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Atmospheric water is one of the main water resources for plants in arid ecosystems. 
However, whether deep-rooted, tomentum-less desert trees can absorb atmospheric 
water via aerial organs and transport the water into their bodies remains poorly understood. 
In the present study, a woody, deep-rooted, tomentum-less plant, Haloxylon ammodendron 
(C.A. Mey.) Bunge, was selected as the experimental object to investigate the preconditions 
for and consequences of foliar water uptake. Plant water status, gas exchange, and  
18O isotopic signatures of the plant were investigated following a typical rainfall pulse and 
a high-humidity exposure experiment. The results showed that a high content of 
atmospheric water was the prerequisite for foliar water uptake by H. ammodendron in 
the arid desert region. After atmospheric water was absorbed via the assimilating branches, 
which perform the function of leaves due to leaf degeneration, the plant transported the 
water to the secondary branches and trunk stems, but not to the taproot xylem or the 
soil, based on the 18O isotopic signatures of the specimen. Foliar water uptake altered 
the plant water status and gas exchange-related traits, i.e., water potential, stomatal 
conductance, transpiration rate, and instantaneous water use efficiency. Our results 
suggest that atmospheric water might be a subsidiary water resource for sustaining the 
survival and growth of deep-rooted plants in arid desert regions. These findings contribute 
to the knowledge of plant water physiology and restoration of desert plants in the arid 
regions of the planet.

Keywords: foliar water uptake, rainfall pulse, deep-rooted woody plant, air relative humidity,  
18O isotopic signatures
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INTRODUCTION

In arid ecosystems, water is the limiting factor on the ecological 
performance of plants (Kidron 2010; Yang et  al., 2014a; Dai 
et  al., 2015; Yang et  al., 2017). In order to survive and grow 
in an extreme drought environment, desert plants develop 
special strategies to utilize all sorts of potential water resources 
(Yan et  al., 2015). Atmospheric water is moisture that can 
be  absorbed by the plant aerial organs, i.e., the unsaturated 
atmospheric water, clouds, fog, melting snow water, rainfall, 
and dewfall (Gotsch et  al., 2014; Mayr et  al., 2014; Eller 
et  al., 2016; Pina et  al., 2016; Wang et  al., 2016a; Steppe 
et  al., 2018). It is estimated that atmospheric water makes 
up 28–66% of the water input in the coastal prairie ecosystem 
of California (Corbin et  al., 2005), and it can supply 74% 
water to plants for their growth and survival in arid desert 
regions (Kidron, 2000). However, owing to the differences in 
the absorptive pathways between atmospheric water and 
traditional water resources such as soil water and groundwater 
(Goldsmith, 2013), our understanding of how environmental 
conditions control plant aerial organs to absorb atmospheric 
water remains unclear.

The absorption of atmospheric water via plant aerial organs 
has been considered a crucial and universal phenomenon in 
previous studies (Schwerbrock and Leuschner, 2017). Although 
some recent studies have reported that the emergence of foliar 
water uptake might be  related to the plant’s root functional 
type and water availability (Cassana et  al., 2016; Ma et  al., 
2017), which environmental factors actually trigger this water 
absorption strategy is an ongoing debate among researchers 
(Goldsmith, 2013; Yan et  al., 2015; Cassana et  al., 2016; Wang 
et al., 2016b). In arid desert regions, shallow-rooted herbaceous 
plants usually absorb atmospheric water, whereas deep-rooted 
woody plants rely more on groundwater or deep soil water 
(Pan et  al., 2016; Ma et  al., 2017; Yang et  al., 2017; Liu et  al., 
2018). The water absorption preferences of desert plants might 
be  determined by the sustainability and magnitude of different 
water resources. It is generally believed that atmospheric water 
and groundwater are the two main types of water inputs in 
arid desert regions (Kidron, 2000; Golkarian et  al., 2018). 
Atmospheric water is an unstable and scarce water source, 
while groundwater is a more stable and abundant water source 
(Dawson and Pate, 1996). Due to their perennial nature, deep-
rooted woody plants in arid regions must increase carbon 
investments in their roots to obtain a large amount of groundwater 
to satisfy a higher water demand (Dai et al., 2015). In contrast, 
because they are annual or ephemeral plants, shallow-rooted 
herbaceous plants only absorb a small amount of atmospheric 
water to guarantee their growth (Zhuang and Ratcliffe, 2012; 
Yang et  al., 2017). Thus, the difference in predilection for 
water sources between deep-rooted woody trees and shallow-
rooted herbaceous plants may also depend on their water 
demand and the distinct accessibility of various water sources 
in arid desert regions (Zhuang and Ratcliffe, 2012; Cassana 
et  al., 2016; Yang et  al., 2017). Desert deep-rooted woody 
trees generally have a considerably higher biomass than shallow-
rooted herbaceous plants and therefore tend to utilize all 

categories of potential water resource inputs to sustain their 
growth and survival in water-limited environments. Additionally, 
simulation experiments have suggested that the emergence of 
uptake of atmospheric water by desert plants, to some extent, 
depends on the magnitude of atmospheric water (Zhuang and 
Ratchiffe, 2012; Yang et al., 2017). In other words, high humidity 
might be  the precondition for the absorption of atmospheric 
water via aerial organs for the deep-rooted plants in arid 
ecosystems. However, whether deep-rooted desert trees can 
absorb atmospheric water and the assumption that the 
atmospheric water content is closely related to atmospheric 
water uptake via the aerial organs of deep-rooted desert plants 
have not yet been properly assessed in previous studies (Yan 
et  al., 2015; Wang et  al., 2016b).

