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With the rapid rising of global population, the demand for improving breeding techniques
to greatly increase the worldwide crop production has become more and more
urgent. Most researchers believe that the key to new breeding techniques lies in
genetic improvement of crops, which leads to a large quantity of phenotyping spots.
Unfortunately, current phenotyping solutions are not powerful enough to handle so many
spots with satisfying speed and accuracy. As a result, high-throughput phenotyping is
drawing more and more attention. In this paper, we propose a new field-based sensing
solution to high-throughput phenotyping. We mount a LiDAR (Velodyne HDL64-S3)
on a mobile robot, making the robot a “phenomobile.” We develop software for data
collection and analysis under Robotic Operating System using open source components
and algorithm libraries. Different from conducting phenotyping observations with an in-
row and one-by-one manner, our new solution allows the robot to move around the
parcel to collect data. Thus, the 3D and 360◦ view laser scanner can collect phenotyping
data for a large plant group at the same time, instead of one by one. Furthermore, no
touching interference from the robot would be imposed onto the crops. We conduct
experiments for maize plant on two parcels. We implement point cloud merging with
landmarks and Iterative Closest Points to cut down the time consumption. We then
recognize and compute the morphological phenotyping parameters (row spacing and
plant height) of maize plant using depth-band histograms and horizontal point density.
We analyze the cloud registration and merging performances, the row spacing detection
accuracy, and the single plant height computation accuracy. Experimental results verify
the feasibility of the proposed solution.
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INTRODUCTION

The explosive growth of global population leads to an urgent
demand for the increase of crop production. It is estimated that
cereal yield has to keep a yearly increasing rate higher than 2.4%,
to double the current yields by 2050 (Tilman et al., 2011; Ray et al.,
2012, 2013). However, traditional extensive breeding methods
can only bring a yearly increasing rate about 1.3% at extreme
(Ray et al., 2012, 2013). To enhance the yield increasing trends,
more and more attention is devoted to molecular and genetic
technology inspired breeding methods. These methods have
promising prospects on dissecting the generating mechanisms of
excellent trait characters, such as yield and stress tolerance (Araus
and Cairns, 2014; Chen et al., 2014). Excellent characters will be
found through screening of massive traits, which are produced by
different molecule or gene combinations. As traditional artificial
screening suffers from low speed, high workload and poor
uniformity, which becomes a bottleneck for advanced breeding,
“high-throughput phenotyping” comes to the stage and becomes
a hot topic (Araus and Cairns, 2014).

High-throughput phenotyping can help the breeders to select
good traits among a large quantity of samples and to conduct
a closed-loop observation for phenotype-gene correlations
(Furbank and Tester, 2011). Different sensing technologies
(Fahlgren et al., 2015; Lin, 2015; Singh et al., 2016) and different
sensor carriers (Yang et al., 2014; Haghighattalab et al., 2016;
Mueller-Sim et al., 2017; Virlet et al., 2017) have been applied in
the field of high-throughput phenotyping.

Camera based sensing technologies constitute most of
the popular phenotyping sensors, including colored cameras,
hyperspectral cameras, thermal imaging cameras, chlorophyll
fluorescence cameras, and RGB-D cameras, etc. In fact, sensors
with different spectral bands enjoy different advantages. Through
visible light imaging, colored cameras can acquire visible
phenotype parameters, such as shape, color, and texture. These
parameters can be employed to monitor plant growth (Li et al.,
2016), compute germination percentage (Dias et al., 2011),
describe root structure (Richard et al., 2015), and induce leaf
area index (LAI) (Virlet et al., 2017), etc. Hyperspectral cameras
can cover a wide range spectrum between visible and near-
infrared regions. They can detect plant stress response (Asaari
et al., 2018), leaf chemical properties (Pandey et al., 2017),
etc. Thermal imaging cameras can catch the crop emitted
radiation information and be applied for LAI measuring (Bolon
et al., 2011), drought tolerance monitoring (Tejero et al., 2015),
etc. Chlorophyll fluorescence cameras can obtain physiological
information of plants, such as net photosynthesis rate, stomatal
conductance, transpiration rate, etc. They can be used to detect
plant stress, drought stress (Chen et al., 2014) and salinity stress
(Awlia et al., 2016) for example. RGB-D cameras can provide
both color image and depth image in the same frame. Thus, 3D
plant information can be quickly obtained through close range
observation with RGB-D cameras, such as plant height (Jiang
et al., 2016) and plant structure (Andújar et al., 2016).

