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Maintenance of genome integrity is a key issue for all living organisms. Cells are
constantly exposed to DNA damage due to replication or transcription, cellular metabolic
activities leading to the production of Reactive Oxygen Species (ROS) or even exposure
to DNA damaging agents such as UV light. However, genomes remain extremely stable,
thanks to the permanent repair of DNA lesions. One key mechanism contributing
to genome stability is the DNA Damage Response (DDR) that activates DNA repair
pathways, and in the case of proliferating cells, stops cell division until DNA repair is
complete. The signaling mechanisms of the DDR are quite well conserved between
organisms including in plants where they have been investigated into detail over the
past 20 years. In this review we summarize the acquired knowledge and recent
advances regarding the DDR control of cell cycle progression. Studying the plant DDR
is particularly interesting because of their mode of development and lifestyle. Indeed,
plants develop largely post-embryonically, and form new organs through the activity
of meristems in which cells retain the ability to proliferate. In addition, they are sessile
organisms that are permanently exposed to adverse conditions that could potentially
induce DNA damage in all cell types including meristems. In the second part of the
review we discuss the recent findings connecting the plant DDR to responses to biotic
and abiotic stresses.

Keywords: cell cycle checkpoint, DNA damage, biotic and abiotic stress, genome integrity, plants

INTRODUCTION

Maintenance of genome integrity is essential in all living organisms. It is required for proper
development and for faithful transmission of the genetic information from one generation to
the next. Yet, cells are constantly subjected to DNA damage. One major source of mutations
is DNA metabolism itself, both during DNA replication and DNA repair. The error rate of the
replication machinery is estimated in the range of 1077 to 10~%. This low error rate results from
the fidelity of replicative polymerases, which have an error rate between 10~¢ and 1078, and the
successful excision of 90-99% of mis-paired bases thanks to the proof-reading activity of these
complexes (Kunkel, 2004). DNA repair processes can also introduce errors, with a similar rate as
replication when they involve proof-reading polymerases, or with a higher rate when they involve
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alternative polymerases (Kunkel, 2004; Jain et al., 2018). Finally,
unrepaired lesions can block the main replicative polymerases;
in that case, TransLesion Synthesis (TLS) Polymerases, take over
(Uchiyama et al., 2009). They interact with each other, and are
thought to form a large complex at stalled forks to allow choosing
the best suited polymerase for each type of lesion (Powers and
Washington, 2018). Their ability to replicate DNA passed lesions
makes them error-prone: their substitution rate when replicating
undamaged templates is comprised between 1073 and 107!
(Kunkel, 2004). In addition, DNA demethylation can also cause
mutations because it requires nucleotide removal followed by
Base Excision Repair (BER) (He et al., 2011).

Being sessile organisms, plants are constantly exposed to
stress conditions that can also damage their DNA. Indeed,
plants need light to grow photo-autotrophically, but UV light
induces DNA damage, notably in the form of cyclobutane
pyrimidines (CPDs). Likewise, the photosynthetic apparatus
generates Reactive Oxygen Species (ROS), especially when plants
are exposed to excess light, either because the intensity is very
high, or when other external conditions such as heat or drought
reduce the plants capacity to consume the reducing power
produced by light absorption in photosystems (Noctor and Foyer,
2016). Very few studies have estimated the frequency of DNA
lesions in plant cells. In Human cells, DNA lesions caused by
spontaneous hydrolysis or ROS occur at a frequency ranging
from a few hundreds to over 10° per cell, depending on the
type of damage (Bray and West, 2005). In maize, the number
of apurinic/apyrimidic sites formed in root tips during the first
20 h of seed imbibition was estimated to 3.75 x 10° per genome
and per cell. Thus, although detailed quantification of DNA
damage occurring in plant cells is missing, DNA damage can
be considered as a frequent event under normal conditions, and
likely even more so in response to various stress conditions.

In spite of the high frequency of DNA damage occurring in
plant cells, the estimated mutation rate is very low. Through
whole genome sequencing of Arabidopsis lines propagated from
single seed descent for 25-30 generations, the genome-wide
average mutation rate was estimated around 7 x 10~ per site per
generation (Ossowski et al., 2010; Weng et al., 2019). This figure
corresponds to less than one single mutation in the entire genome
per generation, and is at least 10 times lower than the error rate
of the replication machinery for a single cell cycle. This provides
striking evidence for the efficiency with which DNA Damage is
detected and repaired in the cell. DNA lesions can be repaired
through multiple pathways that have been reviewed elsewhere
and will not be described into detail here (Amiard et al., 2013;
Manova and Gruszka, 2015; Spampinato, 2017). Briefly, most
lesions, such as UV-induced CPDs, mismatches, etc., are sensed
and repaired by dedicated machineries such as photolyases,
or complexes involved in mismatch repair, BER or Nucleotide
Excision Repair (NER) (Jackson and Bartek, 2009; Manova
and Gruszka, 2015; Spampinato, 2017). However, if incorrectly
repaired, all these lesions can hamper DNA replication or cause
double strand breaks (DSBs) that require specific DNA repair
pathways such as Non-homologous End Joining (NHE]) or
Homologous Recombination (HR) (Amiard et al., 2013). In that
case a sophisticated signaling process called the DNA Damage

