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Washington State produces about 70% of total fresh market apples in the United States.
One of the primary goals of apple breeding programs is the development of new
cultivars resistant to devastating diseases such as fire blight. The overall objective of
this study was to investigate high-throughput phenotyping techniques to evaluate fire
blight disease symptoms in apple trees. In this regard, normalized stomatal conductance
data acquired using a portable photosynthetic system, image data collected using
RGB and multispectral cameras, and visible-near infrared spectral reflectance acquired
using a hyperspectral sensing system, were independently evaluated to estimate
the progression of fire blight infection in young apple trees. Sensors with ranging
complexity – from simple RGB to multispectral imaging to hyperspectral system –
were evaluated to select the most accurate technique for the assessment of fire blight
disease symptoms. The proximal multispectral images and visible-near infrared spectral
reflectance data were collected in two field seasons (2016, 2017); while, proximal
side-view RGB images and multispectral images using unmanned aerial systems were
collected in 2017. The normalized stomatal conductance data was correlated with
disease severity rating (r = 0.51, P < 0.05). The features extracted from RGB images
(e.g., maximum length of senesced leaves, area of senesced leaves, ratio between
senesced and healthy leaf area) and multispectral images (e.g., vegetation indices)
also demonstrated potential in evaluation of disease rating (|r| > 0.35, P < 0.05). The
average classification accuracy achieved using visible-near infrared spectral reflectance
data during the classification of susceptible from symptomless groups ranged between
71 and 93% using partial least square regression and quadratic support vector machine.
In addition, fire blight disease ratings were compared with normalized difference spectral
indices (NDSIs) that were generated from visible-near infrared reflectance spectra. The
selected spectral bands in the range 710–2,340 nm used for computing NDSIs showed
consistently higher correlation with disease severity rating than data acquired from
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RGB and multispectral imaging sensors across multiple seasons. In summary, these
specific spectral bands can be used for evaluating fire blight disease severity in apple
breeding programs and potentially as early fire blight disease detection tool to assist in
production systems.

Keywords: proximal sensing, unmanned aerial systems, normalized difference spectral indices, classification,
Malus pumila Mill

INTRODUCTION

Apple (Malus pumila Mill) belongs to the Rosaceae family, and
is the most consumed and valued fruit crop in the United States
(Lu and Lu, 2017) and other parts of the world. The United States
is the second largest apple producer worldwide and Washington
State has the nation’s top apple production area. Washington
State’s favorable climate with low humidity assists in the control
of many of the typical apple diseases (Sutton, 1996). However,
the introduction of new cultivars with different levels of disease
susceptibility has revealed that in some growing seasons, the
bacterial disease fire blight can be a problem. Fire blight is a major
concern to commercial fruit production, as it results in significant
production losses (Sutton, 1996; Salm and Geider, 2004). The
causative agent of fire blight, Erwinia amylovora (Bereswill et al.,
1995) can infect flowers, fruits, shoots, and the rootstock of the
tree, potentially causing flower, tissue, and/or tree death (Norelli
et al., 2003). E. amylovora uses wounds or natural openings as
well as nectarthodes to enter the host (Vanneste, 2000).

Blackened crooked shoots (i.e., shepherd’s crook), bacterial
ooze, necrotic leaves, and the formation of necrotic lesions and
cankers are symptoms that characterize typical fire blight shoot
infections (Van der Zwet et al., 2012). Fire blight infections can
result in structural damage and potentially tree death. Several
factors impact the incidence and severity of fire blight symptoms
such as environmental conditions, cultivar susceptibility, host
vigor, amount of inoculum present, and management practices
(Van der Zwet et al., 2012). Most modern commercial apple
cultivars are susceptible to fire blight and current control
methods (e.g., pruning, antibiotics) are not effective against all
disease phases (e.g., floral, shoot, rootstock) and/or are not
sustainable. One major limitation of disease control is the ability
of pathogens to survive for a long period of time, becoming
active when favorable weather conditions prevail. The use of
antibiotics for control is limited by both legislation and to
prevent the development of resistant strains (Lespinasse and
Aldwinckle, 2000). Breeding new cultivars of apple that are
resistant to fire blight is a logical progression to solve this issue
(Kostick et al., 2019). The Washington State University (WSU)
apple breeding program focuses on producing long storing, high
quality cultivars developed for local production and has recently
added resistance to fire blight as an important selection trait
(Harshman et al., 2017).

Phenotyping fire blight susceptibility is challenging due to
the large impacts of environment and host growth status on
susceptibility, quantitative resistance, and the inconsistent nature
of fire blight (Brown, 2012). Fire blight susceptibility to shoot
infection has typically been evaluated by measuring the current

season’s shoot length and the lesion (necrosis) or healthy tissue
length. The proportion of healthy or necrotic tissue can be
calculated, which provides a standardized measure of infection
(Durel et al., 2009). As such visual evaluations are labor intensive
and subjective; the development of an accurate and rapid sensing
technique for high-throughput screening of fire blight symptoms
in apples would be beneficial.