LiDAR is another popular sensor for high-throughput
phenotyping. It is good at obtaining high-accuracy range
information by firing laser beams. Near range and high-accuracy

(micrometer up to millimeter level) 2D LiDAR sensor can be
used for indoor and single plant phenotyping. A LiDAR sensor
can be mounted on the end-effector of a manipulator, which
moves the sensor around the plant to generate 3D point clouds
(see, e.g., Chaudhury et al., 2015; Kjaer and Ottosen, 2015). Fine
phenotyping, such as wheat ear volume calculation (Paulus et al.,
2013), can be conducted based on reconstructed 3D models.
2D line-scan LiDAR can also be applied on outdoor crop-row
phenotyping, working together with GNSS (Global Navigation
Satellite System) receivers. The sensor will be mounted on a
moving platform to scan the crop row from a top view. 3D point
clouds for different plants in the row will then be generated. Plant
height and structure can be obtained (Sun et al., 2018) with a
lower accuracy level (centimeter). 2D line-scan LiDAR are also
employed for canopy phenotyping (Garrido et al., 2015; Colaço
et al., 2018). The sensor is mounted on a moving platform to
scan the plant from a side view. The canopy structure related
parameters, such as plant height, LAI and canopy volume, can be
obtained. Note that although multi-line-scanning 3D LiDAR is
popular in autonomous driving for detecting road, obstacles, and
pedestrians (Zhou and Tuzel, 2018), few researchers have used
it in phenotyping.

Phenotyping sensor carriers are called phenotyping platforms.
Different platforms can act as phenotyping platforms, including
fixed platforms, flying platforms, and mobile platforms. Fixed
platforms mainly appear in indoor phenotyping scenes (Yang
et al., 2014; Guo et al., 2016). Plants in flowerpots or
plates will be placed on a conveyor belt and transported to
different observation spots with different sensors. This type
of platforms can give 360-degree panoramic view of plants,
which offers the capability to collect the most rich and detailed
information. Flying platforms can be airships (Liebisch et al.,
2015), helicopters (Chapman et al., 2014), unmanned aerial
vehicles (Haghighattalab et al., 2016; Hu et al., 2018), etc. They
are the fastest platforms who can cover a large area of farmland
within a short time. But they can only conduct observation on
top of the canopy. Mobile platforms are the most active research
area of high-throughput phenotyping platforms, and they can
be categorized into fully-mobile platforms and semi-mobile
platforms. Semi-mobile platforms are usually built based on
mechanisms similar to Gantry crane (Virlet et al., 2017). Sensors,
such as LiDAR, hyperspectral camera, and colored camera, are
installed on the crossbeam and move together with Gantry
crane on rails. Restricted by the rails, semi-mobile platforms
can only cover parts of a parcel. But benefited from the high
payload capability of Gantry crane, observation of semi-mobile
platforms can fuse rich and various sources of senor information.
Fully-mobile platforms can be handcarts (Nakarmi and Tang,
2014), agricultural machineries (Andrade-Sanchez et al., 2014),
and mobile robots (Cousins, 2015; Mueller-Sim et al., 2017).
Equipped with different sensing payloads, fully-mobile platforms
can take in-row and canopy-top observations for multiple parcels
in a close and quick manner.

More and more crops have been measured with high-
throughput phenotyping solutions, including maize (García-
Santillán et al., 2017), sorghum (Bao et al., 2019), soybean
(Pandey et al., 2017), wheat (Banerjee et al., 2018), barely
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(Paulus et al., 2014), cotton (Sun et al., 2018), etc. Different
phenotyping parameters can be extracted, such as plant height
(Sun et al., 2018), row spacing (García-Santillán et al., 2017),
stem width (Fernandez et al., 2017), leaf area and length
(Vijayarangan et al., 2018), etc. Among all the parameters,
plant height and row spacing are common parameters for
field crop phenotyping. A large number of literatures show
that plant height and row spacing have strong influences on
canopy structure and light attenuation (Maddonni et al., 2001),
radiation interception (Tsubo and Walker, 2002), yield (Andrade
et al., 2002), nitrogen availability (Barbieri et al., 2000), etc. The
main sensing technologies for plant height and row spacing
are computer vision and laser scanning. Row spacing is often
detected by computer vision through a row-tracking and top-
view manner (Zhai et al., 2016). Cameras are mounted on tractors
or other moving platforms with a downward pitch angle. As
the platforms move along the rows, crop rows can be detected
in the camera view sight and row spacing will be computed.
This kind of methods can only detect several row spacing values
for each run. Plant height can be detected with both top-view
(Sun et al., 2018) and side-view (Colaço et al., 2018) manners.
A platform can carry a LiDAR/camera sensor and move parallel
to the crop rows. Thus, point clouds or 3D models for the plants
will be generated one by one and then employed to determine
plant heights. The speed of current high-throughput phenotying
solutions for plant height and row spacing strongly depends on
the platforms’ moving velocity. Parameters are obtained row-by-
row or plant-by-plant. Fast phenotyping solution for parcel level
plant group has not been reported.