The soil-plant-atmosphere continuum (SPAC) and traditional 
water transport theories assume that water moves from the soil 
through a plant and then out into atmosphere due to the 
difference in water potential (Ψ) (Philip, 1966). Within the SPAC, 
the water potential gradually decreases from soil to atmosphere. 
However, if atmospheric water is absorbed by plant aerial organs, 
water migrates from the atmosphere to trunk xylem, and even 
to root xylem, and finally to rhizosphere soils (Eller et al., 2013; 
Cassana et  al., 2016). This indicates that there would be  a 
reversal of water potential gradient from the SPAC and traditional 
water transport theories. Hence, there would exist two processes 
in plants: (1) water moves from a higher Ψatmosphere to lower 
Ψstem through the foliar absorption of atmospheric water, while 
water also simultaneously rises from a higher Ψsoil to lower 
Ψstem, thus plants obtain water from two directions; and (2) 
water moves from a higher Ψatmosphere to a lower Ψsoil only through 
the foliar absorption of atmospheric water (Goldsmith, 2013). 
In recent studies, the inverse water potential gradient in plants 
has been reported under artificial controlled conditions (Yan 
et al., 2015), but no research has found this phenomenon under 
field conditions. Additionally, there is no explicit conclusion on 
which factors control foliar water uptake in plants.

Haloxylon ammodendron (C.A. Mey.) Bunge (Chenopodiaceae) 
is a xerophytic woody dominant species in the arid deserts 
of Asia (Xu et  al., 2016), which is a deep-rooted plant with 
many xeromorphic characteristics in its leaves and roots to 
adapt to drought (Huang et  al., 2003; Dai et  al., 2015). It has 
been reported that the assimilating branches of H. ammodendron 
are sensitive to changes in water inputs via physiological 
performance (Xu et al., 2007; Yang et al., 2014a). In this species, 
transpiration and carbon assimilation occur at the branch level 
due to leaf degeneration. Additionally, atmospheric water 
constitutes a large proportion of the available water resources 
in the arid desert region (Kidron, 2000). Thus, it is possible 
that the assimilating branches of H. ammodendron might absorb 
atmospheric water.

In this study, some plant water status and gas exchange 
traits of H. ammodendron were assessed following a natural 
rainfall pulse and in an artificial high-humidity exposure 
experiment to monitor the processes of absorption and  
transport of atmospheric water from the assimilating branches 
to the stems of H. ammodendron. Here, we  hypothesized that  
(1) the high content of atmospheric water is the prerequisite 
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for foliar water uptake by the deep-rooted plant in arid desert 
regions, and (2) the absorbed water will cause changes in 
water status and gas exchange and will cause water potentials 
to reverse direction from the SPAC and traditional water 
transport theories.

MATERIALS AND METHODS

Study Site and Plant Species
The study site is located in the Ebinur Lake Wetland National 
Nature Reserve (82°36′–83°50′E, 44°30′–45°09′N) in the 
southwestern part of Gurbantunggut Desert, Xinjiang Uygur 
Autonomous Region, China. Consistent with a typical continental 
climate, this region is extremely dry and has scarce rainfall 
and frequent dust storms (He et al., 2015). Additionally, winters 
and summers are long, whereas springs and autumns are short 
in this region. The annual sunshine hours reach approximately 
2,800  h. The annual precipitation is less than 100  mm, and 
rainfall events of ≤  5  mm and  >  10  mm account for 87.5 
and 4.3% of the total rainfall, respectively (Zheng et al., 2012). 
The annual potential evaporation is more than 1,600 mm (Yang 
et  al., 2017). The area is dominated by sunny days throughout 
the year; hence, precipitation is just an occasional event. The 
groundwater level is 1.50–2.30  m, and groundwater is the 
main water source for local plants and the desert ecosystem 
(Yang et  al., 2014b; Ma et  al., 2017).

H. ammodendron is a dominant woody species in the arid 
desert region, which grows naturally in a variety of habitats 
in the Asian and African deserts, i.e., gravel desert, clay desert, 
saline land, fixed and semi-fixed sandy lands (Tobe et  al., 
2000). Owning to its ecological roles in combating desertification 
and maintaining the desert forest community, H. ammodendron 
is considered a sustainer of arid desert ecosystems (Zhuang 
and Zhao, 2017). In the present research, 4  km2 typical plots 
of H. ammodendron forest were first chosen as our experimental 
plots. Then, some young H. ammodendron individuals were 
randomly selected as our experimental subjects. Here, the 
selection of young H. ammodendron was needed due to the 
maneuverability of the high-humidity exposure experiment 
involving the plant species (see the “Experimental design” 
section below).

