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Cotton leaf curl disease (CLCuD) caused by viruses of genus Begomovirus is a major
constraint to cotton (Gossypium hirsutum) production in many cotton-growing regions of
the world. Symptoms of the disease are caused by Cotton leaf curl Multan betasatellite
(CLCuMB) that encodes a pathogenicity determinant protein, βC1. Here, we report the
identification of interacting regions in βC1 protein by using computational approaches
including sequence recognition, and binding site and interface prediction methods. We
show the domain-level interactions based on the structural analysis of G. hirsutum
SnRK1 protein and its domains with CLCuMB-βC1. To verify and validate the in silico
predictions, three different experimental approaches, yeast two hybrid, bimolecular
fluorescence complementation and pull down assay were used. Our results showed
that ubiquitin-associated domain (UBA) and autoinhibitory sequence (AIS) domains
of G. hirsutum-encoded SnRK1 are involved in CLCuMB-βC1 interaction. This is the
first comprehensive investigation that combined in silico interaction prediction followed
by experimental validation of interaction between CLCuMB-βC1 and a host protein.
We demonstrated that data from computational biology could provide binding site
information between CLCuD-associated viruses/satellites and new hosts that lack
known binding site information for protein–protein interaction studies. Implications of
these findings are discussed.

Keywords: cotton leaf curl disease, cotton leaf curl Multan betasatellite, sucrose-non-fermenting 1 kinase, yeast
two hybrid, bimolecular fluorescence complementation, pull down assay, begomovirus, geminivirus

INTRODUCTION

Plant viruses cause considerable damage to quality and crop yield and threaten food security in
several parts of the world (Oerke and Dehne, 2004). One of the largest groups of plant viruses
is geminiviruses. Family Geminivirdae is classified into nine genera, having single-stranded (ss)
circular genome encapsidated in a twin icosahedral particle that range in size from 18 to 30 nm
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(Hanley-Bowdoin et al., 2000). Geminiviruses interact with
several proteins in the host to cause changes in their transcription
and translation machinery for virus multiplication. Family
Geminivirdae is divided into nine genera based on their genome
organization, insect vectors and host range (Martin et al.,
2011). Among them, Begomovirus is the largest and most
economically important genus, and viruses in this genus cause
serious diseases in agronomic and horticultural crops such as
cotton, cassava, maize, and tomato (Brown et al., 2015). Besides
environmental adaptation, begomoviruses rapidly modify their
genetic information to make favorable protein complex in
a host to develop tolerance against plants immune system
(Brown and Bird, 1992). Typically, begomoviruses are divided
into two classes, i.e., monopartite (having a single genomic
component), and bipartite (having two genomic components).
Interestingly, the Old world (OW) monopartite begomoviruses
are often associated with satellites referred to as alphasatellite
and betasatellite. Betasatellite encodes a protein, βC1, which is
essential for infection. Viruses causing cotton leaf curl disease
(CLCuD) are betasatellite-requiring monopartite begomoviruses
that cause serious economic damage to cotton (Gossypium
hirsutum L.) in the Indian subcontinent and Africa (Nawaz-ul-
Rehman et al., 2009; Tiendrébéogo et al., 2010).

Betasatellites (genus Betasatellite, family Tolecusatellitidae) are
circular ssDNA molecules mostly associated with monopartite
begomoviruses of OW (Briddon and Markham, 2001; Fauquet
and Stanley, 2003; Zhou et al., 2003; Mansoor et al., 2008; Briddon
et al., 2018). Betasatellite was first identified from Ageratum
yellow vein virus (AYVV)-infected Ageratum conyzoides plant
(Saunders et al., 2000). The betasatellite DNA is approximately
1350 nucleotides (Briddon et al., 2001, 2008) shown in
Figure 1, and is involved in counteracting host transcriptional
gene silencing (TGS) and post-transcriptional gene silencing
mechanism (PTGS) (Li and Ding, 2006; Hayward et al.,
2009). For inducing enhanced pathogenicity, βC1 also augments
accumulation of high levels of the helper begomoviruses (Saeed
et al., 2007). In addition, it also regulates microRNA levels
involved in the host developmental processes (Amin et al.,
2011) and interacts with several virus and host proteins
(Cheng et al., 2011). Role of this virus protein has been
identified in begomoviruses such as βC1, associated with
Tomato yellow leaf curl China virus (TYLCCNV) infection,
interacts with Asymmetric leaves1 (AS1) to prevent normal
leaf development and usurp cellular resources by interfering
with jasmonic acid (JA) responsive genes to induce infestation
by insect vector Bemisia tabaci (Yang et al., 2008). Another
protein, ubiquitin-conjugating enzyme E3 (SlUBC3), encoded
by Solanum lycopersicum shows interaction with CLCuMB
suggesting that βC1 also interferes with UBC in ubiquitin
proteasome pathway (Eini et al., 2009).

Interaction study at domain level was performed for Sucrose-
non-fermenting 1 (SNF1)-related kinase (SnRK1) protein present
in S. lycopersicum. This S. lycopersicum encoded SnRK1 protein
plays a significant role in phosphorylating Tomato yellow
leaf curl China betasatellite (TYLCCNB)-βC1, thus acts as an
antiviral protein (Shen et al., 2011). Therefore, sequence and
structure based methods at domain level could identify the

interaction between CLCuD-causing viruses and host proteins.
A recent study revealed that SnRK1 phosphorylates geminivirus
encoded Rep protein of Tomato golden mosaic virus (TGMV)
and mutagenesis study determined the function of interacting
domains involved in binding with the virus (Shen et al., 2018).
All of these studies indicated that SnRK1 protein is involved in
various physiological processes in plants including regulation of
energy metabolism and stress signaling during biotic and abiotic
stresses (Hulsmans et al., 2016; Wurzinger et al., 2018).