In recent years, high-throughput phenotyping using non-
invasive imaging and sensing systems has made advances toward
evaluation of anatomical, physiological, and biochemical
properties in plants (Mahlein, 2016). High-throughput
phenotyping is currently being developed for grain crops
such as wheat (Casadesús et al., 2007; Hosoi and Omasa, 2009;
Römer et al., 2011), corn (Trachsel et al., 2011; Weber et al., 2012;
Yang et al., 2014), and rice (Tanabata et al., 2012; Hairmansis
et al., 2014). In spite of the progress in sensing systems, there are
limited studies on optical spectrometric and imaging techniques
for phenotyping diseases in trees. Current studies in sensor-based
disease detection are focused on identifying onset of disease
for management applications (Bock et al., 2008; Wijekoon
et al., 2008; Neumann et al., 2014). Meanwhile, in breeding
programs, the focus has been to quantify the extent of disease
(resistant/susceptible) under inoculated conditions, excluding
the genotypic differences in morphology.

In a controlled environment study (Delalieux et al., 2007),
hyperspectral reflectance spectra were used to detect apple
scab disease in tree leaves. Susceptible and resistant apple
cultivars were inoculated with conidia of Venturia inaequalis.
The study indicated that spectral reflectance between 1,350–
1,750 nm and 2,200–2,500 nm were effective in distinguishing
between healthy and infected leaves. The area under the receiver
operator characteristic plots, indicated as c-value, was used
as a measure of the discriminatory performance. A good
predictability in classification of infected and healthy trees using
logistic regression, partial least squares logistic discriminant
analysis, and tree-based modeling (c-value > 0.8) was achieved.
Similarly, Bauriegel et al. (2014) assessed the disease rating
(caused by a fungal pathogen infection, Bremia lactucae) on
10 Butterhead and Batavia lettuce cultivars in a semi-controlled
environment. Leaves were inoculated by spraying a conidia
suspension and cultivars were rated visually for 14 days.
A chlorophyll fluorescence imaging system was used to capture
images each day after dark adaptation of leaves for 10 min
from leaf discs. The ratio of variable fluorescence to maximum
fluorescence was calculated for each leaf disc. In pixel-wise
analysis of images, in 10–14 days after inoculation, a significant
decrease in the ratio up to 0.35 in susceptible cultivars was
observed, while the ratio was 0.10 for resistant cultivars. The
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potential for rapid and automated cultivar resistance detection
using their sensing system was reported. Díaz-Varela et al. (2015)
used unmanned aerial vehicle (UAV)-based imaging to estimate
olive tree height and crown diameter for breeding applications.
The results showed 3–16% of root mean square error between the
sensing data estimates and field measurements. Other studies in
literature (Gomez-Candon et al., 2014; Virlet et al., 2014) report
the application of multispectral imaging (RGB, near infrared, and
thermal infrared) to assess apple tree response to drought.

Diverse studies demonstrated the potential of sensing
techniques for disease detection in both controlled environment
and field conditions for precision agriculture applications.
Khanal et al. (2017) reviewed the application of thermal sensing
for stress monitoring and Dlamini et al. (2019) described
numerous remote sensing indices that are relevant for disease
mapping. Therefore, remote sensing techniques are widely
employed in monitoring and managing crops (Usha and Singh,
2013). For instance, Salgadoe et al. (2018) found that the
simplified ratio vegetation index (SRVI) extracted from the
high resolution Worldview-3 satellite imagery was strongly
correlated with four levels of disease severity resulting from
Phytophthora root rot in avocado trees. Similarly, Zarco-Tejada
et al. (2018) evaluated the performance of spectral signatures
derived from airborne imaging spectroscopy and thermography
in detecting the early stage of Xylella fastidiosa infection in
olive trees. In addition, Al-Saddik et al. (2018) used red–
green–blue and hyperspectral imaging to detect two grapevine
diseases: Yellowness and Esca. In their study, texture and spectral
features extracted from imaging data were able to classify
healthy and infected grapevine leaves. Furthermore, the complex
data acquired using these sensing techniques required advanced
tools for data processing and analysis. Tzionas et al. (2005)
extracted morphological features to classify leaves through image
processing integrated feed forward neural network approaches.
Machine learning methods improve disease detection accuracies,
especially if the methods are integrated with hyperspectral data
(Golhani et al., 2018) in a 3D environment (Roscher et al.,
2016). Other studies reporting the use of machine learning and/or
deep learning methods for disease detection/classification can be
found in literature (Meunkaewjinda et al., 2008; Phadikar and Sil,
2008; Weizheng et al., 2008).

In this research, multiple sensing techniques at different
scales (proximal and remote) were evaluated to assess the fire
blight infection levels in different apple cultivars, important
breeding parents, and seedlings. Prior to utilizing technology
to perform sensor-based high-throughput phenotyping to assess
disease severity in a specific crop (such as fire blight resistance
in apple), it is important to evaluate and understand the benefits
and limitations of each technique. Such evaluations are more
challenging in field conditions as multiple season data is required
for confident evaluation of sensors and assess cultivar response
to stress conditions. In this regard, the current study contributes
to the application of high-throughput sensor-based assessment
of fire blight disease symptoms using several proximal and
remote sensing technologies for high-throughput phenotyping
in apple under field conditions. Such studies on fire blight
symptoms or other disease evaluation in apple breeding program

has not been reported. The studies on disease detection for
precision agricultural applications (e.g., crop management) may
not be applicable in breeding programs, as the studies often
focus on one or few varieties and early detection of diseases;
while, 10s–100s of varieties are assessed for a scale in disease
severity in breeding studies. Therefore, three major sensing
approaches at varying complexity that were independently
evaluated in this study were: (1) side-view RGB imaging to
detect necrosis extent in multiple cultivars; (2) top-view remote
sensing using multispectral imaging at different scales; and (3)
proximal hyperspectral sensing (350–2,500 nm). In addition
to disease rating by manual methods, stomatal conductance
was measured to understand the physiological changes in the
canopy upon infection.