Response (DDR) allows activation of cell cycle checkpoints
and of specific DNA repair mechanisms (Yoshiyama et al.,
2013b; Hu et al., 2016). The DDR is highly conserved between
eukaryotes with some variations that will be briefly discussed
below. Its ultimate outcome will depend on the severity of
the DNA lesions and the efficiency of the repair process: cell
cycle activity can resume if lesions are successfully repaired,
but more severe DNA damage can induce endoreduplication
(Adachi et al., 2011). This process corresponds to several rounds
of DNA replication without mitosis, leading to an increase in
nuclear DNA content; it is widely distributed in plants such
as in Arabidopsis leaves or stems, fruits, and endosperm in
cereals (Galbraith et al., 1991), and is associated with cell
differentiation and enlargement (Kondorosi et al., 2000). In the
context of the DDR, it is thus seen as a permanent differentiation,
thereby avoiding the proliferation of cells with damaged DNA.
Interestingly, endoreduplication also exists in animals although
it is not as common as in plants, and can be triggered by DNA
damage, and could thus be a conserved response in eukaryotes
(Fox and Duronio, 2013). Finally, depending on the cell type and
the severity of damage, DDR activation can result in programmed
cell death (PCD) (Furukawa et al, 2010). Interestingly, plant
stem cells are particularly sensitive to DNA damage and prone
to enter cell death (Fulcher and Sablowski, 2009), suggesting
that specific mechanisms are at work to protect meristems from
accumulating mutations.

The DDR signaling pathway has received extensive attention
in Mammals due to its relevance in the field of cancer research,
but has also been studied into details in plants for about 15-
20 years. In this review we will summarize the recent advances on
the plant DDR. We will focus exclusively on the DDR signaling
events and cell cycle regulation, but will not discuss the complex
mechanisms involved in DNA repair that have been reviewed
elsewhere (Manova and Gruszka, 2015; Spampinato, 2017). Next,
we will explore the emerging connection between DDR and
biotic and abiotic stress responses. Indeed, even though DDR is
likely activated in response to a wide range of stress conditions
and could account for some of the negative effects of stress on
cell division, it has to date little been studied in the context of
plant response to stress, with most studies using genotoxic to
trigger the DDR.

MAIN PLAYERS IN DDR SIGNALING

ATM and ATR, the Main DNA Damage

Sensors

It is now well established that the general organization of the
DDR signaling cascade is conserved between plants and animals.
Figure 1 summarizes our current knowledge of the plant DDR.
In animals, DDR activation relies on two protein kinases, called
Ataxia Telangiectasia Mutated (ATM) and ATM and Rad3-
related (ATR), both of which belong to the phosphatidylinositol
3-kinase-like family (Maréchal and Zou, 2013). ATM primarily
responds to DSBs whereas ATR is activated by single stranded
DNA and defects in replication fork progression (Maréchal and
Zou, 2013); both proteins activate downstream components of
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FIGURE 1 | Overview of the plant DDR. DSBs activate ATM signaling through
the MNR (MRE11 NBS1 RAD50) complex while ATR s recruited to single
stranded DNA by RPA proteins via ATRIP, and activated by the 9-1-1 and
RAD17/RFC complexes. ATR can also be activated by DNA Polymerase ¢
through an unknown mechanism. Both ATM and ATR signaling converge to
the SOG1 transcription factor that controls the expression of hundreds of
genes involved in cell cycle regulation, cell death control, and DNA repair.
E2Fa/RBR complexes also control DNA repair by regulating DNA repair genes
and by recruiting RAD51 and BRCA1 at DNA damage sites. The role of
E2F/RBR complexes in DDR depends on CYCB1/CDKB and ATM/ATR
activity, but the exact molecular mechanisms are unknown. Dashed arrows
represent putative/possibly indirect regulations.

the DDR. Arabidopsis homologs of ATR and ATM were isolated
in the early 2000s (Garcia et al., 2003; Culligan et al., 2004), based
on their sequence conservation with their counterparts in animal
and yeast. Interestingly, Arabidopsis atr mutants are viable, in
sharp contrast with atr-deficient mice that stop development at
an early stage of embryogenesis (Culligan et al., 2004), which
facilitated the functional dissection of ATR and ATM functions
in plants. Like their animal homologs, ATM and ATR play both
distinct and additive roles in response to DNA damage, both
mutants being hypersensitive to DSBs induced by y-irradiation
whereas only atr is required for replicative stress response
(Culligan et al., 2006). Recently, quantitative phosphoproteomics
allowed the identification of hundreds of proteins that are
differentially phosphorylated in response to genotoxic stress in an

ATM/ATR dependent manner (Roitinger et al., 2015). This study
highlighted the large number of ATM/ATR targets and thus their
central role in coordinating DNA replication, DNA repair and
gene expression in response to genotoxic stress.