Experimental Design
To test our first hypothesis that the high content of atmospheric 
water is the prerequisite for foliar water uptake, a natural 
rainfall pulse and a high-humidity exposure experiment were 
conducted in this study. Precipitation in this arid desert is 
very scarce and is only worth 10% of evapotranspiration; hence, 
the atmospheric water content is low under traditional sunny 
conditions (e.g., the daily average air relative humidity on 
sunny days ranges from 25 to 50% in this region). However, 
a high content of atmospheric water can be  reached during 
and following a rainfall event, which might result in direct 
water uptake via aerial organs. Similarly, a high-humidity 
exposure experiment could raise the atmospheric water content 
to a high level, which could also induce the emergence of 

foliar water uptake by the plant species. It is believed that 
the content of atmospheric water can be  represented as the 
air relative humidity (RH); thus, our experimental objectives 
can be  described as defining the causality between RH and 
foliar water uptake.

For the natural rainfall pulse experiment, three traditional 
sunny days (12th, 13th, and 16th July 2016) and a natural 
rainfall event (20th July 2016) were randomly selected as a 
humidity experiment to test the differences in water potentials 
between plant organs as well as the differences in RH between 
rainy and sunny days. The traditional sunny day was characterized 
by less than 10% cloud cover and the peaks of unimodal 
photosynthetic photon flux density curves greater than 
1,600  mmol  m−2  h−1. The selected rainfall event occurred at 
16:11–16:30 (local time, the same below) and lasted for 20 min. 
The total rainfall amount reached 3.56  mm. It was reported 
that the typical rainfall in the Gurbantunggut Desert is 
approximately 3–5 mm; thus, our selected rainfall was a typical 
rainfall pulse in this region (Zheng et  al., 2012). Within the 
rainy and sunny days, atmospheric water conditions (RH) and 
soil volumetric water content (Svwc) (30  cm) were monitored 
using a VP-4 sensor (Decagon Devices Inc., USA) and a 5-TE 
probe (Decagon Devices Inc., USA), respectively. The interval 
of data collection on both instruments was 1  min, and the 
data were recorded with a data logger (EM50, Decagon Devices 
Inc., USA). Additionally, water potentials in the assimilating 
branches (Ψab) and secondary branches (Ψsb) of H. ammodendron 
on rainy and sunny days were measured in this experiment. 
The occurrence of an inverse water potential gradient (Ψab > Ψsb) 
on the rainy day was regarded as confirmation of our first 
hypothesis (Goldsmith, 2013). The assimilating branches refer 
to the tender and succulent current-year branches (phylloclades) 
that take over the function of gas exchange from the degenerated 
leaves, thus minimizing evaporative water loss (Huang et  al., 
2003). In the present study, the secondary branch is defined 
as a twig on which assimilating branches converge (the 
assimilating branch was regarded as the first level branch). It 
is easy to distinguish the assimilating branch and the secondary 
branch on the basis of their morphology because their colors 
are glossy green and greyish white, respectively (Figure 1).

For the high-humidity exposure experiment, a young  
H. ammodendron individual plant with a basal diameter of  
4.2  cm roughly divided into two main branches was  
selected as our experimental subject (Figure 1). During the 
experiment, the aboveground part of the plant was divided 
into two types of branches: one type of branch was the  
treatment that was enclosed in a humidity chamber, while 
the other type was exposed to natural conditions and  
considered the control (Figure  1). The humidity chamber 
was  built of polymethylmethacrylate (PMMA) and had 
1.2 m × 1.2 m × 1.5 m dimensions. The joints between PMMA 
sheets were sealed with transparent adhesive tape. Additionally, 
in order to eliminate fluxes of water and heat between soil 
and air in the chamber, a multilayer low density polyethylene 
film (LDPF) was placed on the bottom of the humidity chamber 
(Figure 1). Atmospheric humidity inside the chamber was 
controlled by an ultrasonic humidifier placed on the LDPE, 
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and RH was maintained above 90% by turning the humidifier 
on or off (Figure 1). In addition, in this experiment, a pocket 
weather meter (Model 5000, KestrelMeters, USA) was hung 
in the chamber and used to quickly obtain RH status in the 
chamber. At the same time, two VP-4 sensors (Decagon Devices 
Inc., USA) were also hung on the treatment and control 
branches to record the real-time changes in RH and air 
temperature (T) inside and outside the chamber. RH and T 
were measured every 1  min and recorded with a data logger 
(EM50, Decagon Devices Inc., USA) (Figure 1). In this 
experiment, the high-humidity exposure experiment was 
conducted for 8  h from 20:00 on 25th July 2016 to 04:00 on 
26th July 2016. Within the experimental period, Ψab and Ψsb 
of H. ammodendron outside and inside the chamber were also 
measured. In addition, since the humidifying water was 18O 
labeled (c. 3008.52‰ δ18O) in the high-humidity exposure 
experiment (Figure 1), the emergence of the labeled 18O in 
assimilating branches and other organs can also demonstrate 
our first hypothesis. Here, the 18O-labeled water was composed 
of a mixture of groundwater (c. −14.39‰ δ18O) and water 
enriched in 18O (98%, Shanghai Research Institute of Chemical 
Industry, CHN). Because of the constraints of budget and 
experimental operability, it was difficult to implement multiple 
high-humidity chambers in the field to test the atmospheric 
water absorption and transport within the plant body. Therefore, 
the high-humidity exposure experiment was conducted only 
once in this study (Yan et  al., 2015; Wang et  al., 2016b).