MATERIALS AND METHODS

Plant Materials and Inoculation
Data collection was performed on a set of 72 unique apple
individual trees (e.g., cultivars, important breeding parents,
seedlings). The trees were part of a larger planting, located
at the WSU Columbia View Orchard, Douglas County, WA,
United States (47◦33′52.1′′N, 120◦14′47.3′′W). They were
budded onto M.111 rootstocks and planted with 82 cm
spacing between trees. Full details of the germplasm, orchard
establishment and maintenance can be found in Kostick et al.
(2019). Freeze-dried E. amylovora 153n was used for inoculation
and inoculum was diluted using 0.05 M dibasic phosphate buffer,
pH 7 to a concentration of 5 × 108 CFU mL−1 in 2016 and
1 × 109 CFU mL−1 in 2017. Three to ten independent, actively
growing shoots with ideally ≥15 cm of growth were chosen per
tree for inoculation on April 28–29, 2016 and May 18, 2017. In
2017, 68 trees were evaluated as four trees died. Kostick et al.
(2019) describes the inoculation procedure in detail.

Data collection using multiple sensors (Supplementary
Figure S1 and Supplementary Table S1) was performed as
described in detail in the following sessions. Most of the
sensor data collection was performed in complete-disease
developmental stages, which corresponded to about 40 days
after inoculation (DAI; 9 June 2016 and 27 June 2017). The
hyperspectral reflectance data was also collected at mid-disease
development stages at about 23 DAI (19 May 2016 and 13 June
2017). Visible development of disease symptoms ceased at about
40 DAI and the disease symptoms were manually/visually rated
as described in the following session at that time.

Disease Severity Rating and Stomatal
Conductance
Several disease severity rating systems are used to quantify
the severity of fire blight infection (Van Der Zwet and Keil,
1979). These ratings are based on proportion of current season’s
growth that was blighted or healthy, percentage of shoots
that were infected per tree (i.e., incidence), and the age of
wood that a lesion progressed into (i.e., infected). As ground
reference data (both years), the length of current season’s
shoot growth was measured at inoculation in 2016 or at
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the time of lesion measurement in 2017. As described by
Kostick et al. (2019), disease progression within the current
season’s shoot growth was evaluated by measuring the length
of non-necrotic (i.e., healthy) tissue in 2016 or length of
necrotic fire blight lesions in 2017. From these measurements,
the proportion of healthy tissue was calculated on a given
shoot and was averaged for each tree. These disease severity
ratings are described as the proportion of shoot length blighted
henceforth. Each shoot was also rated based on the age of
wood that the lesion extended into with 0, 1, 2, and 3
representing no infection, first year, second year, and third year
wood, respectively. When a lesion extended into the previous
season’s wood or into third year wood, the response was
considered highly susceptible. In symptomless responses, no
lesions were visible and only minor responses were observed on
the inoculated leaves. In 2016, average disease severity rating
for each tree was used as ground reference data; while in
2017, the individual shoots that were used for hyperspectral
data collection were used as ground reference data during
hyperspectral data analysis, in addition to average disease
severity rating for individual tree during RGB and multispectral
image data analysis.

In 2017, a portable photosynthesis system (LI-6800, LI-
COR Biosciences, Lincoln, NE, United States) was used to
collect stomatal conductance data at the complete disease
development stage (about 40 DAI) from 20 trees (subset
of 72). The rationale behind the use of this system was
to evaluate whether the physiological measurements such as
stomatal conductance could be used as alternative to disease
severity rating. Data were collected from three healthy and
three inoculated leaf samples from each of the 20 trees. The
stomatal conductance data were normalized by subtracting
the inoculated leaves from healthy leaves in each cultivar to
eliminate the cultivar effect on stomatal conductance values.

The stomatal conductance of healthy leaves ranged between
186 and 473 mmol.m−2.s−1.

RGB Image Acquisition, Image
Processing, and Feature Extraction
In regard to sensor data, the sensors with ranging complexity –
from simple RGB to multispectral imaging to hyperspectral
system –were independently evaluated. This is important for
practical application in disease symptoms evaluation as the
sensor should be easy to use and data processing should be
simple for breeders to adopt the technology for high-throughput
phenotyping. The rationale behind the use of RGB imaging
system to evaluate disease symptoms was that the disease rating
was directly associated with visible symptoms and measure of
length of necrotic fire blight lesions, which could be captured
using RGB imaging. In regard to the use of multispectral
imaging at different scales (proximal and remote) for disease
resistance evaluation, it was hypothesized that although limited
shoots were inoculated within the tree canopy, the presence
of fire blight pathogen may induce overall canopy stress
response that can be captured using generic vegetation indices
extracted from multispectral images. The rationale behind the
use of hyperspectral system was to capture the entire spectral
reflectance response of the leaves to the disease, so as to derive
novel spectral indices that can be translated into customized
multispectral imaging sensors that can be integrated with ground
or aerial platforms in future. The details on multispectral and
hyperspectral data collection and analysis is described in the
following sessions.

An RGB digital camera (Canon PowerShot SX260HS,
Carlstadt, NJ, United States) with resolution of 4000 × 3000
was used to capture side-view images of the trees with a
white background board placed behind each tree (in 2017).

