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Fungal leaf diseases cause economically important damage to crop plants. Protective
treatments help producers to secure good quality crops. In contrast, curative treatments
based on visually detectable symptoms are often riskier and less effective because
diseased crop plants may develop disease symptoms too late for curative treatments.
Therefore, early disease detection prior symptom development would allow an earlier,
and therefore more effective, curative management of fungal diseases. Using a five-lens
multispectral imager, spectral reflectance of green, blue, red, near infrared (NIR, 840 nm),
and rededge (RE, 720 nm) was recorded in time-course experiments of detached
tomato leaves inoculated with the fungus Botrytis cinerea and mock infection solution.
Linear regression models demonstrate NIR and RE as the two most informative spectral
data sets to differentiate pathogen- and mock-inoculated leaf regions of interest (ROI).
Under controlled laboratory conditions, bands collecting NIR and RE irradiance showed
a lower reflectance intensity of infected tomato leaf tissue when compared with mock-
inoculated leaves. Blue and red channels collected higher intensity values in pathogen-
than in mock-inoculated ROIs. The reflectance intensities of the green band were
not distinguishable between pathogen- and mock infected ROIs. Predictions of linear
regressions indicated that gray mold leaf infections could be identified at the earliest at
9 h post infection (hpi) in the most informative bands NIR and RE. Re-analysis of the
imagery taken with NIR and RE band allowed to classify infected tissue.

Keywords: disease imaging, tomato, gray mold, Solanum lycopersicum, Botrytis cinerea, early disease detection,
symptom detection, linear predictive model

INTRODUCTION

Agricultural plant production relies on numerous applications of pesticides against an army of
pathogenic organisms including virus, bacteria and fungi. Today, both Swiss and European policy
aims at a drastic reduction of pesticide applications as well as active compounds such as copper
or neonicotinoids (EU Directive 2009/128/EC). A curative and more site-specific treatment of,
e.g., single crop plants or distinct infected plots in a field could contribute to limit pesticide
diffusion to the environment. To achieve this goal, an early detection of pathogen infection is a
basic requirement. However, symptom detection by experts is time consuming and often too late
for curative treatments. With imaging technologies site-specific application systems as for example
against grape downy mildew could be established (Oberti et al., 2016). Remotely sensed reflectance
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imaging allowing to identify non-destructively and “on-the-
go” diseased plants could become key in optimized application
strategies with lower number of applications.

Currently, the common methods to identify fungal leaf
diseases are symptom detection by either naked eye observation
by experts or via smart phone applications1. Additionally,
destructive molecular tests like ELISA and latera flow
(e.g., Braun-Kiewnick et al., 2011), RT-PCR (e.g., Gachon
and Saindrenan, 2004; Suarez et al., 2005; Fahrentrapp et al.,
2013), LAMP-PCR (e.g., Pelludat et al., 2009) can be used to
identify causal agents. Results obtained with these methods are
either too late for curative treatments (symptom detection) or
destructive and laborious. However, thermal sensors, multi-
and hyperspectral sensors can be used to spot leaf diseases
(e.g., Mahlein et al., 2012, 2018). The spectral information then
can be used to identify leaf diseases. Leaf reflectance in the visible
range (including red, green, and blue), near-infrared (NIR) and
short-wave infrared (SWIR) is mainly influenced by pigments,
leaf structure and internal scattering, and water and chemical
absorption, respectively (Mahlein, 2016). In-between the visible
and NIR range, the so called “rededge” (RE) region describes a
steep slope in the spectral reflectance of plant material that is
often used to build several disease indices (Lowe et al., 2017).
Biotrophic and necrotrophic fungal diseases can have rather
low and high impact on leaf structure, respectively, and thus
also on leaf reflectance. However, as demonstrated in sugar
beet, leaf diseases such as Cercospora leaf spot (Cercospora
beticola), powdery mildew (Erysiphe betae), and rust (Uromyces
betae) could be differentiated under laboratory conditions by
means of hyperspectral imaging (Mahlein et al., 2010, 2013),
and diseases were identified before visible symptoms developed
(Rumpf et al., 2010; Lowe et al., 2017). Obstacles to detect
disease under field conditions are mainly (1) the resolution
of suitable sensors, (2) differing light environments under
field conditions, (3) leaf angle to sensor, and (4) shadows of
overlapping leaves (Thomas et al., 2018). For instance, an
increased view angle correlates with an increased sensitivity
peaking at 60◦ (Oberti et al., 2014). Additionally, sensor costs
may be high especially when hyperspectral information is needed
(Grieve et al., 2015). Low-cost multispectral sensors equipped
with a LED-based narrow band illumination demonstrated
comparable results in disease detection as hyperspectral imagery
(Grieve et al., 2015). In our study, we used an “off-the-shelf ”
multispectral camera, the MicaSense

R©

Rededge (Seatle, WA,
United States), under laboratory settings to demonstrate
its use in early detection of a fungal disease on leaves. The
MicaSense

R©

Rededge is a snap-shot camera collecting five
distinct bands of less than 40 nm in the red, green, blue, NIR,
and “rededge” range on a sensor through five individual lenses.
Such sensors are currently available for less than 3500◦C. Our
proposed methodology (including image processing and data
analyses) targets rather service provider and agricultural research
institutes than producers.