Although a great stride has been made on high-throughput
phenotyping, there are still many open questions. Taking
quick ground observations for plant groups on a multi-parcel
level is one of these questions. Current existing solutions
can only take either canopy-top group observation or side-
view single-plant observations. Observing a plant group with
side-view and obtaining phenotying parameters simultaneously
is still challenging. To tackle this problem, we propose a
“phenomobile,” a fully-mobile platform based on an agricultural
mobile robot (Qiu et al., 2018). We employ “Velodyne HDL
64E-S3” as the main phenotyping sensor, which has been
widely used on autonomous vehicles (Navarro et al., 2017).
Our solution can carry out side-view and group observations
around the parcel, not in-row. This avoids interference from
potential collision between the plant and the robot. Our
experimental results demonstrate that our “phenomobile” can
acquire plant height and row spacing information with a
satisfying accuracy and speed.

MATERIALS AND METHODS

Hardware Setup
Mobile Platform
We employ “AgriRover-01,” a self-developed agricultural mobile
robot for crop information collection, to act as the senor carrier.
This robot has six motors, four in-wheel motors for driving and
two motors for steering. The four driving wheels are grouped

TABLE 1 | Key parameters of Velodyne HDL64E-S3.

Key parameters Values

LiDAR class 64 laser lines/detectors

Field of view/scanning angle (azimuth) 360 degrees

Vertical field of view 26.8 degrees

Angular resolution (azimuth) 0.09 degrees

Accuracy (one sigma) <2 cm distance accuracy

Operation range (distance) 120 m range for cars and foliage

into two pairs: front pair and rear pair. For each pair, we use a
steering gear to make them turning simultaneously. An extended
Ackerman Steering Principle is implemented to carry out the
coordinated movement control. For details, please refer to the
reference (Qiu et al., 2018).

Sensor Setup
We employ a 3D LiDAR, Velodyne HDL64E-S3, as the main
phenotyping sensor. This sensor has 64 horizontal scan lines of
360 degrees, with a vertical field of view of 26.8 degrees and range
accuracy of 2 cm. Thus, it can easily acquire high-resolution 3D
point clouds of crops. Table 1 lists key sensor parameters selected
from the Velodyne HDL64E-S3 manual.

We install the LiDAR on a self-designed bracket on top of
the mobile robot as shown in Figure 1, making the sensor’s
center of gravity about 0.9 m above the ground. The localization
information is obtained through a GNSS receiver set, which
has two antennas. An industrial personal computer collects the
localization signals through RS485. A notebook computer collects
the LiDAR senor outputs through Ethernet. On the notebook
computer, Robotic Operating System (ROS)-indigo is installed
on Linux (Ubuntu 14.04). The Velodyne data acquisition code
is downloaded from GitHub1, whose author is Jack O’Quin from
Austin Robot Technology. As the original code is not developed

1https://github.com/ros-drivers/velodyne

FIGURE 1 | Velodyne HDL64E-S3 on the robot.
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for Velodyne HDL64E-S3, we make some modifications to one
of its files2 to match the new features of S3. First, line 37 is
changed to

private_nh.param

(“model”, config_.model, std :: string(“64E_S3”)); (1)

second, a short paragraph is added to line 46 as

else if (config_.model == “64E_S3”)
// generate 1333440 per second, where 1333440
// = 4167 (per second) * 64 * 5
{ // 1 package holds 384 points
// (12 fire/packet and 32 laser/fire)
packet_rate = 3472.5; //1333440/384= 3472.5
model_full_name = std :: string (“HDL−′′)+ config_.model;
}

(2)

Preliminary Information of the
Experiments
Avoiding the LiDAR Blind Area
As the vertical field of view of the LiDAR ranges from −24.8◦ to
+2◦, there exists a blind area. To eliminate the influence of blind
area, we choose to scan the plant at a distance larger than the
diameter of the blind area. We compute the diameter of the blind
area D as

D =
H + h
tan α

(3)

where H is the height of the bracket on the mobile robot
“AgriRover-01,” h is the distance from the origin of the LiDAR’s
coordinate to its base, and α is the maximum depression angle
of the sensor (−24.8◦). Here, we set H as 0.91 m and h as 0.25 m
according to manual measurements. Then, we obtainD as 2.49 m.

Landmarks
We choose a multi-view solution to increase the point density and
compensate for the self-occlusion of plants. As a result, the point
clouds from different observation spots need to be merged into
one. Point cloud matching is a challenging task and requires large
quantities of computation resources. To simplify and speed up
the point cloud merging process, we set several landmarks in the
experimental field, parallel to the moving direction of the robot.
The landmarks are 40 cm × 30 cm rectangle plates, which are
made of stainless iron and stand on tripods. Figure 2 shows one
of the landmarks in the experimental field.

Experimental Settings
We choose two parcels as our experimental fields. Parcel-1 is
40 m × 30 m and parcel-2 is 33 m × 17 m. For both parcels, the
robot moves on the cement floor beside the parcels. For parcel-1,
floor-1 is 0.2 m higher than the farmland. For parcel-2, floor-2 is
a small slope, whose top and bottom are 0.45 and 0.1 m higher
than the farmland, respectively. Also, there is a corridor crossing

2velodyne/velodyne_driver/src/driver/driver.cc

FIGURE 2 | Landmark in the experimental field.