FIGURE 1 | (a) Original RGB side-image with red, green, and blue lines in right side showing the relative gray scale intensities in the R, G, and B channels,
respectively, of the yellow line highlighted in the image; (b) processed RGB image where the senesced leaves identified during image processing are marked in
yellow; and (c) processed RGB image where the healthy leaves identified during image processing are marked in red. The total number of pixels representing
senesced and healthy leaves, and maximum length of senesced leaf area were used for feature extraction.
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The reference panel was placed at the tree trunk and the
distance between the camera and the tree was maintained at
around 1.5 m. During image processing, the first step was
to observe image reflectance value patterns (Figure 1a) in
each band across green leaves, senesced leaves, and shoots in
Matlab R©. This was important to separate the abaxial leaf surfaces
from partially senesced leaves. Upon optimization of image
processing protocol, wilted and necrotic leaves could be separated
from healthy leaves using defined red, green, and blue channel
reflectance values (Eq. 1).

I(i,j) = Infected pixels

60 > (R(i,j − G(i,j)) ≥ 0 and (G(i,j) − B(i,j)) > 0 (1)

I(i,j) = background pixels OTHERWISE

where: R(i,j), G(i,j) and B(i,j) are the red, green, and blue
pixel intensities (0–255), respectively, and (i,j) represents each
pixel coordinates.

Using this method, all pixels in the image were scanned
and infected parts of the leaves were identified (yellow area in
Figure 1b). Following this step, region of interest was defined to
eliminate background. Healthy leaves in the canopy (Figure 1c)
were identified using Eq. (2) with a manually selected threshold
of 20, optimized during image processing for distinguishing the
background from area of interest:

I(i,j) = Healthy leaves pixels (G(i,j) > R(i,j))

and (G(i,j) − B(i,j)) > 20) (2)

Finally, total number of senesced and healthy pixels were
computed and compared with ground reference data. In addition,
the length of infected shoots was also calculated by selecting the
two endpoints of the longest infected shoot. The coordinates of
these two endpoints were obtained and the length of the infected
shoot was computed. The three extracted features (maximum
senesced shoot length, total senesced shoot leaf area, and ratio
of senesced shoot leaf area with respect to healthy/green shoot
leaf area) were compared with average senesced shoot length/tree,
average proportion of shoot length blighted, and average tree
disease severity rating based on wood age.

Multispectral Image Acquisition, Image
Processing, and Feature Extraction
Multispectral images were acquired at two scales: 7 m above
ground level (AGL) and at 100 m AGL. An agricultural utility
vehicle (AUV, John Deere GatorTM XUV590i, John Deere,
Moline, IL, United States) with a retractable mast (FM50-25,
Floatagraph Technologies, Santa Barbara, CA, United States) and
a camera mount was used to capture multispectral images from
top-view (in 2016 and 2017, 7 m AGL) of the trees. A modified
multispectral 3-band digital camera (Canon ELPH110 HS,
Carlstadt, NJ, United States) with resolution of 4608 × 3456
and red channel replaced with NIR channel (680–800 nm) was
mounted on the camera mount on the platform mast. AUV
was driven along the rows at the speed of 0.5 m/s. The camera
was operated in ambient light condition and was equipped

with an SD card for data storage. In 2017, aerial multispectral
images were collected using an unmanned octocopter (ARF
OktoXL 6S12, HiSystems GmbH, Moormerland, Germany)
integrated with a multispectral camera (Rededge, Micasense,
Seattle, WA, United States) to capture red (R), green (G), blue
(B), red edge (RE), and near infrared (NIR) band images. The
imaging altitude was 100 m AGL. All the spectral reflectance
data was radiometrically corrected using a reference panel
(Spectralon Reflectance Target, Labsphere R©, North Sutton, NH,
United States) placed within the camera’s field of view.

Image processing and analysis were performed in Matlab R©.
For AUV-based multispectral images, five major steps of image
processing were followed: (i) images were separated into
individual bands and radiometrically corrected to compensate for
incident light variation during the imaging; (ii) corresponding
vegetation index images were extracted using Matlab R©Image
Processing Toolbox (Mathworks, Natick, MA, United States);
(iii) the soil background and shadows were eliminated using a
combination of k-means clustering and thresholding methods
that discriminate regions of interest (trees) from the background;
(iv) individual trees were segmented from the preprocessed
image; and (v) the green normalized difference vegetation index
(GNDVI) was extracted from segmented trees and the data
was recorded by matching their ID. Figure 2 describes these
steps in detail.

For the aerial images, the mosaic of NIR band was selected
as the reference image to align images in other bands. Mosaics
of red, green, blue, and red edge bands were geometrically
corrected to match spatially with the NIR band. This process was
performed using the “georeference tool” in QGIS software (QGIS
Development Team, Graphic Information System, Open Source
Geospatial Foundation Project1). With the same software, the five
bands were merged into one color composite image following
their conventional order: (1) red, (2) green, (3) blue, (4) red
edge and (5) NIR, using the “Build Virtual Raster” command. In
AutoCAD (Autodesk Inc., San Rafael, CA, United States), using
the “Polyline” command, vector layers were created to isolate the
area of each tree. For this purpose, a polygon surrounding the
entire tree canopy area was developed. Later, the canopy area
polygon was segmented into smaller fields of view (polygon) of
0.79 cm length, representing each tree. The sum and average
tree GNDVI, normalized difference red edge index (NDRE), and
normalized difference vegetation index (NDVI) were extracted
using “Zonal Statistics” plugin in QGIS. The following equations
describe the vegetation indices:

GNDVI =
NIR− G
NIR+ G

(3)

NDRE =
NIR− RE
NIR+ RE

(4)

NDVI =
NIR− R
NIR+ R

(5)

where: NIR, G, RE, and R refer to digital number representing
reflectance at near infrared, green, red-edge, and red bands. The

1http://qgis.osgeo.org
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NDVI (Rouse et al., 1973) and GNDVI (Gitelson and Merzlyak,
1998) are broadband greenness indices that represent overall
canopy vigor or greenness; while NDRE (Gitelson and Merzlyak,
1994; Sims and Gamon, 2002) is a narrowband greenness that
represents canopy stress response. In addition, NDRE also
captures differences in foliage content and senescence, which
could be useful in capturing disease symptoms. Vegetation index
data were correlated to ground reference data (average disease
severity rating based on wood age) during analysis.