Gray molds such as Botrytis cinerea Pers. (1794) are important
plant diseases all over the world. We used B. cinerea, being the

1e.g., http://ephytia.inra.fr

TABLE 1 | Spectral bands with center wavelength and bandwidth of the
MicaSense RedEdge multispectral camera1.

Band Center wavelength Band width

number Band color (nm) (nm)

1 Blue (B) 475 20

2 Green (G) 560 20

3 Red (R) 668 10

4 Near infrared (NIR) 840 40

5 Rededge (RE) 717 10

1https://support.micasense.com/hc/en-us/article_attachments/204648307/
RedEdge_User_Manual_06.pdf accessed 18.10.2018.

TABLE 2 | Key data of the time lapse experiments (hpi: hours post inoculation).

Time lapse 1 Time lapse 2 Time lapse 3

26.07.2017 01.09.2017 04.09.2017

Start (hh:mm, hpi) 05:00 05:15 05:45

Image acquisitions duration
(hh:mm)

22:40 26:40 25:20

No. frames 17 20 19

No. images/frame 16 16 15

6 images/band (of all 5 bands) 272 (1369) 320 (1600) 285 (1425)

Total experiment duration
(hh:mm pi)

27:40 31:55 31:05

second most important plant pathogen worldwide (Dean et al.,
2012), as example leaf disease in the presented work. B. cinerea
is a necrotrophic fungus affecting both annual crops (e.g.,
Solanum lycopersicum, Fragaria species) as well as perennials
such as Vitis vinifera (Hennebert, 1973, Staats et al., 2005, Elad
et al., 2016). It is the causal agent of gray mold on leaves
and fruits in a large number of plant species (Williamson
et al., 2007). Symptoms caused by B. cinerea infection become
visible in leaves approximately 24–48 h post infection (hpi)
(Asplen et al., 2015). In tomato (S. lycopersicum L.), both
leaves and fruits are attacked by B. cinerea. Detection of leaf
infections are of high importance since they can cause severe
plant damage, lead to less and low-quality fruits, and increase
spore density as inoculum for fruit infections. In Switzerland,
37 active compounds2 are registered for B. cinerea control.
They include several copper-based fungicides, folpet, cyprodinil,
but also Bacillus amyloliquefaciens sp. plantarum and Bacillus
subtilis for organic production. Tomato is one of the most
important vegetable crops worldwide and is situated among
the top 10 in terms of yield (fresh weight)3. The aim of
this study was to identify tomato leaf infection by B. cinerea
using (low cost) multispectral imaging allowing an earlier
infection recognition compared to visual detection. Specifically,
we investigated (1) what time after B. cinerea infection allows
a discrimination of healthy and diseased leaf tissue?; and
(2) which of the multispectral bands are the most informative
for disease detection?

2https://www.psm.admin.ch/de/schaderreger/10373 (accessed April 2019).
3www.fao.org/faostat/en/ (accessed September 2016).
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MATERIALS AND METHODS

Time lapse experiments were conducted and repeated three
times. In brief, tomato leaflets were pathogen- or mock-
inoculated for 5 h as described elsewhere (Rezzonico et al., 2017).
The inoculum drops were removed with a paper towel and the
leaflets imaged with a multispectral imager in regular intervals

until 30 hpi. Data extracted from the imagery was used to separate
healthy and infected tissue.

Plant Material
Tomato plants (S. lycopersicum, Heinz 1706 cultivar) were grown
in standard soil (Floradur

R©

Block Bio, Floragard, Oldenburg,
Germany) in a semi-regulated greenhouse with open windows.

FIGURE 1 | Workflow of image acquisition.
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The temperature was set to 20–26◦C with maxima during sunny
summer days of up to 40◦C. On cloudy days, artificial light was
used to achieve minimal constant lighting of 80 kW per square
meter for 16 h per day. Once a week, cuttings were produced
from tomato mother plants, that were treated weekly with sulfur
(Stulln WG, Andermatt Biocontrol, Grossdietwil, Switzerland).
The cuttings were then placed in approximately 100% relative
humidity for 1 week to develop roots. Afterward, they were
acclimatized to the same greenhouse conditions mentioned
above. Young and fully unfolded leaflets were harvested from
two-week old cuttings for inoculation trials. For inoculation
experiment five leaflets were placed on agar petri dishes (1% w/v;
water only). The leaflets of each six petri dishes were drop-
inoculated with pathogen or mock inoculum suspension as
described below.

Inoculum Preparation,
Inoculation and Sampling
A B. cinerea strain T4 was grown on 15 g/l malt agar (Fluka,
Sigma-Aldrich, Buchs, Switzerland) plates for 3–8 weeks. Spores
were harvested with 20 ml half-strength grape juice (Farmer,
Landi, Dotzigen, Switzerland) and diluted to 1.3 × 106 spores
per ml. The spore suspension was used directly for inoculation
with one to three 10-ul-drops placed on the abaxial surface of
each leaflet. The inoculated leaves were stored at 18◦C, 80% rel.
humidity, and 16 h light but without light for the first 24 hpi.
Mock inoculations were performed under the same conditions
using half-strength grape juice for inoculation. The success of
infections was recorded at 30 hpi.