FIGURE 3 | Two experimental parcels. (A) Is parcel-1; (B) is parcel-2.

through the middle area of parcel-2. In parcel-1, the height of the
maize plants is around 0.7 m, 30 days after sowed. In parcel-2, the
height of the maize plants is around 0.6 m, 20 days after sowed.
Figure 3 shows the two parcels.

During the data collection process, the robot moves along
the cement floor beside the parcel and carries out the task
in a stop-and-go manner. When the robot stops, the LiDAR
performs several scans with a preset frequency of 5 Hz. For each
scan, a 360◦ point cloud with more than 1.33 million points
is generated and saved. The two adjacent observation spots are
about 1 m apart from each other. For each spot, the robot stays
for 10 s at least to collect enough scan data. Data from different
observation spots are merged by post-processing. We deploy the
landmarks at random positions, with the lower borders at least
0.1 m higher than the plants. Figure 4 shows the experimental
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FIGURE 4 | Experimental layouts of parcel-1 and parcel-2. (A) Is parcel-1; (B) is parcel-2.

FIGURE 5 | Flowchart for the general framework of data processing.

layouts of the two different parcels. The green area stands for
the maize field. The gray area stands for the cement floor. The
orange rectangle stands for the landmark. The red circle stands
for the data collection spot. The arrow points out the moving
direction of AgRover-01. The coordinate system for each parcel
scenario is marked in Figure 4. We select the origin of the
LiDAR’s coordinate system at the last observation spot as the
origin of the global coordinate system for each scenario. We
define the direction facing to the maize field as the positive
direction of X coordinate, the left side direction as the positive
direction of Y coordinate, and the upward direction as the
positive direction of Z direction.

Data Processing
General Framework of Data Processing
The general framework of data processing contains four steps: (1)
DBSCAN based landmark detection in a single scan; (2) SAC-
IA and Iterative Closest Point (ICP) based cloud registration
and fusion; (3) row spacing calculation based on depth-band
and point density histogram; (4) single plant height computation
based on detected row and point density. Figure 5 shows the

flowchart for the whole data processing framework. To speed up
the coding process, we develop the data processing project using
Point Cloud Library (Rusu and Cousins, 2011).

ROI Abstracting
ROI (region of interest) abstracting is a very important
preliminary processing step. It helps to cut down the data
computation load. As the distance range of our LiDAR is 120 m
and the horizontal field of view is 360 degrees, each sensor frame
covers an annular area with an external diameter of 120 m and an
internal diameter of 2.49 m (the diameter of the blind area D). To
abstract the ROI on the horizontal plane, we first cut off the half
annular opposite to the parcel. Then, we select the ROI for each
observation spot using manually chosen horizontal thresholds.
To further eliminate the noise coming from the uneven terrain,
we delete the bottom part of the point cloud with a threshold of
0.005 m. That is, we first find the minimum height value zmin and
then remove all the points with their height values lying between
[zmin, zmin + 0.005].

Landmark Detection
After abstracting the ROI, we employ a multi-view solution
to tackle the self-occlusion problem and to increase the cloud
point density. When merging point clouds coming from different
observation spots, we use landmarks to decrease the computation
load and speed up the matching process. Thus, detecting the
landmarks is the key point. We first detect a corner point for each
landmark, then generate a virtual point cloud for each landmark
through interpolation, and finally obtain the translation matrix
between two observation point clouds by registering the two
corresponding virtual landmark point clouds.

We employ DBSCAN (Ester et al., 1996; Huang et al., 2017)
to detect the landmark point clouds. Based on a preset minimum
point number (MinPts) within the adjacent region of one point,
DBSCAN categorizes points into three types: “Core Point,”
“Border Point,” and “Noise Point.” Core Points have more points
than MinPts within their adjacent region. Border Points have
fewer points than MinPts within their adjacent region, but they lie
in the adjacent region of one or more Core Points. Noise Points
have fewer points than MinPts within their adjacent region and
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do not lie in the adjacent region of any Core Points. Figure 6 gives
an example for the definition of the three point-types.

In Figure 6, we set MinPts as 5. Because point p and q both
have six points in their adjacent region, they are Core Points.
Because point b does not have five points in its adjacent region,

FIGURE 6 | Different point types in DBSCAN. Because p and q both have
more than five neighbors within E circle adjacent area, they are Core Points; b
has less than five neighbors, but it lies in the adjacent area of q, so b is a
Border Point; n is a Noise Point.