Hyperspectral Data Acquisition,
Processing, and Feature Extraction
In addition to remote sensing data, proximal visible-near
infrared (Vis-NIR) reflectance spectra using spectroradiometer
(SVC HR-1024i, Spectra Vista Corporation, Poughkeepsie, NY,
United States) was captured from the tree leaves under study
(2016 and 2017). This hyperspectral system measures reflectance
in the range 350–2,500 nm (overall 992 channels) with resolution
of ≤3.5 at 700 nm, ≤9.5 at 1,500 nm, and ≤6.5 nm at 2,100 nm.
The leaf clip with fiber optic channel connected to the equipment
was used during data collection. Hyperspectral data was collected
from two inoculated shoots from each tree (one young leaf on
the shoot tip in the vicinity of the inoculated leaf and one mature
leaf from new season’s growth). During analysis, in 2016, average
disease rating was utilized; while in 2017, the disease rating for
measured shoots was used.

Hyperspectral reflectance data captured using
spectroradiometer was radiometrically corrected, normalized
(Sankaran et al., 2011), and binned with 10 nm intervals. Two
models, partial least square regression (PLSR) and quadratic
kernel support vector machine (QSVM) were applied to classify
spectra into four classes of 0, 1, 2, and 3 that represent disease
rating (ground reference data), by separating the dataset into
train and test datasets with 3:1 ratio after randomization. PLSR is
a regression model that takes structures of both explanatory and
independent variables into account. Variables are decomposed
into latent structures in an iterative method. QSVM uses
kernel to transfer data to a quadratic space and then defines
a linear decision boundary. For two-class classification, 0 and
1 ratings and 2 and 3 ratings were combined. For three-class
classification, only classes of 2 and 3 were combined. Overall
classification accuracy was computed to assess performance
of the class during four-class, three-class, and two-class
classification accuracies.

Following hyperspectral data-based classification, binned
reflectance data were utilized to generate normalized difference
spectral indices (NDSIs) (Inoue et al., 2008), that represents every
possible coupled combination of reflectance wavelengths with
following equation:

NDSI
[
i, j

]
=

Ri − Rj

Ri + Rj
(6)

FIGURE 2 | Data processing steps used to process AUV-based multispectral images.
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where R refers to reflectance data, and i and j refer to
specific spectral bands. These spectral indices evaluate novel
combinations of spectral bands, from which spectral ratios that
were closely related to disease symptoms were selected. This
would increase the accuracy of disease symptom assessment with
few spectral bands rather than entire hyperspectral data.

Normalized difference spectral indices were extracted from
Vis-NIR spectral reflectance data of mature leaves from
inoculated trees at mid- and complete-disease development
stages for two consecutive years. Considering 214 spectral
features after binning, 45,796 NDSIs were calculated for
each spectrum, which were correlated with ground reference
measurements for each tree. NDSIs correlation coefficients
over 0.35 were selected for further analysis. To remove data
redundancy from selected NDSIs, stepwise regression analysis
was applied to each dataset. This method is a variable selection
procedure for independent variables. It consists of a series
of steps to evaluate each variable with a defined criterion in
order to decide if it should be selected. In this study, only
NDSIs that had the highest correlations were finally selected
and redundant indices were removed. Figure 3 describes the
data processing steps used for hyperspectral reflectance data

FIGURE 3 | Data processing steps used to process hyperspectral
reflectance data.

analysis. All Pearson’s correlation analyses between extracted
features and ground reference data were performed in R
program (version 3.1.1, R Foundation for Statistical Computing,
Vienna, Austria).

RESULTS

Disease Rating and Stomatal
Conductance
Proportion of shoot length blighted (Norelli et al., 2003; Khan
et al., 2006; Durel et al., 2009) and the age of infected wood
(Harshman et al., 2017) for fire blight phenotyping have been
used in different studies. In this study, length of healthy tissue
on inoculated shoots was measured right after inoculation and at
the complete disease developmental stage. Disease severity was
also rated according to age of wood infected on each inoculated
shoot; the tree average was considered as actual disease severity
rating. Ratings based on proportion of shoot length blighted were
highly correlated with disease severity rating based on age of
wood infected in 2016 (r = 0.96) and 2017 (r = 0.93). Therefore,
for most parts of this study, disease severity based on the age of
infected wood was used as a ground reference measure (Figure 4).
While analyzing side-view RGB images, proportion of shoot
length blighted was also considered, as it was more related to
the image features.