Image Acquisition
The time lapse experiments were conducted in a growth chamber
(Fitotron SGC 120, Weiss Technik, Altendorf, Switzerland) that
was equipped with additional lighting (two 400 W halogen
incandescent lights, 0.3 × 0.3 m diffusion paper, Supplementary
Figure S1) to ensure uniform illumination conditions during
image acquisitions. Images were taken with a MicaSense

R©

RedEdge3TM (Seattle, WA, United States) multispectral camera
collecting 10–40 nm-wide bands in blue, green, red, near-
infrared, and rededge (Table 1). Each band of multi-lense
MicaSense

R©

RedEdge3TM camera records 1280 × 960 pixels
(1.2 Mpixels). In the experimental setup described, each pixel
covers approximately 0.2 mm2. For each time lapse experiment
twelve petri dishes with pathogen- and mock-inoculated leaflets
were positioned below the camera with a distance of 66.6 cm
(Supplementary Figure S2). Six petri dishes were positioned
with an angle of 90◦ and another six with approximately 64◦

toward the sensor. Camera and lights were triggered using a
Python v2.7 script to collect imagery. The automated procedure
switched lights of the growth chamber off and halogen lights
on at each sampling time. Time lapse image acquisition started
05:00, 05:15, and 05:45 hpi. Images were taken every 80 min in
17, 20, and 19 frames (approximately until 29 hpi), each with
16, 16, and 15 image repetitions per frame leading to a total of
272, 320, and 285 multispectral images (Table 2). Images were
recorded in 12-bit RAW format and converted to 16-bit TIFF

format prior to processing. The sensor signal values increase
almost linearly to input radiance. To reduce the amount of noise
in the images we used low gain values and shutter speeds around
5–20 ms. After time lapse experiment at 30 hpi the status of
infection was recorded with a hand held RGB camera (Sony DSC
RX100IV, 20 Mpixels). These images were used to locate the

FIGURE 2 | Regions of interest (ROIs) and background ROI locations of
experiments 1, 2, and 3 (A–C). Orange, mock inoculated; yellow, pathogen
infected; blue, background ROIs; italic letters, inclined leaves with an angle to
sensor of approximately 64◦; non-italic letters, 90◦ angle to sensor.
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position of infection (regions of interest, ROI) drops by manual
identification of the necrotic lesions.

Image Processing Procedure
We used the ImageJ software (v. 1.51) bundled in the FIJI
distribution (Schindelin et al., 2012) for image processing and
time lapse analysis. The multi-lens and multi-sensor geometry
of the camera model, i.e., differences in mounting position
and viewing angles among lenses, causes significant band
misregistration effects. Thus, the creation of multispectral images
requires band co-registration. Band to band registration is,
however, a computationally intensive process. Our workflow,
therefore, is based on the idea to process every spectral band
individually. Instead of registering the image bands to each other
to compose multispectral images, we only compute the matrices
to translate the ROI locations from a common reference to

their individual location on each image band. The workflow
basically consists of five steps which are described in detail in
the following sections and summarized in Figure 1. Only the
first step was applied to a single multispectral image with all five
bands while all other processing steps were executed only on the
individual spectral bands.

ROI Identification on a Common
Reference (all Bands)
Regions of interest positions on pathogen infected leaflets
were identified manually on RGB images taken 30 hpi. On
the same images one ROI position on each mock-inoculated
leaflet was defined manually from the positions of mock-
inoculum drops. ROIs were drawn on the RGB images using
the Oval Selection Tool and labeled within the ROI Manager.

FIGURE 3 | Reflectance intensities of bands blue, green, red, NIR (near-infrared), and RE (rededge) collected from ROIs of B. cinerea-infected (BC) and
mock-inoculated (control, BCm) tomato leaves in experiments 1, 2, and 3.
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A 5 px circular shape was used to represent the ROIs covering
12 complete image pixels.

Stack Creation and Statistical Outlier
Image Detection (Band-Wise)
Image stacks were created for each spectral band and the mean
intensity of every image and of the entire stack was calculated
to identify images whose intensity differs significantly from the
intensity range of the other images. An image is considered a
statistical significant outlier if the difference of the mean intensity
of the image to the mean intensity of the stack is greater than 2
times the standard deviation of the stack intensity. In time lapse
replicate one (20170726) no outlier images were found. In time
lapse replicate two (20170901) and three (20170904) 24 (7.5%)
and 17 (6%) outlier images were identified, respectively.

Image Stabilization, Outlier Image Removal and
Calculation of Mean Image Intensities on the
Frame Scale (Band-Wise)
Image stacks were split to the number of frames and the number
of images in each stack equals the images repetition rate. Outlier
images identified in step 2 were deleted and image alignment of
each stack was optimized with reference to the first image of the
frame using the Image Stabilizer plugin4. Then, all images of each
frame were aggregated to a single image representing the average
intensity of that frame.

Frame Co-registration on the Scale of the Time
Lapse Experiment (Band-Wise)
The average intensity images of each frame were stacked again
and co-registered to the first image of the frame using a rigid 2D
transformation model in the Descriptor-based registration plugin
(Preibisch et al., 2010). While step 3 optimized image alignment
at the frame scale, step 4 aimed at co-registering the frames to
each other and as such at optimizing the frame displacement
to the scale of the entire time lapse. After completion of step
4 the number of images in the stacks equals the number of
frames of the time lapse experiments with frame displacements
averaged over all five bands of 0.31 ± 0.03 px, 0.34 ± 0.02
px, and 0.31 ± 0.03 px for time lapse replicate one, two and
three, respectively.