FIGURE 7 | Flowchart for DBSCAN and Octree based landmark detection.

it is not a Core Point. However, b is in the adjacent region of q.
Thus, it is a Border Point. Point n does not have five points in
its adjacent region and is not in the adjacent regions of p or q,
so n is a Noise Point. Also, Figure 6 demonstrates the concept
of “Density-Reachable,” which helps to merge over-segmented
clusters. In Figure 6, E is the diameter of the preset adjacent
region. The distance between p and q is smaller than E, meaning
that p and q both lie in each other’s adjacent region. For this
situation, we call p is Density-Reachable for q (or q is Density-
Reachable for p). If p and q belong to different clusters because of
over segmentation, we can merge the two small clusters into one
big cluster. Figure 7 shows the flowchart for landmark detection.
Note that we use Octree (Wurm et al., 2010) to organize the rough
point cloud in order to speed up the point searching operation.

After the landmark candidate clusters are detected, we first
delete the canopy noise clusters with a minimum cluster height
ch. Here, we set ch as 0.1 m. Then we determine one upper
corner point and generate a virtual landmark point cloud. There
are many approaches to determining the upper corner of the
landmark, such as setting Z coordinate value as the biggest Z
value of the cloud, Y coordinate value as the smallest Y value, and
X coordinate value as the mean of all X values. To generate the
virtual landmark point cloud from the corner point, we assume
that the landmark plane is perpendicular to the field terrain and
interpolate points with preset vertical and horizontal steps.

Cloud Fusion by Registering the Corresponding
Virtual Landmarks
Our registration process consists of two steps: rough registration
with Fast Point Feature Histograms (FPFH) and SAmple
Consensus Initial Alignment, SAC-IA (Rusu et al., 2009) and
precise registration with ICPs (Besl and Mckay, 1992). The rough
registration is used to avoid the local minimum problem of

FIGURE 8 | Flowchart for virtual-landmark-based registration.
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FIGURE 9 | Flowchart for row spacing computation.

FIGURE 10 | Flowchart for plant height computation.

ICP. Figure 8 shows the flowchart of the virtual-landmark-
based registration process. The obtained rotation matrix R′ and
translation matrix T′ can be employed to fuse two corresponding
observation point clouds.

Row Spacing Calculation
Before the row spacing calculation, we project all the cloud points
within the ROI onto a horizontal plane. We compute row spacing
values with the following five steps: (a) divide the parcel region
(or the ROI) into several depth-bands with equal band width
on the horizontal plane and keep the depth-bands parallel to
the moving direction of the robot; (b) compute the cloud point
distribution histogram of each band along the Y axis (for the
details of the definition of Y axis, please refer to Figure 4); (c)
find the peaks in the band point histograms. We assume that the
stem part of a maize plant should produce more laser scan points
than the leaf parts, if all the points are projected on the horizontal
plane. Thus, we choose the peaks as candidates of in-row points;
(d) employ Hough Transformation (Duda and Hart, 1972) to

detect the crop rows. Here, we set an angle searching range of
[75◦, 105◦] as the crop rows are assumed nearly perpendicular
to the robot moving direction. Also, a minimum point limit
of 3 is set to the Hough Transformation. (e) Compute the
row spacing (RS) values as the nearest distances between two
adjacent crop rows. The flowchart for row spacing computation
is shown in Figure 9.

Plant Height Computation
We detect single plant and compute plant heights for Parcel-2
with the following steps: (a) select an adjacent region for each
detected crop row such that the selected region contains the
sub-point-cloud of the corresponding row; (b) mesh the selected
region with a selected border length (BL) on the horizontal plane
and compute the point density (Pts) in each grid; (c) check the
Pts for each grid, if Pts > PtsThre (a preset threshold), we assume
that this grid is located around a single plant and expand the
grid to a 3 × 3 grid neighborhood; (d) search for the maximum
height values of the 3D points within this neighborhood, and set
the plant height PH as Heightmax – Heightmin. Here, Heightmax is
the largest value along Z axis of the point cloud located within
the 3 × 3 grid neighborhood. Heightmin is a preset height value,
which equals to zmin + 0.005 as in Section “ROI Abstracting.” The
flowchart for plant height computation is shown in Figure 10.

Manual Sampling
We conduct manual sampling for row spacing and plant height in
Parcel-2. For Parcel-2, each row is approximately perpendicular
to the moving direction of the robot. We choose the first row
from the parcel ridge at the robot’s start point side, as the first
row for row spacing sampling. We manually sample 57 row
spacing values one by one from the first row. For plant height, we
randomly sample 33 plants. Here, we roughly divide the Parcel-
2 area into three sub-areas: area A, area B, and area C, mainly
according to the point density. In each row, the plant nearest
to the robot is counted as crop No. 1. The locations of all plant
height samples are shown in Figure 11. We express the location
of each plant with its row number and crop serial number in
row as (row_num, crop_num). In this case, we can find each
plant’s corresponding point cloud easily by referring to its row
and crop serial numbers.