Because they recognize different types of lesions, ATM and
ATR are activated through different mechanisms. Like in animals
and yeast, the plant ATM is activated by the MRN complex
(MRE11, RAD50, and NBS1) that recognizes DSBs (Puizina
et al., 2004; Waterworth et al., 2007; Amiard et al., 2010). In
animals, ATR responds to a large variety of genotoxic stresses
that all have in common to slow down DNA polymerases,
leading to the accumulation of single stranded DNA. This single
stranded DNA coated with the RPA (Replication Protein A)
heterotrimeric recruits ATRIP (ATR Interacting Protein) which
in turn facilitates the recruitment of ATR (Saldivar et al., 2017).
ATR is then activated by a number of factors including the 9-1-1
complex (RAD9, RADI, and HUSI), that is loaded on damaged
DNA by the RADI17 replication Factor C 2-5 sub-units (RFC)
(Saldivar et al., 2017). Furthermore in yeast, DNA Polymerase
e can directly contribute to ATR activation (Garcia-Rodriguez
et al., 2015), but whether this function is conserved in animals
is unclear. The plant ATRIP protein has been identified (Sweeney
et al., 2009), as well as the components of the 9-1-1 complex and
RAD17 (Heitzeberg et al., 2004). It is worth noting that in plants,
RPA sub-units are encoded by small multi-gene families that
appear to have specialized functions in DNA replication or DDR
signaling (Aklilu et al., 2014). In addition, the plant DNA Pol &
was shown to play a role in replicative stress sensing upstream of
ATR, as observed in budding yeast (Pedroza-Garcia et al., 2017).

Both the ATR and the ATM pathways lead to the accumulation
of yH2AX (a phosphorylated histone variant) at DNA damage
sites (Amiard et al, 2010), which is instrumental for the
recruitment of signaling and repair factors (Kinner et al., 2008).
Intriguingly, plant atr mrell double mutants display a high
frequency of anaphase bridges despite the complete absence of
yYH2AX accumulation, indicating that plants can repair DSBs in
the absence of ATR and ATM activation (Amiard et al., 2010) but
the underlying mechanisms remain to be fully elucidated.

Signaling Downstream of ATM and ATR

Through the Central Integrator SOG1

In animals, the ATR and ATM branches of DDR signaling
converge to activate the p53 tumor suppressor, a transcription
factor that controls both DNA repair and cell cycle arrest
(Yoshiyama et al., 2013b). Plant genomes lack a p53 homolog,
but its functional equivalent was isolated through a genetic screen
for suppressors of the growth arrest induced by y-irradiation
in the uvhl (UV-hypersensitive 1) mutant, that is deficient for
the DNA repair endonuclease XPF (Xeroderma Pigmentosum
complementation group F) (Preuss and Britt, 2003). Suppressor
Of Gamma-response 1 (SOGI), is a transcription factor
of the NAC (NAM, ATAF1/2, and CUC2) family and is
the central regulator of the plant DDR (Yoshiyama et al,
2009). It is expressed predominantly in meristems and in
vascular tissues (Yoshiyama et al., 2013a), and accounts
for all the short-term transcriptional changes induced by
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y-irradiation (Yoshiyama et al., 2009). Genetic analysis revealed
that atm and atr are partially redundant for the induction or
endoreduplication or cell death in response to DNA damage,
whereas SOGL is strictly required (Furukawa et al., 2010; Adachi
et al., 2011), which led to a model according to which SOGI
is the central integrator of DDR in plants (Hu et al., 2016).
SOGT1 is rapidly phosphorylated in response to DNA damage
and is a direct target of ATM (Yoshiyama et al,, 2013a) and
ATR (Sjogren et al., 2015). This represents another difference
between plant and animal DDR signaling, since in animals the
CHKI1 and CHK2 (Check point) kinases act as intermediates
between ATR or ATM and p53, whereas genes encoding these
kinases appear to be absent for plant genomes (Yoshiyama
et al., 2013b). Recent genome-wide analyses of SOG1 targets
confirmed the central role of SOGI in the early transcriptional
response to DSBs, placing SOGL at the top of the regulatory DDR
network (Bourbousse et al., 2018; Ogita et al., 2018). Surprisingly,
quantitative phosphoproteomics allowed the identification of
hundreds of proteins that are differentially phosphorylated in
response to genotoxic stress in an ATM/ATR dependent manner
(Roitinger et al., 2015) but failed to identify SOGI, possibly due
to unfavorable peptide cleavage or to the fact that this study used
mature rosettes while SOG1 is mainly expressed in meristematic
tissues (Yoshiyama et al., 2013a).

SOGI is a transcription activator that controls the expression
of DNA repair genes and cell cycle regulators (Bourbousse et al.,
2018; Ogita et al., 2018). Here, we will focus on the mechanisms
leading to cell cycle checkpoint activation. Depending on the
phase of the cell cycle at which DNA damage occurs, cell can stop
either in S phase or in G2. Replicative stress activates an intra-S
checkpoint that is dependent on SOG1 and WEEI1 (De Schutter
et al., 2007; Cools et al., 2011; Hu et al,, 2015), a protein kinase
that stops the cell cycle through an inhibitory phosphorylation
of Cyclin Dependent Kinases (CDK). SOG1 can also induce a G2
arrest of the cell cycle through several mechanisms. First, together
with ATR, SOG1 was shown to control proteasome-dependent
degradation of the mitotic CDKB2;1 (Adachietal., 2011); second,
SOGI controls the expression of genes encoding negative cell
cycle regulators such as the CDK inhibitors SMR5 and SMR7
that induce endoreduplication (Yi et al., 2014). Furthermore, the
WEEL kinase inhibits CDK activity (De Schutter et al., 2007;
Cools et al., 2011; Cook et al., 2013), thereby inhibiting the G2/M
transition, and SOG1 also stimulates the expression of the G2-
specific CYCLINBI, a mechanism that has been proposed to delay
mitosis, although it likely also reflects the specific involvement of
CYCBI;1 in DNA repair (Schnittger and De Veylder, 2018). More
recently, the full analysis of SOG1-dependent transcriptome
changes induced by DNA damage, further revealed that SOG1
partly acts through the activation of MYB3R repressors that
inhibit the expression of G2/M cell cycle genes (Bourbousse
et al., 2018). MYB3R transcription factors are well known
regulators of the G2/M transition, MYB3R4 being an activator,
MYB3R3 and 5 repressors, and MYB3R1 behaving either as
an activator or as a repressor depending on its interacting
partners (Haga et al., 2011; Kobayashi et al., 2015a,b). Recently,
Chen et al. (2017) demonstrated that repressor MYB3Rs (Rep-
MYB3R) are essential for the growth inhibition induced by