To test the second hypothesis that the absorbed water will 
cause a variability in the water transport process and cause 
an inversion in water potentials from the SPAC and traditional 

water transport theories, the difference between Ψab and Ψsb 
of H. ammodendron was measured in both the rainfall pulse 
and high-humidity chamber experiments. In addition, the 
differences in the values of δ18O among the different plant 
organs and soil were measured in the high-humidity 
exposure experiment.

In this study, the outstanding characteristics of foliar water 
uptake would probably be  impeded by root water uptake. Thus, 
some inferior shoots (containing assimilating branches and 
secondary branches) of the treatment and control branches were 
cut. All the end cuts were immediately sealed with petrolatum, 
and the excised inferior shoots were then hung inside and 
outside the chamber to distinguish the effects of root and foliar 
water uptake (Figure 1). Therefore, the entire high-humidity 
exposure experiment was composed of four treatments: inside-
attached, inside-detached, outside-attached, and outside-detached. 
“Attached” represents the samples connected to the main stem, 
and “detached” represents the samples cut from the main stem; 
“inside” and “outside” represent the inside and outside of the 
high-humidity chamber. In addition, since the foliar water uptake 
might cause some changes in gas exchange traits, such as stomatal 
conductance (gs, mol CO2 m−2  s−1), transpiration rate (E, mmol 
H2O m−2  s−1), and instantaneous water use efficiency (WUEi, 
μmol CO2 mmol H2O), differences in these traits among the 
four treatments were also tested in this study.

Measurements
In the rainfall pulse experiment of this study, five young 
individual H. ammodendron plants with similar heights and 

FIGURE 1 | Design of the high-humidity exposure experiment.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Gong et al. Atmospheric Water Uptake by Plant

Frontiers in Plant Science | www.frontiersin.org 5 May 2019 | Volume 10 | Article 573

basal diameters (~1.5  m height and ~5  cm basal diameter) 
were randomly selected as subjects to test the differences in 
water potential between assimilating branches and secondary 
branches. Immediately after a natural rainfall pulse (20th July 
2016) and on three representative sunny days (12th, 13th, and 
16th July 2016), one shoot (containing the assimilating  
and the secondary branches) of each individual plant was 
collected (all the end cuts caused by sampling were immediately 
sealed with petrolatum) and sealed immediately in a plastic 
bag containing moist paper towels. The samples were subsequently 
kept in a cooler until the water potential was determined. The 
measurements of Ψab and Ψsb were taken using a dew point 
water potential instrument (WP4C, Decagon Devices, Pullman, 
WA, USA). The interval of water potential measurements was 
2  h, and the measurement was conducted from 20:00 to 4:00.

During the process of humidifying in the high-humidity 
exposure experiment, Ψab and Ψsb were also measured at 2  h 
intervals from 20:00 to 04:00. For the samples in the chamber, 
we  opened the door of the chamber every 2  h to cut the 
assimilating and the secondary branches to determine their 
differences in water potential. To decrease the effects of opening 
on the maintenance of high humidity in the chamber, the 
duration of each opening was less than 15  min. All samples 
from the inside and outside of the chamber with three replications 
were measured at each time (all the end cuts caused by sampling 
were immediately sealed with petrolatum). To test the effect 
of foliar water uptake on gas exchange traits, gs, E, and WUEi 
of three assimilating branches from inside and outside of the 
chamber were measured at the end of the high-humidity 
exposure experiment (4:00) using a portable photosynthesis 
system (LI-6400XT, Li-COR, Inc., Lincoln, NE, USA). After 
that, three samples of the assimilating branches, secondary 
branches, and trunk xylem from inside and outside of the 
chamber [the samples collected from the inside of the chamber 
were washed with tap water and dried with paper towels to 
avoid potential isotopic contamination of labeled water condensed 
on the surface of samples (Eller et  al., 2013)], as well as three 
samples of root xylem, rhizosphere soil, and bulk soil  
were carefully collected to identify the transport direction of 
18O water through the atmosphere, the assimilating branches, 
stems, roots, rhizosphere soils, and bulk soils. Meanwhile, three 
samples of taproot xylem, rhizosphere soil, and bulk soil of 
adjacent natural H. ammodendron plants were collected in order 
to test whether the 18O-labeled water was transported from 
the atmosphere to the soil via plant stem. Here, the significant 
difference in δ18O signature between humidifying and natural 
samples was used to illustrate the above water transport 
mechanisms. Following collection, all isotope samples were 
rapidly put in vials and sealed with parafilm. Subsequently, 
all samples were placed in a −20°C frozen box. The δ18O 
measurement was conducted at the Fukang Desert Ecosystem 
Observation and Experiment Station, Chinese Academy of 
Sciences. Specifically, water was extracted from the plant  
tissues and soil samples using a vacuum extraction instrument 
(LI-2000, Lica United, Beijing, CHN), and the measurement 
of oxygen isotopic compositions was conducted using an isotope 
ratio infrared spectroscopy (IRIS) analyzer-the Liquid Water 

Isotope Analyzer (LWIA, DLT-100, Los Gatos Research Inc., 
Mountain View, CA, USA). The analytical precision of individual 
measurements was ±  0.25‰ for δ18O (Dai et  al., 2015). The 
isotopic abundance was expressed in delta notation (δ) in parts 
per thousand (‰) as δ  =  (Rsample/Rstandard  −  1)  ×  1,000, where 
Rsample and Rstandard are the molar ratios of heavy to light isotope 
in the sample and the international standard (Vienna Standard 
Ocean Water for 18O/16O), respectively.