ROIs Translation and Multiple ROI Measurement
and Profiling (Band-Wise)
To translate the ROIs defined in step 1, we co-registered the
RGB images including the ROI overlays to the last frame of
every band. For this purpose, the robust and elastic 2D image
registration method presented by Wang et al. (2014) was used.
The co-registered RGB images then served as templates on which
the ROIs were traced and re-drawn using the Oval Selection Tool.

Background ROI
In addition to the ROI positions on mock- and pathogen-
inoculated leaflets, twelve ROIs covering background only
where defined (Figure 2). The intensity of the background
ROIs was used to exclude any bias caused by illumination

4accessed 18.10.2018

or camera artifacts in relation to leaflet position within the
experimental setup.

Classification of Infected
and Healthy Tissue
An unsupervised classification scheme coupled with a masking
approach was used to identify infected and healthy sections
of the leaflets. At first, circular selections were drawn around
petri dishes and attributed with dish IDs so that calculations
could be performed for each petri dish individually. We created
binary image masks of the leaflets to exclude any background
information and to make use of image pixels that represent
either healthy or diseased tissue. The binary leaf masks were
computed from the red band images using the Minimum Cross
Entropy thresholding method as developed by Li and Tam (1998)
and implemented in the Auto Threshold plugin of the ImageJ
software. Binary leaflet masks were then assigned to the NIR and
RE bands in the same way as the ROIs [c.f. see section “ROIs
Translation and Multiple ROI Measurement and Profiling (Band-
Wise)”]. The binary masks basically black and white pictures
having an inverting Lookup table LUT with values of 0 and 1.
Multiplying the NIR and RE stacks with these masks results in
bit-masked version of the stacks. Next, we applied an iterative
self-organizing (ISO) classifier to separate the masks of the image
into two classes (unsupervised). The class with the lower values
was supposed to correlate with the infected parts of the leaflets
and vice versa.

Statistical Analysis
We developed linear regression models to predict the temporal
change in band intensity (independent variable) captured
with multispectral imager. The intensity was normalized
(i.e., division by maximum value) separately for each band
and trial. Observation time used as dependent variable was
scaled prior analyses (i.e., subtracted by mean and divided by
standard deviation).

TABLE 3 | Summary statistics of R2 and root mean squared error (RMSE) of linear
regressions to predict multispectral band intensity (bands one to five) of either
B. cinerea strain T4 (pathogen, Type1) or mock (control, Type 0) inoculations
of tomato leaves.

R2 R2 R2 RMSE RMSE RMSE

Band Inoculation mean 2.5% 97.5% mean 2.5% 97.5%

Blue Pathogen 0.46 0.37 0.55 0.066 0.0585 0.0739

Green Pathogen 0.45 0.36 0.54 0.0499 0.0441 0.0558

Red Pathogen 0.64 0.56 0.71 0.0462 0.0403 0.0515

NIR Pathogen 0.87 0.84 0.89 0.0252 0.0223 0.0281

RE Pathogen 0.45 0.36 0.54 0.0615 0.0545 0.0678

Blue Mock 0.06 0.02 0.13 0.132 0.118 0.147

Green Mock 0.46 0.37 0.55 0.0330 0.0293 0.0370

Red Mock 0.09 0.03 0.16 0.120 0.107 0.131

NIR Mock 0.88 0.86 0.91 0.0196 0.0175 0.0216

RE Mock 0.65 0.58 0.71 0.0226 0.0200 0.0250
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FIGURE 4 | Linear predictions of multispectral band intensity (1–5) for B. cinerea strain T4 (pathogen, Type1) and mock (control, Type 0) inoculations of tomato
leaves depending on the hours post inoculation and different petri dish inclinations (64◦ vs. 90◦). Type 1, B. cinerea-infected; type 2, mock-inoculated; trial_id;
trial_id, replicate of experiment.

The data sets have two characteristic properties that are of
great importance for the statistical analysis. First, the mea-
sured band intensities represent time dependent observations.
To account for temporal dependence, we used a parametric
bootstrap approach (Efron and Tibshirani, 1994) to derive
95% confidence intervals (from 2.5 to 97.5% quantiles of the
simulated distributions) for both the regression parameters and
the measures of model fit: R2 (coefficient of determination) and
RMSE (root mean squared error). We used a fixed-x resampling

approach, meaning that we sampled with replacement from the
original residuals in each iteration. The number of iterations
was set to 1000.

Second, the semi-random distribution of petri dishes which
may violate the assumption of independent residuals. To
show that the experimental design (Figure 1) has no effect on
parameter estimates, we performed additional linear regressions
using (a) a 10-fold cross validation, and (b) parametric stratified
bootstrapping. For the stratified bootstrapping approach,
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we used band intensities of background points as dependent
variables (Figure 2). Our hypothesis was that if sampling time
was unrelated to those background (or control) intensities
that we can exclude an influence of our experimental design
on the regression outcome. Intensity of control samples were
drawn with replacement using the entire original sample
or within one of following two strata within the original
data set: (1) horizontally, and (2) vertically distributed petri
dishes, respectively.

