 conjugated double bonds and 
with or without terminating rings, and they are classified as 
carotenes (hydrocarbons) or as xanthophylls (oxygenated 
derivatives; Khoo et  al., 2011). Distinct papaya varieties have 
different pulp colors depending mainly on their carotenoid 
metabolism during ripening. In general, orange/red varieties 
have relatively high amounts of lycopene, which is a central 
compound in the metabolism of carotenoids during papaya 
ripening and is responsible for the red color not only in papayas 
(Barreto et  al., 2011) but also in tomatoes (Arias et  al., 2000), 
guavas (Rojas-Garbanzo et  al., 2017), and watermelons 
(Perkins-Veazie et  al., 2006).

Most of the over 600 naturally occurring carotenoids (Sigurdson 
et  al., 2017) originate from the MEP pathway (Figure 3A), 
which starts with a reaction between pyruvate and glyceraldehyde-
3-phosphate, resulting in the downstream production of 
isopentenyl diphosphate (IPP) and dimethyl allyl diphosphate 
(DMAPP; Ruiz-Sola and Rodríguez-Concepción, 2012; Yang and 
Guo, 2014). Then, three IPP molecules and one DMAPP molecule 
are used as substrates by geranyl-geranyl diphosphate (GGPP) 
synthase for the synthesis of GGPP, a 20-carbon molecule (Majer 
et  al., 2017). In addition to the presence of relatively high 
levels of lycopene, orange/red papayas present lower amounts 
of carotenoids that are synthesized downstream to lycopene in 

the MEP pathway, such as β-carotene, β-cryptoxanthin, and 
zeaxanthin (Schweiggert et  al., 2011). For both papaya cultivars 
“Golden” and “Sunrise Solo,” all-trans-lycopene was the main 
carotenoid in early stages and all-trans-β-cryptoxanthin was the 
main carotenoid in overripe fruits (Martins et  al., 2016).

Yellow pulp varieties are characterized by the presence of these 
last carotenoids with very low to no detectable levels of lycopene 
(Shen et  al., 2019). As the metabolism of papaya carotenoids 
starts from phytoene and occurs in a well-known cascade process 
(Figure 3B), it is possible to establish a relationship between the 
pattern of enzymes that acts downstream to phytoene and the 
color of papaya pulp during ripening. Geranyl-geranyl diphosphate 
is the precursor of chlorophylls, ubiquinones, and tocopherols. 
Phytoene synthase (PSY) uses two molecules of GGPP to produce 
phytoene, a colorless 40-carbon acyclic polyene molecule, which 
is the first step in carotenoid biosynthesis in the MEP pathway. 
Phytoene can be further used as a substrate by phytoene desaturase 
(PDS) to produce ζ-carotene, which can be a substrate for ζ-carotene 
desaturase (ZDS) for the synthesis of lycopene, a bright red 
carotenoid widely found in the pulp of orange/red papaya (Nisar 
et al., 2015). In yellow papayas, there is no significant accumulation 
of lycopene because of the conversion of phytoene by PDS and 
ZDS and by both lycopene β-cyclases (LCY-β) and carotene 
hydroxylases (CHYB). These enzymes rapidly convert lycopene 
into xanthophylls and β-carotene (Blas et  al., 2010; Shen et  al., 
2019). In orange/red papayas, the initial stages of ripening are 
characterized mainly by the presence of xanthophylls, including 
β-cryptoxanthin, which are synthesized from lycopene downstream 
by lycopene β-cyclase (LCY-β; Blas et al., 2010; Schweiggert et al., 
2011). However, after the onset of ethylene production in red/
orange papayas, the conversion of lycopene into cyclic carotenoids 
appears to be  strongly decreased due to lycopene accumulation 
in pulp (Barreto et al., 2011; Shen et al., 2019). The accumulation 
of lycopene in orange/red papayas compared to yellow papayas 
seems to occur both by a frame shift mutation in the LCY-β2 
gene, which results in a dysfunctional enzyme phenotype, and 
by other LCY genes (e.g., LCY-β and LCY-ε) that are 