Data Analysis
In this study, the paired Student’s t-test was used to test the 
differences in RH, T, Svwc, and Ψab among different atmospheric 
humidity levels. In addition, the unpaired Student’s t-test was 
used to indicate the differences in nocturnal Ψab and Ψsb at 
each measurement time on rainy and sunny days. All statistical 
analyses were conducted using SPSS 17.0 (SPSS Inc., Chicago, 
USA). All data were tested for normality and variance constant, 
and p  <  0.05 was considered to be  statistically significant.

RESULTS

Atmospheric Water Uptake via 
Assimilating Branches Following  
a Rainfall Pulse
Our results showed that the RH values at any time during 
the rainfall pulse were significantly higher than those during 
the three typical sunny days (Figure 2A) (p  <  0.01). The 
rainfall pulse also had a long-term effect, maintaining RH at 
a high level for 12 h after the rainfall (Figure 2A). In summary, 
the rainfall pulse increased the amount and availability of 
atmospheric water and had a great influence on the Svwc of 
the topsoil (Figure 2B). During the three typical sunny days, 
Ψsb  >  Ψab was maintained at each measurement occasion at 
night (Figure 3A). However, the inverse water potential gradient 
between Ψsb and Ψab occurred during the rainy day (Ψab  >  Ψsb) 
(Figure 3B). Specifically, after the rainfall pulse, Ψsb was lower 
than Ψab from 22:00 to 04:00, whereas the other periods showed 
the opposite trend (Figure 3B). Additionally, the nocturnal 
mean value of Ψab was higher on the rainy day than on the 
sunny days (Figure 3C).

Atmospheric Water Uptake via 
Assimilating Branches in the  
High-Humidity Exposure Experiment
Relationships between Ψab and Ψsb differed among the four 
experimental treatments in the high-humidity exposure 
experiment (Figure 4). Specifically, Ψab  >  Ψsb occurred in  
inside-attached and inside-detached treatments (Figures 4A,B), 
whereas outside-attached and outside-detached treatments 
showed the opposite result (Ψsb  >  Ψab) (Figures 4C,D). The 
duration of Ψab  >  Ψsb in the inside-attached treatment was 
longer than that in the inside-detached treatment (Figures 4A,B). 
All observed times showed Ψsb  >  Ψab in both the outside-
attached and outside-detached treatments (Figures 4C,D).  
In addition, the value of δ18O in the assimilating branches of 
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the inside-attached treatment was higher than that in the 
outside-attached treatment; meanwhile, the assimilating branch 
δ18O of the inside-detached treatment was higher than that 
of the outside-detached treatment (Figure 5).

Difference in Water Transport Between the 
Inside and Outside of the Chamber
In the inside-attached treatment, the value of δ18O was the 
highest in assimilating branches, intermediate in secondary 
branches, and the lowest in trunk xylem (Figure 5). In the 
inside-detached treatment, although the water pathway was 

cut-off from assimilating branches to trunk xylem, our results 
showed that the value of δ18O was substantially higher in the 
assimilating branches than in the secondary branches (Figure 5). 
In contrast, the values of δ18O were not different among the 
assimilating branches, secondary branches or trunk xylem in 
the outside-attached and outside-detached treatments (Figure 5). 
In addition, the values of δ18O in assimilating branches, secondary 
branches, and trunk xylem from outside the humidity exposure 
chamber were lower than those from inside the chamber 
(Figure  5). The values of δ18O in taproot xylem, rhizosphere 
soil, and bulk soil were not different between the humidifying 
and natural samples (Figure 6).

FIGURE 2 | Changes in atmospheric and soil moisture on a rainy day and three sunny days. (A) air relative humidity, (B) volumetric water content of topsoil. 
The bars represent a rainfall pulse at 16: 11–16: 30 on 20th July 2016. The red line represents the changes in atmospheric and soil moisture following a  
rainfall pulse on 20th July 2016. The purple, green and blue lines represent the changes in atmospheric and soil moisture on three representative sunny days 
(12th, 13th, and 16th July 2016), respectively. The t’s and p’s are the results of the paired Student’s t-test for the variability of atmospheric and soil moisture 
between rainy and sunny days.
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Response of Plant Water Status and Gas 
Exchange to Atmospheric Water Uptake
Our results showed that the predawn Ψ, gs, E, and WUEi in 
the assimilating branches were higher inside the high-humidity 
exposure chamber than they were outside the chamber (Figure 7). 
Physiological measurements indicated that both foliar water 
uptake and root water uptake had great influence on predawn 
Ψ, gs, and E values (Figures 7A–C). Interestingly, the variability 
of WUEi was seemingly only influenced by foliar water uptake 
because the attached and detached treatments had similar WUEi 
values both inside and outside the chamber (Figure 7D). In 
addition, RH was significantly higher inside the high-humidity 
exposure chamber than outside (p  <  0.05), whereas T did not 
differ between the inside and outside of the chamber (Figure 8). 
This indicated that the difference in plant water status and 
gas exchange inside and outside the chamber was not affected 
by the T but was the result of the difference in RH.