RESULTS

In three replicated experiments, first, leaflets were pathogen- and
mock-inoculated, and subsequently, imaged continuously every
80 min with a five-lens multispectral camera. Raw reflectance
intensity (digital numbers) varied for red (R), blue (B), and
green (G) between approximately 15000 and 28000, near-
infrared (NIR) reached intensities of 42000 and rededge (RE) of
35000 (Figure 3). Over time, red is increasingly reflected from
pathogen infected leaf tissue whereas NIR and RE reflectance is
decreasing. In band R, NIR, and RE the differences in reflectance
intensities between mock- and pathogen-inoculated samples
were increasing over time, and hence, these three bands were
more informative than G and B (Table 3 and Figure 3).

Each series of images was analyzed separately per repetition
and band by means of linear regression (Figure 4) without
considering the different leaf to lens angles. With the regression
coefficients for the dependent variable “time” being insignificant
(p> 0.05), predictions of reflectance intensities for band blue and
red were constant for mock-inoculated leaflets (Tables 3, 4). In
contrast, we found a significant increase for pathogen-infected
leaflets for the blue (mean estimate = 0.0260; p < 0.001)
and red (mean estimate = 0.0473; p < 0.001) band. The
reflectance intensity of the green band was decreasing over the
whole experiment in pathogen- and mock-inoculated leaflets.

TABLE 4 | Summary statistics of R2 and root mean squared error (RMSE) of linear
regressions to predict multispectral band intensity (bands one to five) of either
B. cinerea strain T4 (pathogen, Type1) or mock (control, Type 0) inoculations
of tomato leaves.

R2 R2 R2 RMSE RMSE RMSE

Band Infection mean 2.5% 97.5% mean 2.5% 97.5%

Blue Pathogen 0.50 0.40 0.58 0.0425 0.0374 0.0477

Green Pathogen 0.15 0.08 0.24 0.0465 0.0410 0.0519

Red Pathogen 0.31 0.22 0.41 0.0694 0.0617 0.0767

NIR Pathogen 0.85 0.82 0.88 0.0269 0.0235 0.0304

RE Pathogen 0.54 0.45 0.62 0.0459 0.0404 0.0513

Blue Mock 0.19 0.11 0.29 0.0696 0.0619 0.0772

Green Mock 0.59 0.51 0.67 0.0255 0.0228 0.0285

Red Mock 0.17 0.09 0.26 0.0823 0.0738 0.0910

NIR Mock 0.88 0.86 0.91 0.0196 0.0175 0.0216

RE Mock 0.64 0.56 0.70 0.0234 0.0208 0.0259

In contrast to Table 3, this table confers to data with an adjusted start value
considering the leaf tissue to be healthy at 5 hpi and hence equalizing the first
measurement value of mock- and pathogen infected ROIs.

In contrast to the blue and red band, no significant relation
was found between NIR and RE reflectances of pathogen-
infected leaflets. The intensity of NIR was constant (i.e., the
mean estimate had a p-value > 0.05) in healthy leaflets. In
the pathogen-infected leaflets, the intensity of the red band
was slightly but significantly decreasing. Confidence interval
and RMSE of NIR reflectance intensities of both healthy and
diseased leaflets were smallest and had an R2 = 0.85 indicating the
lowest variability between experimental bootstraps and highest
explanatory power (Table 3).

The intensity of leaflets positioned at a 90◦ angle toward the
sensor was generally higher than with a smaller angle of 64◦

(Figure 3). In the NIR band the difference was slightly larger.
Differences in reflectance intensity between mock- and pathogen-
inoculated samples remained almost the same independently of
leaf-camera angle.

Taking the visual diagnosis of the overlap of the pathogen and
mock infected confidence intervals of the linear predictions as a
measure which allows to select a time at which mock-inoculated
tissue could be differentiated from pathogen-infected one, we
found that time point 4 (corresponding to 9 to 9:45 hpi) should be
the earliest possible time instant in bands red, NIR and RE taking
both angles into account (Figure 4).

If we assume the infected samples at the first measurement
time to be healthy (approximately at 5 hpi), the intensities of
reflectance of mock- and pathogen infected tissue are shifted
toward each other (Figure 5). This normalization allowed an
enhanced discrimination of mock- and pathogen-inoculated
ROIs at measuring time 5 (corresponds to 10:20–11:05 hpi). In
regard of mean R2 (pathogen: NIR 0.85 vs. RE 0.54, mock: NIR
0.88 vs. RE 0.62) and mean RMSE (pathogen: NIR 0.0269 vs.
RE 0.0459, mock: NIR 0.0196 vs. RE 0.0234) NIR outperforms
RE (Table 4). The coefficients of linear regression of NIR band
of pathogen infected ROIs were significantly influenced by time
in contrast to the corresponding mock-inoculated ROI-derived
values (Tables 5, 6). Time-caused effects were not found in
background ROIs and reflectance intensities in the background
ROIs differed not significantly (Supplementary Figure S2).
Therefore, any bias influencing the resulting data caused by
experimental setup or sensor artifacts could be excluded.