A B

FIGURE 3 | Ethylene production and carotenoids accumulation (LCY activity) during papaya ripening: papaya’s green/yellow color changing to orange/red color. 
(A) Carotenoids derivated from MEP pathway. (B) Papaya LCY activity during ripening drives the lycopene accumulation and pulp color changes through the 
decreased conversion of lycopene in carotenes and xanthophylls. G3P, glyceraldehyde-3-phosphate; IPP, isopentenyl diphosphate; DMAPP, dimethyl allyl 
diphosphate; GGPP, geranyl-geranyl diphosphate; HDR, 4-hydroxy-3-methylbut-2-enyl diphosphate reductase; GGPPS, geranyl-geranyl diphosphate synthase; 
PSY, phytoene synthase; PDS, phytoene desaturase; ZDS, ζ-carotene desaturase; LCY, lycopene cyclase; CHYB, carotene hydroxylase.
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down-regulated during orange/red papaya ripening (Shen et  al., 
2017). The ζ-carotene desaturase enzyme responsible for converting 
phytoene into lycopene shows a different pattern of expression 
during ripening and also between the cultivars “Golden” and 
“Sunrise Solo,” while the lycopene β-cyclase gene, responsible for 
converting lycopene to β-carotene, is up-regulated in both cultivars 
(Martins et  al., 2016).

Interestingly, both ethylene- and 1-MCP-treated papayas had 
lower levels of minor carotenoids as compared to those of 
untreated papaya, similar to what was previously reported for 
the major carotenoids (Fabi et  al., 2007; Barreto et  al., 2011). 
Furthermore, the treatment of distinct papaya varieties with 
1-MCP significantly reduced the carotenoid content in fruit 
pulp throughout ripening (Moya-León et  al., 2004; Fabi et  al., 
2007; Barreto et  al., 2011). Barreto et  al. (2011) suggested that 
the impairment on carotenoid accumulation in papaya pulp 
by 1-MCP could occur either by the consumption of early 
carotenoid precursors including GGPP, or by inhibiting PSY 
or PDS activity. The latter hypothesis was confirmed by Fu 
et al. (2016), who revealed that a transcription factor (CpNAC1) 
induced by ethylene enhances the expression of PDS genes 
(e.g., CpPDS2 and CpPDS4). Recently, Fu et al. (2017) provided 
new insights into the role of other transcription factors that 
regulate ethylene responses and are involved in the regulation 
of several genes related to carotenoid biosynthesis. Therefore, 
as with pulp softening, sweetness, and the development of 
flavor, the carotenoid content in papayas is also regulated by 
ethylene-mediated responses during fruit ripening. Thus, while 
further studies are needed to define the specific genes whose 
expression relates to changes in the carotenoid content in 
papaya pulp, it is known that the reduction of ethylene production 
at low temperatures influences the composition of carotenoids 
in ripe papaya pulp (Rivera-Pastrana et  al., 2010).

CONCLUSIONS

Changes in the primary and secondary metabolism of papaya 
are mainly dependent on ethylene, whose onset burst occurs 
2–3  days after the harvest of unripe fruit. Ethylene-triggered 
events during papaya ripening include an increase in PG and 
AI expression that are related to pulp softening and sweetening, 
respectively, as well as changes in carotenoid metabolism that 
influence both aroma and color, thereby leading to the formation 
of the expected quality attributes in ripe papaya. As ethylene-
triggered events clearly affect the final quality of ripe papayas, 
studies have investigated the regulatory mechanisms that regulate 
ethylene function in papaya. Despite recent findings that highlight 
the ethylene-triggered events during papaya ripening, more 
efforts are needed to fully understand the key downstream 
regulators of ethylene in papaya pulp to better develop pre- 
and postharvest practices to extend papaya shelf life without 
resulting in losses in quality and nutritional aspects.
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