Stomatal conductance measurements were collected from
inoculated and healthy shoots in the experimental trees. How
the bacteria travels through the plant tissue has yet to be
fully determined; however, there is reasonable evidence that
E. amylovora travels through intercellular spaces as described
in the review paper (Billing, 2011). We anticipated that
as this process of infection can affect water use efficiency,
leaf stomatal conductance can be used to evaluate disease
progression. Data were analyzed by computing the difference

FIGURE 4 | Distribution of samples in four disease severity rating classes
based on the age of the wood infection in 2016 and 2017.
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between stomatal conductance data from both healthy and
inoculated shoots within the same tree (to normalize data
for variety differences on the stomatal conductance) and
correlating this normalized stomatal conductance difference with
disease severity rating. Results showed a statistically significant
correlation among these parameters (r = 0.51, P < 0.05)
with an increase in normalized stomatal conductance values
(representing higher differences between data from inoculated
and healthy shoot leaves) associated with increased disease
severity rating based on wood age.

RGB Side Imaging
Three features were extracted from RGB side-images (2017): (1)
maximum length of shoots with senesced leaves (pixels), (2) total
area of senesced leaves (pixels), and (3) ratio of senesced to
healthy leaf area. These three features were compared to actual
lesion length, proportion of shoot length blighted, and disease
severity rating based on wood age. The correlation coefficients
were significant (P < 0.01) and are summarized in Table 1. In
general, all RGB image features were correlated with ground
reference data. Amongst these features, the strongest correlation
coefficient of 0.51 was found between maximum length of shoot
with senesced leaves as measured using RGB imaging and total
lesion length. The direct relationship between these two measures
could be the reason for high correlation.

Multispectral Imaging
Multispectral imaging at multiple scales were evaluated to
measure overall tree stress resulting from the inoculation.
Although only inoculated shoots (limited in comparison to
overall branches on the tree canopy) were expected to experience
necrosis during disease development, we anticipated that
this process will induce stress at the canopy level, which
could be measured using remote sensing. During AUV-based
multispectral imaging (2016 and 2017), in some cases, a similar
trend between disease rating and GNDVI data was observed,
even if the pattern was not consistent. Figure 5 shows the color
map of a few sample trees from data collected in 2016, where
ground reference rating refers to disease rating and observer
rating refers to non-expert evaluator (S. Jarolmasjed). In 2016,
a significant correlation between GNDVI and disease severity
rating was observed (r = −0.38, P < 0.01), which was absent
in 2017 (r = −0.22, P = 0.08, outliers were removed). Higher
canopy volume in 2017 may have contributed to minor errors in

TABLE 1 | Correlation coefficient (r) between RGB image features and disease
severity rating based on wood age in 2017.

Ground reference data Total
lesion
length

Proportion of
shoot length

blighted

Disease severity
rating based on

wood age

Maximum length of shoot with
senesced leaves

0.51 0.46 0.47

Total area of senesced leaves 0.45 0.39 0.42

Pixel ratio of senesced leaf
area/healthy leaf area

0.41 0.36 0.38

FIGURE 5 | Color map showing disease rating and GNDVI data of
representative 2016 diseased trees. Ground reference rating refers to disease
rating; while observer rating refers to non-expert evaluator. Green box
represents similar disease rating-GNDVI trend and red box represents
dissimilar disease rating-GNDVI trend.

tree segmentation or masking of symptoms, which could have led
to these results.

In regard to UAV-based multispectral images (2017), the
average and sum vegetation indices values (Figure 6) were
extracted for individual segmented trees. These features were
significantly (Table 2, P < 0.01) correlated to disease severity
rating. Sensors used for phenotyping disease resistance should
ideally be able to capture subtle differences in disease symptoms.
It was interesting to note that although AUV-based multispectral
images at higher resolution could not capture canopy health
differences using vegetation indices, aerial images showed similar
trend (similar to those using AUV-based multispectral images
in 2016). Higher canopy vigor in 2017 (in comparison to 2016),
combined with enhancement of image noise could have resulted
in no correlation between AUV image-based GNDVI data and
visual rating in 2017.

Hyperspectral Spectrometry
The overall classification accuracies with PLSR and QSVM
are summarized in Table 3. The purpose of the classification
was to observe the Vis-NIR spectral reflectance pattern
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FIGURE 6 | The original RGB, GNDVI, NDVI, and NDRE images of trees evaluated in 2017. The scales in GNDVI, NDVI, and NDRE represent the range of vegetation
index data. The heterogeneity in tree canopy was a function of growth and disease status of each tree. The black vector superimposed on the original and
vegetation index images represent segmentation of each tree.

TABLE 2 | Correlation coefficient (r) between UAV-based multispectral image
features and disease severity rating based on wood age in 2017.

Statistic Sum Average

GNDVI −0.38 −0.37

NDRE −0.40 −0.37

NDVI −0.35 −0.37

difference between different disease ratings. Results indicated
that spectra are capable of delineating fire blight disease
rating in shoots. In general, classification accuracies were
higher in 2017 than 2016, which could be resulting from
differences between disease developments in both years.
In general, the classification of two classes was more
accurate than four classes. Observing the confusion matrix
(Figure 7), it was found that the classification accuracies
with four classes were often lower because 0 and 1 ratings
were often misclassified as 1 and 0 ratings, respectively;

while 2 and 3 ratings were misclassified as 3 and 2
ratings, respectively.

In regard to the NDSI selection, mature leaf spectra were
used for analysis, as their spectral pattern was considered to
be more stable during the season and disease development.
Figures 8, 9 show the distribution of correlation coefficient
between NDSIs generated with the entire spectra and disease
rating using mid and end of (disease development) season
datasets for 2016 and 2017. One interesting observation from
this data is the consistency in the relationship (correlation)
pattern across two seasons, at both mid-season and end of
disease development period. This indicates development of fire
blight infection may progress in a predicted manner. Moreover,
stronger correlations between NDSIs and disease rating were
found in end of season than mid-season, which confirms the
development of symptoms at the end of disease development
phase. Using the raw dataset of NDSI, stepwise regression was
applied to select NDSIs that were significantly correlated with
disease rating within a season (excluding visible bands). The final

TABLE 3 | Overall classification accuracies computed using two models partial least square regression (PLSR) and quadratic support vector machine (QSVM).