Re-analyzing the images of bands NIR and RE with an
unsupervised classification using imageJ software that forms
patches of pixels containing distinct classes (class “mock-
inoculated” with higher reflectance intensities than class
“pathogen-infected”), we were able to classify potentially diseased
and healthy leaf areas and approximately locate pathogen
infection spots (Figures 6, 7). In NIR imagery of measurement
times 3, 4, and 5 (correlating to 8:25, 9:45, and 11:05 hpi) infection
locations became slightly visible (Figure 6, petri dish I and J).
Correlating classifications (I’ and J’) became visible from 9:45–
13:45 hpi and artifacts on the leaf borders from measurement
time 9 (16:25 hpi) onward. The classification of RE images located
diseased spots at 16:25 hpi (Figure 7). Comparing potential
symptoms manually in NIR and RE at 9:45 hpi images to necroses
visible on RGB imagery taken at approximately 30 hpi with the
classifications of 16:25 hpi, an overlap of diseased and healthy
regions was detected qualitatively. However, quantitative results
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FIGURE 5 | Linear predictions of multispectral band intensity as in figure three with an adjustment of first sampling time. The value of mock- and
pathogen-inoculated samples of first sampling time was set equal to imitate the leaf tissue to be healthy at the first sampling time at approximately 5 hpi. Type 1,
B. cinerea-infected; type 2, mock-inoculated; trial_id, replicate of experiment.

from NIR and RE imagery classification were blurred due to
classification artifacts at the ribs and the borders of the leaves.
Including the potential artifacts, the percentage of necrotic leaf
surface detected with NIR and RE reached up to 43% and 35% in
90◦ leaf angles, and 42% and 11% in 63◦ leaf angels, respectively
(Supplementary Table S1). However, these maxima appear at
16:25 hpi and correlated with the visible artifacts.

DISCUSSION

This paper aimed at demonstrating the application of low
cost multispectral sensors as a useable tool to identify leaf

pathogen infection at a pre-visual stage instead of using the
naked eye only. We exemplified the application of this early
screening approach using the necrotrophic fungus B. cinerea
under laboratory conditions. The used multispectral imager was
a five-band multi-lens sensor. Our findings suggest that narrow
band sensors in the NIR range are suited to detect fungal disease
attack at a pre-visual stage. Reflectance of leaves in both tested
angles (90◦ and 64◦) could be sufficiently analyzed with only
one band, indicating that a one-band sensor would be sufficient
to detect the disease. For background masking and subtraction,
however, additional bands such as red and green might be
useful. If several band of a multi-lens sensors are needed an
accurate band co-registration (i.e., the translation and rotation

Frontiers in Plant Science | www.frontiersin.org 9 May 2019 | Volume 10 | Article 628

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00628 May 13, 2019 Time: 14:58 # 10

Fahrentrapp et al. Multispectral Pre-symptomatic Leaf Disease Detection

TABLE 5 | Summary statistics of parameter estimates of linear regressions to
predict multispectral band intensity (bands one to five) of either B. cinerea strain
T4 (pathogen, Type1) or mock (control, Type 0) inoculations of tomato leaves.

Band Infection Parameter Estimate Std. error p-value

Blue Pathogen Intercept 0.829 8.94E-03 < 0.001

Blue Pathogen Time 0.0260 6.32E-03 < 0.001

Blue Pathogen Inclination (90) 0.109 0.0126 < 0.001

Green Pathogen Intercept 0.848 6.77E-03 < 0.001

Green Pathogen Time −7.91E-03 4.79E-03 0.170

Green Pathogen Inclination (90) 0.089 9.57E-03 < 0.001

Red Pathogen Intercept 0.836 6.25E-03 < 0.001

Red Pathogen Time 0.0473 4.42E-03 < 0.001

Red Pathogen Inclination (90) 0.0772 8.85E-03 < 0.001

NIR Pathogen Intercept 0.808 3.41E-03 < 0.001

NIR Pathogen Time −0.0337 2.41E-03 < 0.001

NIR Pathogen Inclination (90) 0.109 4.82E-03 < 0.001

RE Pathogen Intercept 0.828 8.34E-03 < 0.001

RE Pathogen Time −0.0371 5.90E-03 < 0.001

RE Pathogen Inclination (90) 0.0814 0.0118 < 0.001

Blue Mock Intercept 0.788 0.0179 < 0.001

Blue Mock Time −6.86E-04 0.0127 0.619

Blue Mock Inclination (90) 0.0626 0.0253 < 0.05

Green Mock Intercept 0.899 4.48E-03 < 0.001

Green Mock Time −5.64E-03 3.17E-03 0.145

Green Mock Inclination (90) 0.0600 6.33E-03 < 0.001

Red Mock Intercept 0.738 0.0164 < 0.001

Red Mock Time −4.99E-04 0.0115 0.608

Red Mock Inclination (90) 0.0725 0.0230 < 0.01

NIR Mock Intercept 0.870 2.65E-03 < 0.001

NIR Mock Time 3.64E-04 1.87E-03 0.590

NIR Mock Inclination (90) 0.108 3.75E-03 < 0.001

RE Mock Intercept 0.909 3.06E-03 < 0.001

RE Mock Time −8.05E-03 2.17E-03 < 0.01

RE Mock Inclination (90) 0.0588 4.33E-03 < 0.001

Estimates, standard errors and p-values represent mean values of 1000
bootstrap iterations.

of the images, that each corresponding pixel refers to the same
location of the imaged object) increases computing steps and
time at least by the factor of band used. Therefore, single-
lens multispectral camera models would be useful alternatives.
In contrast to LED-based multispectral imagers (Grieve et al.,
2015), cameras with filters allowing only narrow bands of light
to pass, might be useful under real-world conditions, because
they do not rely on close proximity, darkness and additional
LED light source.