DISCUSSION

Atmospheric Water Uptake via 
Assimilating Branches
In arid desert regions, rainfall is considered the most readily 
obtainable atmospheric water for plants. A large proportion 
of rainfall is intercepted by plant foliage and is generally 
assumed to evaporate back into the atmosphere or fall onto 
the topsoil in arid desert ecosystems (Breshears et  al., 2008). 
However, our results showed that a reverse relationship in 
water potential (Ψab  >  Ψsb) appeared after a rainfall pulse 
(Figure  3B), which indicated that the assimilating branches 
directly absorbed rainfall water from the atmosphere (Goldsmith, 
2013; Yan et  al., 2015). It is believed that the availability of 
atmospheric water might be  the decisive condition of foliar 
water uptake in arid desert regions (Zhuang and Ratcliffe, 
2012; Yang et  al., 2017). In this regard, RH might have a 
significant relationship with the occurrence of foliar water 
uptake. The results of the present study showed that the RH 
increased significantly after a rainfall event (Figure 2A) and 
then caused Ψab  >  Ψsb (Figure 3B). This result suggested that 
the high RH level was the prerequisite for foliar water uptake 
in this arid desert region. Similar results were also found in 
previous studies, e.g., the pseudostem of Vellozia flavicans and 
leaves of Juniperus absorbed atmospheric water after rainfall 
events (Oliveira et al., 2005; Breshears et al., 2008). In addition, 
the relationship between RH and the occurrence of foliar water 
uptake was also confirmed in our high-humidity exposure 

FIGURE 3 | The compared relationship of the assimilating branches to the 
secondary branches of H. ammodendron in water potential on the sunny (A) 
and rainy days (B), as well as the nocturnal mean water potential of assimilating 

FIGURE 3 | branches between sunny and rainy days (C). The asterisks at 
each measurement time in panels (A) and (B) represent the significant 
differences in water potential between the assimilating branches and the 
secondary branches (unpaired Student’s t-test; *, p < 0.05; **, p < 0.01). 
Different lowercase letters on the top of the bars in panel (C) represent the 
significant difference in nocturnal mean water potential of assimilating branches 
between rainy and sunny days, the t’s and p’s are the results of the paired 
Student’s t-test. Values are shown as the mean ± SE.

(Continued)

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Gong et al. Atmospheric Water Uptake by Plant

Frontiers in Plant Science | www.frontiersin.org 8 May 2019 | Volume 10 | Article 573

experiment. Our results demonstrated an inverted water potential 
gradient between the assimilating branches and secondary 
branches (Ψab  >  Ψsb) (Figures 4A,B). We  also found that the 

labeled 18O water appeared in varying amounts in the assimilating 
and secondary branches inside the humidity chamber, whereas 
the 18O abundances did not differ between the two types of 

FIGURE 4 | Relationships in water potential between the assimilating branches and the secondary branches of H. ammodendron in inside-attached (A), inside-
detached (B), outside-attached (C) and outside-detached (D) treatment in the high-humidity exposure experiment. “Attached” represents the samples connected to 
the main stem, and “detached” represents the samples cut from the main stem; “inside” and “outside” represent the inside and outside of the high-humidity 
chamber. Values are shown as the mean ± SE.

FIGURE 5 | Differences in the value of δ18O across the assimilating branches, secondary branches, trunk stem, taproot xylem and soil inside and outside of the 
chamber, as well as in the same plant organs between the inside and outside of the chamber of the high-humidity exposure experiment. “Attached” represents the 
samples connected to the main stem, and “detached” represents the samples cut from the main stem; “inside” and “outside” represent the inside and outside of the 
high-humidity chamber. Values are shown as the mean ± SE.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Gong et al. Atmospheric Water Uptake by Plant

Frontiers in Plant Science | www.frontiersin.org 9 May 2019 | Volume 10 | Article 573

branches outside the chamber (Figure 5). These results also 
indicated that the assimilating branches absorbed atmospheric 
water at high RH levels.

A rainfall event of approximately 6–12  mm was considered 
effective precipitation for H. ammodendron in the arid  
desert region because this amount of rainfall could overcome 
crown interception to supply soil water and could trigger a 
cascade of plant physiological responses (Yang et  al., 2014a). 
However, our study showed that the assimilating branches of  
H. ammodendron absorbed atmospheric water through 
assimilating branches at 3.56  mm rainfall (Figure 3B).  

This result suggested that even inappreciable precipitation, such 
as light rain, dew, and fog, might not directly replenish soil 
moisture but could play an important role in plant water 
physiology by rehydrating plant tissues (Dawson, 1998; Burgess 
and Dawson, 2004). Additionally, our study found that foliar 
water uptake appeared at high RH levels, which was not observed 
during sunny days. However, exactly what level of RH would 
control the switch to atmospheric water uptake still remains 
unclear and warrants continuous research in the future.