Overall classification accuracy (%)

Year Classifier Four classes (rating: 0, 1, 2, 3) Three classes (rating: 0, 1, 2–3) Two classes (rating: 0–1, 2–3)

Young leaf Mature leaf Young leaf Mature leaf Young leaf Mature leaf

2016 PLSR 62 46 47 54 91 74

QSVM 44 49 56 49 88 71

2017 PLSR 60 63 50 63 93 90

QSVM 63 70 70 70 87 87
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FIGURE 7 | Confusion matrices of classification accuracies computed using quadratic support vector machine. The two classes represent 0 and 1 rating as class 0
and 2 and 3 rating as class 1; while four classes represent rating 0, 1, 2, and 3 as four classes.

set of selected NDSIs are reported in Table 4. All NDSIs were
significantly correlated with the visual ratings. Figure 10 shows
the boxplot of representative NDSIs.

DISCUSSION

Apple breeders need to evaluate the performance of their
germplasm under different conditions in order to select varieties
that are more resistant to disease/other conditions, which
is also an important aspect of integrated pest management
(Lespinasse and Aldwinckle, 2000). In this study, WSU apple
germplasms were inoculated with the bacteria causing fire
blight (E. amylovora), a potentially devastating pathogen. Fire
blight causes significant production loss for the commercial
fruit industry worldwide, and consequently, resistant cultivars
are sought to save crops from its devastating effects. Typically,
phenotyping susceptibility to fire blight shoot infection is
performed by estimating incidence under natural infection
pressure or measuring shoot lesion length after artificial
inoculation. These options are subjective and labor intensive
(Lespinasse and Aldwinckle, 2000). For these reasons, high-
throughput phenotyping techniques offer standardization in the
process of disease rating in an accurate and rapid manner. In
this study, multiple sensing systems at ranging complexity (RGB,
multispectral, and hyperspectral sensing systems) were evaluated
to select the most effective and accurate method for disease
severity evaluation in apple. The benefits and limitations of each
method is reported in Supplementary Table S2.

In regard to RGB imaging, a canopy trait such as senescence
can be easily captured (Ahmad and Reid, 1996; Laliberte et al.,
2007). RGB images were explored to estimate the senescence
leaf area from captured data and the extracted features showed
significant correlation with disease rating. One major limitation
in the throughput of this method was placement of white
background. Accuracy and throughput of such evaluation can
be further enhanced with the use of an automated phenotyping
system to cover the canopy for controlled lighting and imaging
conditions, in addition to accurate estimation of distance
between the canopy and the sensor using 3D camera or other
time-of-flight sensors. Moreover, image processing protocol
utilized in this study could not delineate minor differences
between branches/shoots and senesced leaves, although noise
from other tissues could be eliminated. Even if this noise
was minimal, integrating image processing techniques such
as Hough transform and machine learning algorithms can
potentially increase accuracy of this technique. Nevertheless,
other stress conditions influencing leaf color will affect the
accuracy of this method.

Multispectral cameras were also integrated with multiple
platforms (AUV, UAV) to capture images in order to phenotype
disease rating and assess fire blight symptoms. The vegetation
indices extracted from multispectral images acquired from AUV
(GNDVI, 2016) and UAV (GNDVI, NDRE, NDVI; 2017) showed
weak (yet significant) correlation with disease rating. In 2017,
correlation between GNDVI and disease severity rating was
absent, which could be associated with segmentation issues
during image processing as reported in Laliberte and Rango
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FIGURE 8 | Correlation between NDSIs generated using hyperspectral data
collected during the mid-season and disease rating in 2016 and 2017. The
color scale represents Pearson’s correlation coefficients (r).

(2009). Overlapping shoots could not be detected from the images
in some cases (especially when the canopy vigor was high) as the
trees were planted at high density.

The significant correlation between vegetation indices
extracted from remote sensing data with disease severity rating
showed the capability of vegetation indices to detect differences
in the canopy reflectance between symptomless and susceptible
trees, although with low sensitivity (Gröll et al., 2007). The
observed result in our study were in contrast with the study
reported in Naidu et al. (2009), where significant differences
between the vegetation indices of non-infected and infected
plants with leaf roll-associated virus-3 in grapevine were not
found. On the other hand, Mahlein et al. (2013) achieved an
accuracy of 80% while classifying Cercospora leaf spot infected
and healthy leaves using NDVI in sugarbeet. In the same crop, a
correlation coefficient r of −0.89 was found between NDVI and

FIGURE 9 | Correlation between NDSIs generated using hyperspectral data
collected during the end of disease development and disease rating in 2016
and 2017. The color scale represents Pearson’s correlation coefficients (r).

diseased leaf severity (Cercospora leaf spot, powdery mildew;
Mahlein et al., 2010). The efficacy in the detection of plant
diseases using vegetation index depends on the crop, pathogen,
and symptoms. Although AUV and UAV-based multispectral
images may provide information of canopy health, the limited
number of spectral bands will limit its application in disease-
specific evaluation, which can be better achieved with data
capture in broader visible-near infrared spectral reflectance
range in comparison to using vegetation indices (Montesinos-
López et al., 2017). The remote sensing technique can be used for
scouting for fire blight disease incidence in production systems,
which can be followed by pathological evaluation of samples.