We measured increasing reflectance intensity in the red and
blue band, a relatively constant reflectance in the green band, and
a decreasing reflectance in the NIR and RE band (Figure 3). This
is consistent with findings by Mahlein et al. (2010) who found
similar infection patterns studying sugar beet leaves infected with
fungal diseases such as C. beticola- and U. betae. In contrast, Zhao
et al. (2014) found an increased reflectance intensity in the NIR
range for Puccinia striiformis infections which cause stripe rust
in wheat. The spectral signatures in barley leaves were found to
be increased in the measured range from 400 to 2400 nm when

TABLE 6 | Summary statistics of parameter estimates of linear regressions to
predict multispectral band intensity (bands one to five) of either B. cinerea strain
T4 (pathogen, Type1) or mock (control, Type 0) inoculations of tomato leaves.

Band Infection Parameter Estimate Std. error p-value

Blue Pathogen Intercept 0.875 5.76E-03 <0001

Blue Pathogen Time 0.0305 4.07E-03 <0001

Blue Pathogen Inclination (90) 0.0579 8.14E-03 <0001

Green Pathogen Intercept 0.913 6.30E-03 <0001

Green Pathogen Time −8.27E-03 4.45E-03 0.126

Green Pathogen Inclination (90) 0.0346 8.90E-03 <001

Red Pathogen Intercept 0.860 9.40E-03 <0001

Red Pathogen Time 0.0458 6.65E-03 <0001

Red Pathogen Inclination (90) −1.05E-03 0.0133 0.613

NIR Pathogen Intercept 0.822 3.64E-03 <0001

NIR Pathogen Time −0.0325 2.58E-03 <0001

NIR Pathogen Inclination (90) 0.112 5.15E-03 <0001

RE Pathogen Intercept 0.857 6.22E-03 <0001

RE Pathogen Time −0.0380 4.40E-03 <0001

RE Pathogen Inclination (90) 0.0629 8.79E-03 <0001

Blue Mock Intercept 0.829 9.43E-03 <0.001

Blue Mock Time 2.52E-03 6.67E-03 0.572

Blue Mock Inclination (90) 0.0662 0.0133 <0.001

Green Mock Intercept 0.9111 3.46E-03 <0.001

Green Mock Time −4.74E-03 2.45E-03 0.116

Green Mock Inclination (90) 0.0603 4.89E-03 <0.001

Red Mock Intercept 0.741 0.0112 <0.001

Red Mock Time −3.46E-04 7.89E-03 0.604

Red Mock Inclination (90) 0.0729 0.0158 <0.001

NIR Mock Intercept 0.870 2.65E-03 <0.001

NIR Mock Time 3.64E-04 1.87E-03 0.590

NIR Mock Inclination (90) 0.108 3.75E-03 <0.001

RE Mock Intercept 0.910 3.17E-03 <0.001

RE Mock Time −7.96E-03 2.24E-03 <0.01

RE Mock Inclination (90) 0.0589 4.49E-03 <0.001

In contrast to Table 5, this table confers to data with an adjusted start value
considering the leaf tissue to be healthy at 5 hpi and hence equalizing the first
measurement value of mock- and pathogen infected ROIs. Estimates, standard
errors and p-values represent mean values of 1000 bootstrap iterations.

infected with net blotch, brown rust or powdery mildew (Thomas
et al., 2018). Additionally, the reflectance intensities were found
to be growth stage dependent (Zhao et al., 2014).

Under laboratory conditions using B. cinerea strain T4 as an
example fungal pathogen, we were able to identify differences
in linear regression models of healthy and diseased tissue as
early as 9 hpi with the NIR band. The NIR band filter is a
40 nm wide band with a center wave length of 840 nm. The
NIR band had the smallest confidence interval while separating
mock-and pathogen-infected ROIs the earliest. This finding
confirms qualitatively the results of Xie et al. (2017) who plotted
hyperspectral data of B. cinerea-infected and healthy tissue. Their
results indicate 746 nm to be the most informative wavelength.
The RE band collects reflectance irradiance around 717 nm. RE is
the region in which the reflectance intensity increases the most
(Xie et al., 2017), what may explain the bigger variability than
in the NIR range.
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FIGURE 6 | Time lapse stack montages of NIR (near-infrared) reflectance intensities of mock-inoculated and B. cinerea-infected tomato leaves of trial 3. The
sequence from left to right corresponds to both, infection type and petri dish inclination and includes the dishes D (mock inoculated, 64◦ inclination), C (mock
inoculated, 90◦ angle to sensor), I (pathogen infected, 90◦) and J (pathogen infected, 64◦). Montages I∗ and J∗ represent binary masks of approximated locations of
pathogen infection (black cells) derived from unsupervised ISO data classification. First line, RGB images taken at approximately 30 hpi; red labels indicate the
infected and damaged leaf area. Red square highlights the petri dishes photographed at measurement time 4, 5, and 7. Red square indicates the leaflets on petri
dishes. Measurements were conducted in 80 min intervals. Measurement times 3, 4, 5, . . . correlated to 8:25, 9:45, 11:05,. . ., hpi. Size bar corresponds to 100 pixel
which correlates to approximately 7 cm.
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FIGURE 7 | Time lapse stack montages of RE (rededge) reflectance intensities of petri dishes D, C, I, and J. Data sequence and figure structure is the same as in
Figure 6. Size bar corresponds to 100 pixel which correlates to approximately 7 cm.