DNA damage: in response to zeocin treatment, the MYB3R3
protein accumulates in root meristems, thereby preventing cell
proliferation by inducing a G2 arrest. In this work, authors
showed that MYB3R3 is phosphorylated by CDKs and that this
phosphorylation promotes its proteasomal degradation. Thus,
reduction of CDK activity due to CDK inhibitors induction likely
contributes to the accumulation of Rep-MYB3Rs in response
to DNA damage. Together, these observations shed new light
on the mechanisms underlying the SOG1-dependant repression
of CDKB2;1 accumulation. Indeed, SOGI positively regulates
activators of the Anaphase Promoting Complex/Cyclosome
(APC/C) (Bourbousse et al., 2018). The down-regulation of
CDKB2;1 in response to DNA damage could thus result from
the concomitant degradation of the protein by the APC/C
and repression of the CDKB2;1 gene by Rep-MYB3Rs. Very
recently, the ANAC044 and ANACO085 transcription factors, the
two SOGI closest relatives that are also SOG1 targets (Ogita
etal., 2018), were reported to promote rep-MYB3R accumulation
in response to DNA damage (Takahashi et al., 2019). Genetic
analysis showed that ANAC044 and ANACO085 function in the
same pathway as SOGI to control cell cycle arrest through
rep-MYB3R accumulation but not activation of SMR genes or
DNA repair genes. To date, it remains unclear how ANAC044
and ANACO085 modulate Rep-MYB3R protein levels, as they
do not directly target Rep-MYB genes, but this pathway could
involve the regulation of proteins involved in the degradation
of Rep-MYBs such as F-box proteins (Takahashi et al., 2019).
Figure 2 summarizes how DDR triggers cell cycle arrest either
in S phase or in G2 phase, and can lead to cell differentiation
and endoreduplication.

EF2/RBR Complexes: New Players in the
Plant DDR

Despite this central role of SOGI, recent studies have revealed
SOGI1-independent pathways in the plant DDR. The first
evidence for SOG1-independent DDR response came from the
genetic analysis of weel sogl double mutants, that showed
enhanced sensitivity to replicative stress compared to the
sogl mutant, providing evidence for a SOGIl-independent
mechanism that could lead to WEE1L activation (Hu et al,,
2015). This hypothesis is further supported by the analysis of
Arabidopsis mutants with partial deficiency in the replicative
DNA Polymerase ¢ that suffer from constitutive replicative stress
(Pedroza-Garcia et al., 2016, 2017). ATR and WEEI are both
essential for the survival of abo4-1 mutants that are partially
deficient for the Pol ¢ catalytic subunit, whereas the abo4-
1 sogl double mutants are viable. Consistently, some DDR
responsive genes are induced in a SOGl-independent manner
in the abo4-1 sogl double mutants (Pedroza-Garcia et al., 2017).
The underlying molecular mechanism remains unknown, but
may involve E2F-RBR1 (RetinoBlastoma Related 1) complexes.
These transcription regulators are well known both in plants and
animals for controlling S-phase entry: RBR1 binds and inhibits
E2F transcription factors thereby preventing the expression
of S-phase genes (Berckmans and De Veylder, 2009). Upon
activation of CYCD-CDKA complexes and cell cycle entry, RBR1
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FIGURE 2 | Cell Cycle regulation in response to DNA damage. Under normal
conditions, protein accumulation of repressive MYB3Rs (rep-MYB3R) is
restricted to S-phase during which they repress the transcription of G2 genes
including CYCBs and CDKBs. Rep-MYB3R accumulation is kept low during
G2 to M through phosphorylation of these transcription factors by
CYCB/CDKB complexes, leading to their degradation by the proteasome
(shaded shapes and arrows). Upon DNA damage, SOG1 regulates the intra S
and G2/M checkpoint by targeting the core cell cycle genes WEET, SMR5
and 7 and APC/C sub-units, and by indirectly controlling the accumulation of
rep-MYB3Rs. How SOG1 acts on MYB3Rs degradation remains to be fully
elucidated, but this pathway involved direct up-regulation of the genes
encoding the ANAC044 and ANACO085 transcription factors. These two
proteins influence repressive MYB3R accumulation through a mechanism that
remains to be elucidated, although reduction of CYCB/CDKB complexes
accumulation and activity likely contributes to this process by reducing
MYB3R phosphorylation. WEE1 can inhibit S-phase progression by inhibiting
the activity of CYCA/CDKA complexes. WEE1 and SMR5 and 7 can also
inhibit the activity of CYCB1/CDKB complexes directly, whereas MYB3R and
APC/C control the accumulation of the complex. Together, all these
mechanisms contribute to lowering the activity of mitotic CDKs, leading to G2
arrest or endoreduplication. In addition to these SOG1-dependent
mechanisms, E2Fa/RBR complexes likely contribute to the activation of cell
cycle checkpoints possibly by regulating WEET or CYC and CDK genes, but
their role remains to be fully elucidated. On this figure, red arrows indicate
direct transcriptional regulations whereas black arrows indicate indirect
regulations.