At times, vegetation indices do not provide relationship with
crop stress (Eitel et al., 2008; Jarolmasjed et al., 2018). NDVI
has also been reported to record plant responses to water stress,
and are indicative of chlorophyll and yield (Ceccato et al., 2002;
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TABLE 4 | Selected wavelength combinations used in normalized different
spectral index (NDSI) resulting from feature selection from 2016
and 2017 datasets.

2016 2017

Selected NDSI
from year

Wavelength
(nm)

Mid-
season

End-
season

Mid-
season

End-
season

2016 1170, 1320 0.47∗∗∗ 0.64∗∗∗ 0.36∗∗∗ 0.41∗∗∗

1420, 1880 0.53∗∗∗ 0.42∗∗∗ 0.29∗∗∗ 0.42∗∗∗

1520, 1620 −0.42∗∗∗ −0.56∗∗∗ −0.36∗∗∗ −0.48∗∗∗

1560, 1570 −0.46∗∗∗ −0.58∗∗∗ −0.33∗∗∗ −0.48∗∗∗

2040, 2240 −0.40∗∗∗ −0.37∗∗∗ −0.34∗∗∗ −0.41∗∗∗

2017 710, 2020 0.21∗ 0.46∗∗∗ 0.35∗∗∗ 0.46∗∗∗

1030, 1130 0.39∗∗∗ 0.61∗∗∗ 0.36∗∗∗ 0.50∗∗∗

2050, 2110 −0.53∗∗∗ −0.36∗∗∗ −0.37∗∗∗ −0.44∗∗∗

2070, 2080 −0.55∗∗∗ −0.31∗∗∗ −0.38∗∗∗ −0.45∗∗∗

2090, 2100 −0.51∗∗∗ −0.46∗∗∗ −0.36∗∗∗ −0.45∗∗∗

2330, 2340 0.47∗∗∗ 0.38∗∗∗ 0.36∗∗∗ 0.47∗∗∗

The mid- and end-season refer to middle and end of disease development period.
The correlation coefficients (r) are between NDSIs and disease severity rating
by wood age using selected wavelength combinations. Statistical significance:
∗P < 0.05; ∗∗∗P < 0.0001; ns, not significant.

Gitelson et al., 2003; Eitel et al., 2008). Moreover, the specific
absorption coefficient of chlorophyll in the red channel is high,
and when combined with the low depth of light penetration into
the leaf, the index can create saturation. For a similar reason,
NDVI cannot capture stress responses from a canopy with higher
leaf area index (Gitelson et al., 2003). In this regard, hyperspectral
sensing offers a more specific evaluation of certain disease.

Visible-near infrared spectrometry was used to capture the
spectral reflectance of the leaves and create a set of novel
vegetation indices (NDSIs) representing fire blight disease
symptom progression. Such indices were created utilizing the
high-spectral resolution visible-near infrared reflectance data
(Inoue et al., 2008). Other feature extraction methods reported
in literature (Sun et al., 2017; Sun and Du, 2018) can also
be explored for hyperspectral data analysis. In this study,
the highest correlating NDSIs to visual rating were reported
as spectral bands capable of defining fire blight disease in
apple trees. The selected wavelengths for NDSIs ranged from
710 to 2340 nm. Among different wavelengths, the red edge
band (696–704 nm) reported to contain a high amount of
information in regard to chlorophyll content and vegetation
stress (Mohd Shafr and Hamdan, 2009) was also present.

FIGURE 10 | Boxplots of selected NDSIs generated using 2016 and 2017 end of disease development phase datasets. The visual rating refers to disease severity
rating by wood age.
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In a lettuce maturity detection study (Brach et al., 1982), the
ratio of 1,170 nm to 1,110 nm provided in morphogenetic
differentiation of the tissue. The 1,170 nm was also selected as
one of the wavelength features in this work. Few wavelengths
reported in literature that could discriminate wolfberries (Yin
et al., 2017) such as 1,130, 1,160, 1,300, 1,328, and 1,423 nm
were also similar to the wavelengths during NDSI selection
in the current study. The selected NDSIs found in this
research were consistently highly correlated across seasons, and
showed a prospective for early fire blight disease detection
that can be useful in precision agriculture applications. Thus,
imaging and spectrometric techniques have the potential to
be used as phenotyping tool that are dependent on the crop
and disease conditions. In future, multispectral imaging with
customized spectral band combinations can be used for fire blight
resistant evaluation.

CONCLUSION

In summary, the RGB and multispectral imaging sensors offered
low to moderate accuracy in detection of disease severity based
on image features representing senescence and vegetation indices
extracted from the images, respectively. The absence of higher
spectral resolution in the process of disease severity evaluation
in breeding programs can limit the application of these sensing
systems. In addition, presence of other stress conditions such as
heat stress and/or other diseases, may also limit the potential use
of these techniques. In this regard, hyperspectral sensing system
can capture disease-specific responses that can be useful for
disease severity evaluations. The normalized difference spectral
ratios derived from hyperspectral data were found to show
moderate to high accuracies in disease severity evaluation, which
were consistent between two seasons. Thus, these specific spectral
bands could be used for evaluating fire blight disease severity in
apple breeding programs. In addition, these indices also showed
potential to be used as early disease detection tools that could
assist in timely crop management in production systems.
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