We analyzed the reflectance of pathogen and mock-inoculated
tissue by comparing defined ROIs on healthy and disease-
attacked leaf tissue. Under real-world-conditions varying angles
of sun and leaf position to camera cause varying reflectance

intensities (Pinter et al., 1985; Maes et al., 2014; Oberti
et al., 2014). Therefore, transferring this artificial setup to
field conditions, the differences of reflectance from one same
leaf should be considered only. We investigated two angles
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(90◦ and 64◦) the leaves were positioned toward the camera
sensor. Using hyperspectral imaging of Erysiphe necator infected
vine leaf tissue under laboratory conditions, Oberti et al.
(2014) indicated that angles smaller than 90◦ lead to better
differentiation of diseased and healthy tissue. The importance
of leaf angle for disease detection by hyperspectral imaging was
confirmed by our results in wavebands RE and NIR. For both
bands the smaller angle lead to smaller and earlier separated
confidence intervals of reflectance intensity. To this end, more
work should clarify the reasons for it.

Natural infection does usually not occur in spots comparable
to the artificial drop infection we used in our experiment but
from smaller infection sites and maybe from single infection
units. On the one hand, this may lead to a delay of detection,
since infected tissue patches are smaller as the experimental
ROIs and resolution of the sensor is limited. On the other
hand, fungal infections may lead to specific shapes that should
be investigated in future studies. Moreover, the differences in
reflectance intensity may be also induced by other biotic and
abiotic stresses. For instance, water deficit in tomato leads to
a lower reflectance intensity than well-watered tomato plants
(Susiè et al., 2018). Water deficit cause differently shaped patches
or even impact whole leaves only compared to fungal infections.
Different shapes in combination with intensity may be key to
separate biotic and abiotic stress. The potential artifacts we found
by classifying diseased from healthy tissue (Figures 6, 7), may be
caused by abiotic stress induced by, e.g., the used experimental
setup with detached leaves. Abiotic and additional biotic stresses
should be addressed in future experiments to validate specificity
of reflectance data.

Due to technical constrains, we used a semi-randomized
experimental setup. However, we excluded any bias caused by
the setup or sensor artifacts with a cross validation of all ROIs
and a stratified bootstrapping of the background ROIs. The
factor “time” was found to be not significant in the stratified
bootstrapping. Therefore, we can exclude any bias in the linear
regressions caused by the experimental design. The observed
differences in reflectance intensities at the first measurement
point (5 hpi) were most prominent in red and blue bands of
the third experiment. This could have been potentially caused by
camera or light setting shifts. However, this was a systematic error
which was addressed by normalization.

Unsupervised classification using the imageJ software was of
limited success compared to linear regression results. Diseased
tissue could be identified in the NIR images from 9:45–13:45
which correlates to the results of linear regression. Artifacts like
leaf borders and veins became visible from 16:25 hpi onward. This
may be due to tissue aging and beginning senescence because
we were using a detached leaf assay. Considering potential
specific spatial shapes of biotic and abiotic stresses (i.e., for
example, circular expanding reflectance intensity changes around
infection location vs. changes along the leaf-veins) and taking
into account the low resolution snap-shot multispectral imagers
available, logic pattern-based Logical Vision machine learning
approaches (Muggleton et al., 2018) may be useful tools for
collecting information from low resolution multispectral images.
In addition, demonstrating reflectance changes within the first

24 h of fungal infections may correlate to reported drastic changes
on gene expression level. In Arabidopsis thaliana challenged with
B. cinerea several hundred genes were differentially regulated at
12 and 24 hpi with additional respect to distance from infection
location (Mulema and Denby, 2012). Rezzonico et al. (2017)
found for the tomato-B. cinerea pathosystem differentially gene
regulation not only between mock- and pathogen-inoculated
samples but also between different pathogens and inoculation
methods. Recently, in barley-powdery mildew interaction specific
reflectance bands were shown to correlate to pathogen-induced
gene expression changes (Kuska et al., 2019). The genes
JIP23 (jasmonate induced proteins), RuBisCO (ribulose-1,5-
bisphosphate carboxylase small subunit), and PR5 (encoding a
thaumatin-like protein) among seven tested genes were analyzed
by means of quantitative real time PCR in susceptible barley
variety Hordeum vulgare infected with Blumeria graminis f.sp.
hordei. Their expression in five sampling times during 72 hpi
showed high relevance in local neighborhood analysis and
correlated with reflectance from diseased tissue strongest in the
wave bands from 660 to 820 nm (Kuska et al., 2019).

Summarizing, our work demonstrated “off-the-shelf ”
multispectral cameras to be suitable for early, pre-symptomatic
detection of gray mold infections in tomato leaves.
Computational post processing to correct multiple lenses
systems-derived shifts are complicated, error prone and
time consuming. In future experiments single-lens systems
should be favored. Future experiments should investigate
the process adaptations toward field conditions and multiple
environmental influences such as leaf angle and artifacts due
to non-homogeneous background, disease severity, biotic and
abiotic stresses.
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