Previous studies indicated that the tomentum on plant aerial 
organ surfaces was the location of atmospheric water absorption 
by the plant (Vitarelli et  al., 2016). It was reported that plant 
aerial organs without the tomentum would not absorb water 
from the atmosphere (Grammatikopoulos and Manetas, 1994; 
Zhuang and Ratcliffe, 2012). However, our results showed an 
opposite trend: the tomentum-less assimilating branches of  
H. ammodendron were also able to absorb water from the 
atmosphere under certain conditions (Figures 4, 5). These 
results suggest that there might be  other specialized structures 
on the surfaces of assimilating branches of H. ammodendron 
that enable the plant to absorb water from the atmosphere. 
Previous scanning electron microscopy studies indicated that 
the epidermal structure of the assimilating branches of H. 
ammodendron was uneven and crinkled (Liu et  al., 2016). This 
is conducive to the retention of atmospheric water on the 
surface of plants and thus might be advantageous in absorbing 
water from the atmosphere (Eller et al., 2013; Pan et al., 2016). 
In addition, a recent fluorescence labeling study indicated that 
the aqueous pores throughout cuticles could allow water transport 
from the atmosphere into the mesophyll of assimilating branches 
of H. ammodendron (Wang et al., 2016b). These aqueous pores 
were formed from the continuous permanent dipoles and 

FIGURE 6 | Differences in the value of δ18O of the taproot xylem, rhizosphere 
soil and bulk soil between the experimental and the natural H. ammodendron 
individuals. Values are shown as the mean ± SE.

FIGURE 7 | Variations in water status and gas exchange-related traits of the assimilating branches among the four experimental treatments in the high-humidity 
exposure experiment. “Attached” represents the samples connected to the main stem, and “detached” represents the samples cut from the main stem; “inside” and 
“outside” represent the inside and outside of the high-humidity chamber. Water status and gas exchange-related traits include water potential (A), stomatal 
conductance (B), transpiration rate (C), and instantaneous water use efficiency (D). Values are shown as the mean ± SE.
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ionizable groups across cuticles of the leaf surface under the 
conditions of high humidity and water deposition (Schönherr, 
2006). It has been shown that direct water uptake by distal 
leaves from moist air might be  mediated by the mucilage 
layers on the leaf surface and/or the epistomatal mucilage plugs 
set into the substomatal cavity due to the water binding capacity 
of acid mucopolysaccharides (Zimmermann et  al., 2004, 2007; 
Westhoff et  al., 2009). In many species, mucilage cells were 
also detected in the inner walls of xylem conduits, and the 
xylem mucilage was considered to play important roles in 
shifting water from the mucilage layers and epistomatal plugs 
to the xylem vessels via the apoplast-symplast pathway 
(Zimmermann et al., 2007; Mastroberti and de Araujo Mariath, 
2008). Deng et al. (1998) proved that the assimilating branches 
of H. ammodendron contain abundant mucilage cells; thus, 
mucilage cells might be  a potential location for atmospheric 
water uptake by assimilating branches and an approach 
transporting atmospheric water from the assimilating branches 
to the stem. Therefore, external microstructures, such as rough 
epidermis, aqueous pores, and mucilaginous substances, might 
be  potential pathways for atmospheric water absorption in 
tomentum-less plants such as H. ammodendron (Zimmermann 
et al., 2007; Liu et al., 2016; Pan et al., 2016; Wang et al., 2016b).

Effect of Foliar Water Uptake on Water 
Transport and Physiological Performance
Root water uptake is considered the primary method by 
which plants absorb water in traditional plant physiology 

literature (Emery, 2016). Water transport from soil into the 
atmosphere in the SPAC framework dominated the scientific 
discussion on plant water movement for many years (Philip, 
1966). However, whether absorbed atmospheric water can 
transport from leaves to the soil remains unclear (Eller et al., 
2013; Goldsmith, 2013; Yan et  al., 2015; Emery, 2016). The 
current study showed that the values of δ18O differed inside 
and outside of the high-humidity chamber (Figure 5), as 
well as among the assimilating branches, secondary branches 
and stems inside the high-humidity chamber (Figure 5). 
Additionally, the values of δ18O in the taproot xylem, 
rhizosphere soil, and bulk soil did not significantly differ 
between the humidifying and natural samples (Figure 6). 
These results suggested that the absorbed atmospheric water 
was transported from the assimilating branches to the trunk 
stem, but not to the taproot xylem. The above might 
be  determined by the interrelationship between foliar water 
uptake, root water uptake, and water storage in trunk stems. 
The opposite direction of water transport during foliar water 
absorption and transpiration might hinder the downward 
movement of water uptake via assimilating branches at night. 
Our results showed that Ψsb  >  Ψab during sunny days in 
the rainfall pulse experiment (Figure 3A) and in outside-
attached and outside-detached treatments in the high-humidity 
experiment (Figures 4C,D), which suggested that transpiration 
caused root absorption of soil water at night. In addition, 
stem water storage via a unique wood structure, i.e., internal 
secondary phloem through successive cambia, is considered 
an important strategy for plants surviving in a water-limited 