is phosphorylated and E2F transcription factors function together
with their Dimerization Partners (DP) proteins to activate the
expression of genes involved in DNA replication, leading to the
onset of S-phase (Gutzat et al., 2012). Besides its role in cell
cycle regulation, E2Fa had been previously shown to control
the expression of RNR (RiboNucleotide Reductase), an enzyme
involved in deoxyribonucleotide biosynthesis that is strongly
activated by DNA damage (Roa et al., 2009). Furthermore, E2Fa

was shown to form foci at DNA damage sites (Lang et al., 2012).
Two recent studies further substantiated the role of RBR1 and
E2Fs in the plant DDR: a temperature sensitive rbrI mutant was
shown to be hypersensitive to DNA damage, and to accumulate
enhanced levels of DNA lesions in response to genotoxic stress
(Biedermann et al., 2017), while RBRI silencing triggered DNA
damage accumulation and cell death onset in root tips even in the
absence of exogenous stress (Horvath et al., 2017). Intriguingly,
RBRI represses the expression of several DDR genes in a E2Fa-
dependent manner (Biedermann et al., 2017; Horvath et al,
2017), and RBRI1 deficiency could thus have been expected to
improve the DNA repair capacity of the plant. However, authors
also demonstrated that RBR1 localizes to DNA damage foci
(Biedermann et al.,, 2017) together with E2Fa, and recruits the
DNA repair proteins RAD51 (RADIATION SENSITIVE 51)
and BRCA1 to the DNA damage site (Biedermann et al., 2017;
Horvath et al, 2017). Thus E2F-RBR1 could play a dual role
in the DDR (i) by controlling the expression of DDR genes,
possibly to up-regulate their expression during S-phase and
thereby enhance the repair activity at this specific phase of the
cell cycle that triggers extensive DNA damage, and (ii) more
directly by controlling the DNA repair process itself at specific
sites (Figure 1). Moreover E2F/RBR complexes contribute to cell
cycle checkpoint activation during DDR: loss of RBR results in
enhanced cell death in response to genotoxic stress, suggesting
that E2F/RBR complexes function antagonistically to SOG1 to
restrict PCD (Biedermann et al., 2017). Further, since ATR
and WEEIL, but not SOG1 are required for the survival of Pol
¢ deficient mutants that display constitutive replicative stress,
RBR/E2F complexes may play a role in the control of the
intra-S checkpoint, possibly by controlling WEEI or CDK/CYC
expression (Figure 2). In line with this hypothesis, RBR was
found to target WEEI and a large number of core cell cycle
regulators as well as many DNA repair genes (Bouyer et al., 2018).
How E2F-RBR complexes are regulated upon DNA damage
remains to be fully clarified. Formation of RBR foci upon
DNA damaged was reported to depend both on CYCB1/CDKB
and ATM/ATR activity (Biedermann et al., 2017; Horvath
et al., 2017). Whether RBR is directly phosphorylated by ATM,
ATR and CYCBI1/CDBKI complexes, or whether the kinases
function sequentially remains to be established. Neither RBR nor
CYCB1/CDKB have been identified as putative ATM/ATR targets
(Roitinger et al., 2015). Further work will thus be needed to fully
dissect this part of the DDR signaling cascade.

Besides RBR1, another regulator called SNI1 (Suppressor of
Nprl Inducible 1) was recently reported to antagonize E2Fs,
and was proposed to have a dual function in the DDR by
connecting cell cycle checkpoint activation and DNA repair
mechanisms (Wang et al., 2018). SNII1 is a subunit of SMC5/6
complex (Structural Maintenance of Chromosome), which is
conserved in all eukaryotes (De Piccoli et al, 2009). Over-
expression of SNII rescues the phenotype of E2Fa/DPa over-
expressers that is characterized by increased endoreduplication
level and retarded growth (De Veylder et al., 2002), likely
because it represses E2F target genes through the recruitment
of histone deacetylases (Wang et al., 2018). Reciprocally, loss
of E2Fs abolishes the induction of cell death observed in the
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root tip of snil mutants. Interestingly, loss of genes involved
in HR had been previously reported to suppress cell death in
snil mutants (Durrant et al., 2007; Wang et al., 2010; Song
et al., 2011). Since RBR1 and E2F are recruited to a small
number of foci associated with heterochromatin, and not to
all DNA damage sites, it is thus tempting to speculate that
RBRI1/E2F complexes and SNI function in heterochromatin-
specific DNA repair mechanisms. Indeed, in human cells, the
choice between DSB repairs pathway is greatly influenced by
chromatin compaction, heterochromatin being more prone to
Non-homologuous End Joining (NHE]) possibly to avoid HR
between repeats (Lemaitre and Soutoglou, 2014).

All the above-mentioned studies have been conducted
in Arabidopsis, using DNA damaging agents. However,
understanding and characterizing the contribution of plant
DDR pathways in more physiological conditions could
provide valuable insight into the plant response to various
environmental stresses.