Manual Measurements for Row Spacing
We use two adjacent plants in the same row to determine a
local row-line. The distance between two local row-lines is then
measured as the row spacing value (see Figure 12). To reduce the
measurement error, we repeat the measurement in three different
spots for each row spacing sampling and use the mean value as
the final row spacing measurement result.

Manual Measurements for Plant Height
We assume plant height as the distance from the highest point to
the lowest point above ground of the plant (see Figure 13). To
reduce the measurement error, we also repeat the measurement
three times for each plant sample and use the mean value as the
final plant height measurement result.
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FIGURE 11 | Locations of all manually measured plant height samples.

TABLE 2 | Landmark detection results for Parcel-1.

Plot number 4 7 10 13 16 19 22 25 28 31

NLV 4 4 4 5 5 6 8 5 5 5

DNL 3 3 3 4 4 4 6 4 5 4

DSR 75% 75% 75% 80% 80% 66.7% 75% 80% 100% 80%

DTD (ms) 401 656 1566 2691 954 401 386 1188 513 1156

TABLE 3 | Landmark detection results for Parcel-2.

Plot number 3 6 9 12 15 18 21 24 27 30

NLV 5 5 5 6 4 5 5 4 4 3

DNL 3 4 4 4 3 4 3 3 3 3

DSR 60% 80% 80% 66.7% 75% 80% 60% 75% 75% 100%

DTD (ms) 435 649 414 597 898 752 425 398 477 674

FIGURE 12 | Manual sampling method for row spacing. The dash lines are
two adjacent local row-lines.

RESULTS

Results of Landmark Detection
We set E = 0.52 m and MinPts = 5. Here, E = 0.52 m
is the diagonal length of the landmark plate and 5 is the
minimum integer that is larger than 3 (3 dimensions) +
1. We number the observation plot from the start plot of
each parcel. With an incremental step of 3 (the reason for

FIGURE 13 | Manual sampling method for plant height.

choosing 3 is given in Section “Results of Point Cloud Fusion”),
we conduct landmark detection for a scan at each selected
observation plot. In each parcel, we choose 10 observation plots.
For parcel-1, the plots are 4, 7, 10,..., 31. For parcel-2, the
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plots are 3, 6, 9,..., 30. Four parameters, including Number of
Landmarks in View (NLV), Detected Number of Landmarks
(DNL), Detection Success Rate (DSR), and Detection Time
Duration (DTD), are listed in Tables 2, 3, corresponding to
Parcel-1 and Parcel-2.

From Tables 2, 3, we can see that DBSCAN works quite
well. For each observation scan, at least three landmarks can be
detected, which strongly supports the cloud registration process.
Also, the detection success rate is consistently above 60%.

Figure 14 shows the landmark detection performances at
observation plot 2 of Parcel-1. The red dash ellipses indicate
the successfully detected landmarks and the yellow dash ellipses
indicate the undetected landmarks. The lower part is the
generated virtual landmark point clouds.

Results of Point Cloud Fusion
Merging Plot Step Selection
We take the laser scans at a series of plots with around 1 m
spacing. The more plots we choose to merge, the higher point
density we can have and the more registration error we introduce
in. We have to balance between point density (information
quantity) and error influences. Here, we carry out three merging
results for Parcel-2 with different plot incremental steps: all plots
(step = 1), half of the plots (step = 2), and one-third of the plots
(step = 3). “Step = 2” means we choose a series of plots with
around 2 m spacing and merge the scan coming from them.
An example plot set for “Step = 2” can be plot 2, 4, 6,..., 30.
Table 4 shows the number of the merged scan frames, the point
density of merged clouds, and the total registration time for three
different steps. Figure 15 shows the merged clouds for three
different steps.

From Table 4, we can see that the registration time
consumption increases together with the cloud point density.
From Figure 15, we observe that case “step = 1” introduce in a
lot of registration error, which blurs the point cloud and makes
crop rows hard to detect. Case “step = 2” is better but cloud blur

FIGURE 14 | Landmark detection result for plot 2 in Parcel-1.

TABLE 4 | Registration performances of three different steps.

Step Number of
merged scan

frames

Point density Total registration time (ms)

1 30 8,006,400 2.97558e+06

2 15 4,003,200 1.27932e+06

3 10 2,668,800 746,194

FIGURE 15 | Merged clouds for three different steps. (A) Is the merged cloud
for “step = 1”; (B) is the merged cloud for “step = 2”; (C) is the merged cloud
for “step = 3.”

is still heavy in the middle region of the parcel. Although case
“step = 3” contains less information (low point density), the cloud
blur is not significant. Based on the above analysis, we make a
compromise between information quantity and registration error
influences, by choosing the cloud merging step as 3.