FIGURE 8 | Changes and differences in air temperature (T) and air relative humidity (RH) during the experimental time and between the inside and outside of the 
chamber of the high-humidity exposure experiment. Experimental time ranges from 20:00 on 25th July to 4:00 on 26th July 2016, and samples were collected  
at 20:00, 22:00, 0:00, 2:00 and 4:00. The t’s and p’s are the results of the paired Student’s t-test. Values are shown as the mean ± SE.
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environment (Robert et  al., 2014; Barraclough et  al., 2018), 
including H. ammodendron (Li et  al., 2015). Thus, the small 
amount of labeled water in the trunk stem might result 
from the dilution effect of stored water in the trunk stem. 
On the other hand, the absorbed atmospheric water was 
not transported from the assimilating branches to the taproot 
xylem and soils, likely because the foliar water uptake was 
a subsidiary strategy of desert plants such as H. ammodendron 
in adapting to extreme drought; and this secondary  
strategy might not be  sufficient alone for sustaining plant 
growth (Yan et  al., 2015). In this study, the basal diameter 
of the selected H. ammodendron individual in the high-
humidity exposure experiment was 4.2  cm. Based on the 
previously established relationship between basal diameter 
of H. ammodendron and its root depth under similar growth 
conditions (Xu et  al., 2016), the calculated root depth of 
the selected individual plant in the current study was enough 
to tap groundwater, in conformity with other reports that 
concluded that H. ammodendron was a groundwater-dependent 
desert plant (Liu et  al., 2018; Wu et  al., 2019). Thus, 
atmospheric water might merely be a subsidiary water resource 
in the sustainable survival of desert woody plants. Our results 
are consistent with a prior study that demonstrated that 
the atmospheric water of foliar uptake in coastal redwood 
Sequoia sempervirens (D. Don) only accounted for a small 
fraction of transpirational demand (Dawson, 1998; Burgess 
and Dawson, 2004). However, atmospheric water is of great 
significance to plants since the trees possess a relatively 
loose stomatal control of water loss, and increases in leaf 
surface wettability and water status could help suppress water 
loss from leaves (Burgess and Dawson, 2004). Atmospheric 
water may occupy a decisive position in the regulation of 
the water balance of plants despite low availability. Additionally, 
it was reported that atmospheric water would transport from 
leaves to rhizosphere soils and neighboring plants via the 
inverse and lateral hydraulic redistribution under long-term 
exposure to high humidity (Caldwell et  al., 1998; Eller et  al., 
2013; Cassana et  al., 2016). In that case, foliar water uptake 
might play important roles in spatial water redistribution 
and community maintenance. However, in this study, we  did 
not detect labeled atmospheric water in rhizosphere soils of 
experimental and adjacent natural trees because the high-
humidity exposure experiment only lasted one night. The 
long-term subsidiary benefits of foliar water uptake deserve 
more attention in future studies in arid desert regions. In 
addition, quantifying the proportion of atmospheric water 
in a plant is also an important aspect in analyzing its 
influences on ecosystem maintenance (Dawson, 1998;  
Kidron, 2000; Corbin et  al., 2005).

Atmospheric water may play a role in regulating 
physiological performance through foliar water uptake 
(McHugh et  al., 2015; Tomaszkiewicz et  al., 2015). As an 
important indicator of plant water status (Elsayed et  al., 
2011), the improvement in water potential of the assimilating 
branches suggested that atmospheric water decreased  
water stress in the plant. Previous studies suggested that the 
hygroscopic atmospheric depositions on or around the stomata 

transform the leaf surface around the stomata from hydrophobic 
to hydrophilic, which could activate the stomata in assimilating 
branches of H. ammodendron during high-humidity periods 
(Burkhardt, 2010; Wang et  al., 2016b). During this process, 
water transport through assimilating branches might result 
in some changes in water status and gas exchange. In this 
study, the predawn Ψ, gs, E, and WUEi in the assimilating 
branches differed between the inside and outside of the 
chamber (Figure 7). This indicated that foliar water  
uptake had an obvious relationship with physiological 
performance. In addition, traditional plant physiology theories 
demonstrate that plants could change their water transport-
related traits to improve the capability of water absorption 
from soils to roots (Novák, 2012); thus, root water uptake 
also has an obvious relationship with water transport-related 
traits. In this study, foliar and root water uptake occurred 
simultaneously at night (Figures 5, 7), and our results showed 
that foliar water uptake, root water uptake and their interactions 
had significant influences on predawn Ψ, gs and E 
(Figures 7A–C). The variability of WUEi was only determined 
by the foliar water uptake (Figure 7D) and may be  due to 
the activation of stomata of assimilating branches inside the 
high-humidity chamber, which contributed to the water 
vaporization rate through transpiration (Ben-Asher et al., 2010; 
Wang et  al., 2016b).

CONCLUSIONS

The current study highlights that H. ammodendron, a 
tomentum-less and deep-rooted tree, could absorb 
atmospheric water, and a high level of atmospheric water 
was the prerequisite for such foliar water acquisition strategy. 
Our results also found that the absorbed atmospheric water 
was transported from the assimilating branches to the 
secondary branches and the trunk stems but not to the 
taproot xylem or the soil. This suggested that foliar water 
uptake of H. ammodendron had the opposite mechanism 
as the soil-plant-atmosphere system and traditional water 
physiology theories. In addition, the foliar and root water 
uptakes affected the water potential, stomatal conductance, 
transpiration rate, and instantaneous water use efficiency. 
These results indicated that foliar water uptake could result 
in variation in water status and gas exchange of H. 
ammodendron. Atmospheric water might be  a kind of 
subsidiary water resource for the sustainable survival of 
deep-rooted desert trees with similar characteristics as H. 
ammodendron and warrants further research on this topic 
in various arid regions of the world.
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