ROLE OF THE PLANT DDR IN ABIOTIC
STRESS RESPONSES

Although studies connecting the plant DDR to abiotic stress
responses remain scarce, maintenance of genome integrity is
likely to play a role in plant stress tolerance. In agreement
with this hypothesis, whole genome sequencing of two species
of Eutrema, a recently evolved genus of alpine Brassicaceae,
revealed that several genes involved in DNA repair, cell cycle
regulation or DDR are duplicated, thereby providing a potential
mechanistic basis for the adaptation of these plants to the harsh
alpine environment (Guo et al., 2018). Indeed, a number of
abiotic stresses are well known to cause DNA damage. The
most obvious example is UV-B light (280-320 nm) that directly
damages DNA by inducing the formation of CPDs. This results
in DNA strand distortion, and hampers both transcription and
DNA replication (Britt, 2004). Most CPDs are directly repaired
by photolyases such as UVR2 (UV Response 2) in Arabidopsis
(Willing et al., 2016), but tolerance of UV-B photodimers also
requires TLS polymerases to allow DNA replication to proceed
in spite of lesions (Curtis and Hays, 2007). When unrepaired,
CPDs can activate the DDR. Indeed, exposure to UV-B light, like
y-irradiation, can induce PCD in root meristems, in a SOG1-
dependent manner (Furukawa et al, 2010). PCD induction
after y-irradiation still occurs in atm and atr single mutants,
although it is delayed, but not in double mutants, indicating
that either kinase is sufficient to activate SOG1 (Furukawa et al.,
2010). Likewise, zeocin-induced cell death was abolished in
both atm and atr mutants in the root tip, while it seems to
require only ATM in the inflorescence meristem, suggesting that
DDR signaling components play partially specialized functions
depending on cell types (Fulcher and Sablowski, 2009). In
maize and Arabidopsis, histone acetylation has been associated
to UV-B responses and damage repair (Campi et al., 2012;
Fina et al, 2017). Interestingly, mutants deficient for histone
acetyltransferases showed reduced growth inhibition after UV-B
exposure, associated with altered expression of E2F transcription

factors (Fina et al.,, 2017). Consistently, E2Fc know-down lines
show less severe reduction of leaf growth in response to UV-
B than the wild-type, suggesting that E2Fc could also play
a role in the DDR activated by UV light (Gomez et al,
2019), as was previously suggested for the atypical E2Fe
(Radziejwoski et al., 2011).

Another well documented example of abiotic stress activating
the plant DDR is the exposure to heavy metals [for example
cadmium (Cd), copper (Cu), lead (Pb) or mercury (Hg) (Kiipper
and Andresen, 2016; Lanier et al, 2019)], or other metallic
ions such as aluminum (Al). These metallic ions can be divided
into two categories: some, like copper or zinc are essential
for plant growth but toxic at high doses, while others such
as cadmium, mercury, and lead are not required for plant
development. The toxic effects of these metals are varied, ranging
from impairment of photosynthesis to inhibition of the uptake of
other essential metal ions, but many of them cause DNA damage
either directly, or through the induction of ROS production
(Kupper and Andresen, 2016).

Among the metal elements that can affect plant growth,
Al is probably one of the best studied, because it is very
abundant, and because AI** ions that are predominant in
acidic soils cause severe phytotoxicity, making this metal
one of the primary growth limiting factors for agriculture.
Exposure to AI** was shown to induce DNA damage in
Arabidopsis (Nezames et al., 2012; Chen et al., 2019) but
also in crops such as barley (Jaskowiak et al, 2018), and
plant growth inhibition in response to this ion has been
shown to require ATR and SOG1 (Rounds and Larsen, 2008;
Sjogren et al,, 2015; Zhang et al, 2018). Since Al causes
DSBs, the improved root growth of sogl or atr mutants on
Al containing medium may appear counter-intuitive. However,
detailed genetic dissection of the response to low and high
doses of Al allowed Chen and colleagues to propose a model
according to which low levels of Al-induced DNA damage
triggers ATR-dependent SOGI activation leading to growth
reduction and CYCB1/CDKB-dependent DNA repair. This
pathway can be inactivated without compromising plant survival,
suggesting that another pathway can allow activation of CYCB1-
dependent DNA repair in the absence of ATR and SOGI.
This alternative activation mechanisms could rely on RBRI1
since rbrl mutants are hypersensitive to Al (Biedermann et al,,
2017). By contrast, response to higher doses of Al and more
severe DNA damage involves ATM-dependent SOGI activation
triggering the full activation of the DDR and leading to minimal
growth, this pathway being indispensable for plant survival
(Chen et al., 2019).