Point Cloud Registration and Merging
Figure 16 shows an example for the registration and merging
process, in which the point clouds are collected from parcel-2.
We can see in Figure 16A) that the two unregistered point clouds
have obvious drifts. In Figure 16C), we use a height threshold to
cut off most plant points. As a result, landmark points and some
noise points are kept. Then we employ DBSCAN to detect the
landmark point clouds and generate virtual landmarks, as shown
in Figure 16D). We can see there are big translation deviations
and small rotation deviations between the two original point
clouds. In the following step, we carry out rough registration with
SAC-IA. The translation deviations are greatly reduced as shown
in Figure 16E). We further conduct precise registration with ICP.
Note that the registration error is indeed reduced, although we
can hardly find obvious improvements in Figure 16F). Based
on the registration results, we merge the two clouds and obtain
a new cloud with higher point density, shown in Figure 16G).
Figures 16B,H are the magnified views of the blue rectangle areas
in Figures 16A,G, respectively. From these two magnified views,
we can recognize the registration and merging influences clearly.
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FIGURE 16 | Cloud registration and merging process. (A) Shows the unregistered two point clouds; (C) shows the landmark points and noise points after cutting off
most plant points; (D) shows the virtual landmarks generated after DBSCAN; (E) shows the SAC-IA registration result; (F) shows the IPC registration result; (G)
shows the merged two clouds; (B) and (H) show the magnified views of the blue rectangle areas in (A) and (G), respectively.

Results of Row Spacing Computing
Based on the merged point clouds, we carry out the crop row
spacing computation for Parcel-2. The row detection result is
shown in Figure 17. Here, we also compute 57 row spacing
values starting from the same first row as in Section “Manual
Sampling.” Thus, each manually sampled row spacing value
can be easily identified in the merged Parcel-2 point cloud by
detecting the ridge.

In Figure 17, we divide the whole Parcel-2 area into six
sub-areas: A1, A2, B1, B2, C1, C2. The Y axis regions for
A, B, C sub-areas are (0, 22 m), (22, 40 m), (40, 50 m),
respectively. The corridor further separates A, B, C into A1, A2,
B1, B2, C1, C2, respectively. Because of occlusion and different
laser beam angles, sub-areas have different point densities and
information adequacy level. We draw the point cloud, the
histogram peaks of depth bands, and the crop rows detected by
Hough Transformation, which shows the different row detecting
performances in different sub-areas.

Figure 18 shows the data analysis results for manually sampled
and calculated row spacing values. For the whole parcel, the
R Square and RMSE of 57 row spacing values are 0.2377 and
0.0916, respectively. We also give analysis results for subarea A,
B, and C. We can easily infer that area B (B1 + B2) has the
highest row spacing accuracy, which has the smallest RMSE as

0.07594. Although our solution gives lower raw spacing accuracy
than other method with mean error of 1.6 cm (Nakarmi and
Tang, 2014), it enjoys much higher measurement speed. Our
solution can give more than 50 row spacing values in the
parcel level for a run, while others can only work in a one-by-
one style. Furthermore, the main purpose of this paper is to
verify the feasibility of the proposed platform. Thus, we focus
on ensuring the entire system and software pipeline working
properly. In future work, we will investigate methods to improve
the accuracy. We believe that we can significantly improve
the accuracy by adding new peak detection algorithms and
filtering tools.

Results of Plant Height Computing
Figure 19 shows an example for single plant detection in the plant
height computation process from the data of parcel-1.

To verify the feasibility of our solution for plant height
computing, we manually measure 33 single plants in Parcel-2 (see
Figure 11). Then, we try to find the corresponding plant height
values in the point cloud and compare them with the manual
measurements. Here, we set BL as 0.1 m, which means that the
grid size is 0.1 m× 0.1 m. PtsThre is determined according to the
X axis value: PtsThre = 80 for 0 m ≤ x ≤ 5 m; PtsThre = 30 for
5 m < x ≤ 8 m; PtsThre = 10 for x > 8 m.
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FIGURE 17 | Row detection result for Parcel-2.
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FIGURE 18 | Data analysis for manually sampled and calculated results of row spacing. (A) Is the regression line, the R square, and the RMSE for all the 57 row
spacing values; (B) is the regression line, the R square, and the RMSE for the row spacing values in Area A; (C) is the regression line, the R square, and the RMSE
for the row spacing values in Area B; (D) is the regression line, the R square, and the RMSE for the row spacing values in Area C.

FIGURE 19 | Single plant detection for parcel-1. The detected single plant
cloud is in red and marked out with a green bounding box.

Tables 5–7 shows the plant height computation results for
sub-area A1, B1, C1, respectively.

From Tables 5–7, we see that the plant height computation
performances of our strategy are affected by point density
and depth value. The part with depth value 0 ≤ x < 5
in sub-area B1 is observed from all 10 plots and suffers
from fewest occlusions. Then, we can obtain more
accurate plant height values of the plants lying in B1, with
RMSE = 0.058 m. Comparing with other method with
RMSE = 0.035 m (Madec et al., 2017), our method can

give acceptable plant height accuracy in areas with proper
observation conditions.

DISCUSSION

In this paper, we present a field-based high-throughput
phenotyping solution for maize, using a 3D LiDAR placed on
a mobile robot platform. With the proposed solution, we can
obtain the row spacing and plant height information for a parcel
level plant group in a run. Each row spacing and each plant
height can be estimated by this solution. Also, the robot does not
move in-row and thus avoids touching interference with the crop.
Experimental results show that our solution can get row spacing
and plant height with satisfying speed and accuracy.

From the experimental results, we conclude that the row
spacing and plant height calculation performance has a strong
relationship with the cloud point density and the cloud
registration error. Sparse point density may be caused by
occlusion, growing distance, and insufficient observations. To
improve the phenotyping accuracy, we plan to collect data
around the parcel with proper observation-plot distance. We also
plan to improve the cloud registration algorithm to reduce the
cloud merging error. As a result, an observation selection strategy
and a new cloud registration algorithm will be the main research
topic in the future.
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Furthermore, we believe that our phenotyping solution can be
improved in the following aspects. First, our landmarks are not
big enough, which brought in errors and difficulties during the
landmark detection process. We may redesign bigger and sturdy
landmarks to decrease the influences of strong wind and reduce
the detection error, which in turn reduces cloud registration
error. Second, we use many preset thresholds, which makes

our solution suffer from low robustness and adaptability. In the
future, we will investigate the use of more implicit and common
features in the field-based maize point cloud, rather than preset
thresholds. Third, our solution is a post-processing solution. We
will carry out an on-line version soon. Fourth, terrain situation is
another key factor for our strategy. For most open field scenarios,
the robot will not move on a cement floor. How to choose a

TABLE 5 | Plant height computation results for sub-area A1.

Location
(row_num,
crop_num)

Manual
measurements

(m)

Computation
results (m)

Errors (m) Error ratio (%) x range RMSE

(58, 3) 0.510 0.651 0.141 27.575 0 ≤ x < 5 0.178

(48, 4) 0.530 0.628 0.098 18.442

(52, 4) 0.600 0.333 0.267 44.418

(56, 4) 0.580 0.308 0.272 46.941

(55, 5) 0.600 0.581 0.019 3.088

(51, 7) 0.600 0.415 0.185 30.816

(57, 7) 0.600 0.507 0.093 15.575

(47, 9) 0.500 0.309 0.191 38.274

(49, 13) 0.500 0.313 0.187 37.388 5 ≤ x < 8 0.196

(53, 15) 0.510 0.590 0.080 15.693

(50, 19) 0.600 0.328 0.272 45.391

TABLE 6 | Plant height computation results for sub-area B1.

Location
(row_num,
crop_num)

Manual
measurements

(m)

Computation
results (m)

Errors (m) Error ratio (%) x range RMSE

(17, 1) 0.510 0.503 0.007 1.352 0 ≤ x < 5 0.058

(36, 2) 0.520 0.609 0.089 17.032

(21, 3) 0.550 0.495 0.055 10.020

(15, 5) 0.560 0.621 0.061 10.949

(32, 6) 0.560 0.572 0.012 2.212

(16, 7) 0.560 0.593 0.033 5.974

(37, 8) 0.520 0.611 0.091 17.590

(29, 10) 0.560 0.616 0.056 9.964

(43, 11) 0.530 0.673 0.143 26.935 5 ≤ x < 8 0.172

(33, 12) 0.560 0.312 0.248 44.360

(23, 13) 0.620 0.408 0.212 34.244

(34, 14) 0.540 0.477 0.063 11.660

(44, 15) 0.550 0.613 0.063 11.435

(24, 16) 0.560 0.337 0.223 39.759

(40, 18) 0.440 0.594 0.154 34.915

(45, 21) 0.560 0.561 0.001 0.243 x ≥ 8 0.128

(28, 23) 0.500 0.682 0.182 36.317

TABLE 7 | Plant height computation results for sub-area C1.

Location
(row_num,
crop_num)

Manual measurements (m) Computation results (m) Errors (m) Error ratio (%) x range RMSE

(12, 3) 0.450 0.542 0.092 20.415 0 ≤ x < 5 0.097

(13, 6) 0.510 0.573 0.063 12.423

(9, 7) 0.400 0.521 0.121 30.268

(14, 8) 0.560 0.575 0.015 2.603

(10, 9) 0.400 0.542 0.142 35.518
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proper route and navigate the robot to follow it is an important
problem, because it will help provide stable observations. Fifth,
only row spacing and plant height are considered in our solution.
We will extend to new phenotyping parameters, such as leaf
number, leaf angle, and leaf length. Sixth, we hope to employ
machine learning or deep learning in the future, to enhance the
speed and accuracy performances of our solution. For example,
fast and robust principal component analysis (Sun and Du,
2018) and joint sparse representation-based classification (Peng
et al., 2019) can be used for organ detection and terrain-plant
classification. We also expect that negative effects due to wind-
induced deformations can be decreased by learning algorithms.
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