In addition to the well documented examples of UV-light
or metal ions, there is accumulating evidence that a wide
variety of stress conditions can induce DNA damage through
unknown mechanisms that could involve ROS production. For
example, prolonged chilling stress was found to induce DNA
fragmentation in tobacco BY-2 cells (Koukalova et al., 1997)
or maize root tip cells (Ning et al, 2002). Although one
cannot rule out that some of the DNA damage observed in
plants after exposure to stress is a consequence of the onset
of PCD rather than actual stress-induced DNA damage, cold
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stress has been shown to increase oxidative DNA damage in
roots of Cardamine pratensis (Biatkowski and Olinski, 1999).
Consistently, Hong et al. (2017) recently reported that DDR
activation in the root tip was essential to meristem survival
after chilling stress. According to their model, cold stress
induces DNA damage in the root tip, leading to selective
PCD onset in the columella stem cell daughters. This response
requires the canonical DDR players ATM, ATR, SOGI, and
WEEI1 and allows maintenance of the local auxin maximum
in the root tip, thereby protecting meristem organization and
allowing recovery after stress (Hong et al, 2017). Whether
similar processes are activated in response to other kinds
of stresses such as excess light, heat or drought remains
to be fully explored, but a few studies support this notion.
Indeed, the ANAC044 and ANACO85 transcription factors were
found to promote cell cycle arrest in response to heat stress.
Although this response is independent of SOGI, this finding
demonstrates that some DDR components can be recruited
in response to other types of abiotic stresses to induce cell
cycle arrest (Takahashi et al., 2019). Furthermore, ozone induces
DNA damage in wheat, particularly under water limiting
conditions and heat or high light severely enhance DNA damage
accumulation in rice mutants deficient for RNase H2 (Qiu
et al., 2019). Activation of DNA repair also likely plays a key
role during dehydration and rehydration in resurrection plant
(Liu et al,, 2018). Consistently, expression of a number of
cell cycle inhibitors is induced in response to abiotic stresses,
and SMR5 and 7, that are direct SOG1 targets have been
shown to promote early exit of the cell cycle in response to
chloroplastic stress (Hudik et al., 2014). Interestingly, SMR5
is induced in response to heat, drought or high-light (Yi
et al, 2014), and the same study revealed that SOGI1 is
phosphorylated in response to H,O, accumulation, suggesting
that generally, stress-induced ROS accumulation could trigger
DDR activation. In agreement with this hypothesis, loss of the
ROS detoxifying enzymes Ascorbate Peroxidase and Catalase
2 results in the activation of a WEEIl-dependent cell cycle
checkpoint (Vanderauwera et al., 2011) resulting in growth
inhibition. Although this study was conducted in mutants in
which ROS detoxification is severely compromised, it suggests
that a similar response could be activated in wild-type plants
exposed to stress. Together, these observations support the
notion that many, if not all abiotic stresses, can activate the
DDR, which could contribute to the plant growth reduction
that is a common for all stress responses (Claeys et al., 2013).
In this context, a better understanding of the plant DDR
would open possible opportunities to counter environmentally
induced yield-loss.

Finally, the plant DDR is clearly instrumental for seed
viability and seedling vigor (Ventura et al.,, 2012; Waterworth
et al.,, 2015). Indeed, both seed dehydration and germination,
which are accompanied by a burst of ROS production, are
highly damaging for DNA, and up-regulation of DNA repair
genes during germination is well documented in Arabidopsis
(Waterworth et al., 2010), Medicago truncatula (Balestrazzi et al.,
2011) and Phaseolus vulgaris (Parreira et al., 2018). Consistently,
atm mutants fail to delay germination in aged seeds, and show

extensive chromosomal abnormalities (Waterworth et al., 2016),
and HR-deficient or DDR mutants are hypersensitive to ABA
during germination and at the seedling stage (Roy and Das, 2017).
Thus, the probable contribution of the plant DDR to abiotic stress
tolerance is supported by its essential role during germination, a
particularly stressful step of the plant life cycle.

Maintenance of genome integrity is well known to be essential
for meristem function, as illustrated by numerous examples of
mutants affected in DNA Damage repair in which meristem
organization is perturbed or its function is lost [e.g., (Wenig
et al., 2013; Li et al., 2017; Han et al, 2018)], and it would
thus not be surprising to find that DDR activation is a key
factor for plant survival under abiotic stress conditions. In line
with this hypothesis, DDR has been shown to shape directly
or indirectly plant development in response to stress. In the
root meristem, replacement of damaged stem cells relies on
the reactivation of the ERF115 transcription factor to promote
cell division (Heyman et al, 2013), and its transcriptional
up-regulation occurs in cells that are in direct contact with
damaged cells (Heyman et al., 2016). In the context of DNA-
damage induced PCD, ERFI115 induction was shown to depend
partially on SOGI activity (Johnson et al, 2018). DDR was
also shown to impact lateral root formation by modulating
cytokinin signaling (Davis et al., 2016), and to account for
the reduction of hypocotyl growth triggered by UV (Biever
et al., 2014), suggesting that its activation could contribute to
the well-known plasticity of plant development according to
external conditions.

ROLE OF THE PLANT DDR IN BIOTIC
STRESS RESPONSE

A similar connection can be drawn between the plant DDR
and response to biotic stresses. It has long been known that
pathogen infection or treatment with the defense hormone
Salicylic Acid (SA) stimulates HR, suggesting that the DDR is
activated by biotic stress (Lucht et al., 2002; Kovalchuk et al,,
2003). Consistently, Song and colleagues reported that a variety
of pathogenic, and even non-pathogenic micro-organism induce
DNA damage in plant cells (Song and Bent, 2014). However, this
accumulation of DNA damage does not depend on pathogen-
induced ROS production, and the underlying mechanisms thus
remain unknown. SA treatment has been shown to induce DNA
damage (Yan et al., 2013) but this effect is debated, since in
another study pre-treatment with SA was found to reduce DNA
damage accumulation in response to infection, and SA alone
failed to induce DNA damage (Song and Bent, 2014).

Thus the mechanisms leading to DNA damage accumulation
during infection remain unclear, although some of these DNA
lesions could simply reflect the induction of PCD as a defense
mechanism. Nevertheless, there is accumulating evidence that
DDR activation is relevant to plant immunity. First a number
of DNA repair mutants have been reported to show enhanced
susceptibility to Pseudomonas syringae. This is the case for
plants lacking PARP2 (Poly ADP-ribose polymerase) that plays
an important role for DNA repair (Song et al, 2015), and
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mutants affected in DSB repair by HR such as rad51 or
brca2 (Durrant et al., 2007; Wang et al, 2010; Song et al,
2011). Second, DDR signaling mutants such as atm, atr, or
radl7 have also been reported to be more susceptible to
P. syringae (Yan et al, 2013; Song and Bent, 2014). One
possible explanation for these observations would be that
an efficient DDR activation and DNA repair is required for
plant cell survival in response to biotic stress, possibly to
avoid cell death due to the accumulation of DNA lesions;
or on the contrary to contribute to PCD induction to limit
pathogen growth. However, there is evidence that the DDR
could enhance plant defense activation. Indeed, the above-
mentioned SNII gene was initially isolated as a negative
regulator of systemic acquired resistance in a suppressor
screen of the nprl (Non-expressor of PR genes) mutant
(Li et al, 1999). As previously stated, SNII was found to
encode a sub-unit of the SMC5/6 complex (Yan et al,
2013) that plays a crucial role in DNA repair, notably in
the removal of post-replicative damage (Diaz and Pecinka,
2018). Snil mutants constitutively accumulate DNA damage,
and show enhanced tolerance to pathogens, suggesting that
DDR activation could stimulate biotic stress responses (Yan
et al., 2013). Consistently, the recent genome-wide identification
of SOG1 target genes revealed that a number of defense-
related genes are SOGI targets, providing a direct link
between biotic stress and DDR (Bourbousse et al., 2018;
Ogita et al.,, 2018).

In addition, DNA repair proteins have been proposed
to play a direct role in the control of immune responses:
activation of defense-related genes by SA in the nprl snil
double mutant was largely dependent on BRCA2 (Wang et al,
2010). Furthermore, RAD51 and BRCA2 appear to directly
bind the promoter of the PRI and PR2 defense genes (Wang
et al., 2010). These results thus led to a model according
to which BRCA2 and RAD51 would directly control the
transcription of immunity-related genes. However, the primary
defect of the snil mutant likely is in DNA repair since snil
is a sub-unit of the SMC5/6 complex (Yan et al, 2013). The
accumulation of DNA damage in the snil mutant is largely
alleviated in the atr background (Yan et al., 2013), suggesting
that the DNA lesions accumulate because ATR signaling triggers
repair mechanisms that cannot be fully completed, possibly
due to the absence of SMC5/6. In the absence of ATR
activation, alternative pathways must be activated leading to
a reduction of DNA damage accumulation. Under such a
scenario, the activation of defense genes in snil could be
an indirect effect of DDR activation, possibly through the
activation of SOGLI. In that case, one could hypothesize that
BRCA2 and other DNA repair proteins could contribute to
the accumulation of repair intermediates that trigger the DDR.
Loss of these proteins, including ATR, could reduce DNA
damage accumulation by allowing alternative repair mechanisms
to function, and thus DDR signaling through SOGI. In line
with this hypothesis, 163 out of the 265 BRCA2-dependent
defense genes identified by Wang et al. (2010) are differentially
expressed in response to y-irradiation according to Bourbousse
et al. (2018). Thus, to fully ascertain the direct role of

BRCA2/RAD51 complexes in immunity, the effect of the
brca2 or rad51 mutations on defense gene expression should
be analyzed in a wild-type background and a genome-wide
analysis of BRCA2/RADS51 target genes during biotic stress
response should be performed. Whether DNA repair proteins
directly control the expression of several defense genes or
not, there is converging evidence for a role of the plant
DDR during immunity, which could, as we proposed in the
case of abiotic stress, contribute to the growth inhibition
induced by pathogens.

CONCLUDING REMARKS

The plant DDR is emerging as a key process shaping plant
growth and development in response to environmental
cues. Now that the main actors of this signaling pathway
have been characterized, future work should elucidate the
molecular connections between DDR and plant response to
stress, thereby opening new prospects for crop improvement.
Another promising line of research will be to decipher the
connections between the DDR and chromatin dynamics.
Indeed, replicative stress has been shown to affect the
maintenance of gene silencing through DNA replication in
yeast (Sarkies et al, 2010), a mechanism that most likely
applies to plants, as evidenced by the large number of
DNA replication proteins isolated in genetic screens for
suppressors of silencing (Kapoor et al., 2005; Yin et al,
2009; Liu et al., 2010; Hyun et al.,, 2013). Furthermore, DNA
repair processes require extensive chromatin remodeling
to allow access of the repair machinery to DNA (Nair
et al., 2017). Thus DNA damage represents a challenge for
chromatin maintenance. Reciprocally, defects in chromatin
dynamics can lead to genome instability and DNA damage
accumulation (Ma et al., 2018). Mechanisms allowing chromatin
reconstruction after DNA repair or connecting chromatin
dynamics with genome stability have been little explored,
particularly in plants, and will likely receive increasing
attention in the future.
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