Leading to protein–protein interaction (PPI), high-
throughput technologies and bioinformatics data possess
information for number of proteins at host side that are
monitored during CLCuD development. Geminivirus proteins
interact with a large number of host proteins during infection
and in silico study is a great source to identify putative binding
site between host and begomovirus to control CLCuD in future
(Malik et al., 2016). So far protein interaction prediction methods
have been proposed based on sequence or structure information.
However, only sequence or structure based methods do not
produce optimal result for inter-species interaction (Zhou et al.,
2013). Interaction prediction strategy with combination of
sequence and structure based methods showed higher sensitivity
in identifying the interface region(s) between virus and its host
(Hamp and Rost, 2015).

Here, we investigated cotton leaf curl Multan betasatellite
(CLCuMB)-encoded βC1 protein’s binding with G. hirsutum-
encoded SnRK1α (GhSnRK1) protein at domain level. By using
the sequence and structure information about the CLCuMB-βC1
and GhSnRK1 complex, it was determined that the α-helix
in CLCuMB-βC1 where GhSnRK1 possessing ubiquitin-
associated (UBA) and autoinhibitory sequence (AIS) domains
are responsible for interaction during CLCuD. This in silico
interaction data was verified by three independent experimental
methods, yeast two hybrid (Y2H), bimolecular fluorescence
complementation (BiFC) and pull-down assays. Findings
provided a deeper understanding and insights into interactions
underlying the begomovirus-host protein interactions.

MATERIALS AND METHODS

In silico Tools for Interaction and Binding
Site Prediction
Multiple approaches were employed to identify interaction
between virus CLCuMB and host GhSnRK1 protein. Host
domain information was deduced from NCBI conserved domain
database (Marchler-Bauer et al., 2016), InterPro at EMBL-
EBI (Guo et al., 2008), PROSITE (Sigrist et al., 2012), and
ThreaDom (Xue et al., 2013). After domain localization,
three-dimensional structure of GhSnRK1, its domains and
CLCuMB-βC1 were also predicted using I-TASSER (Zhang,
2008). Sequence alignment was done using local and global
protein alignment tools at EMBOSS (Rice et al., 2000)
and root mean square deviation-RMSD was observed in
PyMOL with structure alignment (DeLano, 2009). To identify
interaction in terms of binding affinity 11G (change in Gibbs
free energy), sequence based method PPA-Pred (Yugandhar
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FIGURE 1 | Begomoviruses are transmitted by an insect vector B. tabaci. A monopartite begomoviruses requires only DNA-A with associated satellites such as
betasatellite to cause infection in host cell while bipartite viruses encodes both DNA-A and DNA-B. Monopartite virus can cause infection with the help of small
satellite molecules.

and Gromiha, 2014) and structure-based method PRISM
(Baspinar et al., 2014) and PRODIGY (Xue et al., 2016) were
used. Further, to determine binding site, binding site prediction
methods including PSIVER (Protein–protein interaction SItes
prediction serVER) (Murakami and Mizuguchi, 2010), Bspred
(Mukherjee and Zhang, 2011), NSP-HomPPI (Non-partner-
specific HomPPI) (Xue et al., 2011), and PredictProtein (Yachdav
et al., 2014) were employed. These sequence-based methods
depend on threshold default parameters for identification of
binding site such as PSIVER generated residue based binding
site using two threshold values >=0.37 (optimum) and >=0.56
(higher specificity). Bspred scoring is also based on neural
network (NN) showing NN score >−0.1 as an optimum
value. NSP-HomPPI identified very few residues in safe-mode
zone (optimum score). Relative accessible surface area based
structure prediction methods VORFFIP (Segura et al., 2011),
PSIVER (Mukherjee and Zhang, 2011), ProMate (Neuvirth
et al., 2007), and PredUS (Zhang et al., 2011) were used to
identifying possible binding sites. Domain-based interaction
was confirmed with machine learning methods PPiPP (Ahmad
and Mizuguchi, 2011), PRISM (Baspinar et al., 2014), and
PAIRPred (Minhas et al., 2014) which was further confirmed
with ZDOCK (Pierce et al., 2014) and Docking2 at ROSETTA
v3.2 (Lyskov et al., 2013). List of all sequence and structure-
based methods are mentioned in Supplementary Figure S1.
ZDOCK gives a blocking option to exclude residues (block
contact) to filter output result while performing protein-
protein docking. With this option, UBA and AIS domain
were blocked and only kinase domain (KD) and C-terminal

domain (CTD) were allowed for binding. Another job processed
with UBA and AIS domain without KD and CTD domain to
determine interaction at domain level. Computational docking
methods retrieved the detailed information about surface
residues of SnRK1 and βC1 in tomato and cotton using
their 3D structures.

Plant Lines and Growth Conditions
For in planta protein interaction study, wild type Nicotiana
benthamiana seeds were grown in Sunshine Mix LC1 (Sun
Gro Horticulture) in growth chambers with 120 µmol photons
m−2 s−2, 16 h light/8 h dark cycle, 20◦C. A distinct isolate of
cotton leaf curl Multan betasatellite (acc AM774307) was used
as inoculum source for this study. SNF1-related kinase protein
GhSnRK1 from cotton (G. hirsutum) cultivar UA222 resistant
variety has been used for isolation of host proteins. All the
GhSnRK1 domains based data were also generated from the
same cultivar UA222.

RNA Isolation and Genes Amplification
Total RNA was extracted using RNeasy Plant Mini Kit (Qiagen)
from virus infected sample and cotton plant following the
manufacturer’s instructions. Purified RNA was then reverse
transcribed to generate cDNA using a RevertAid first strand
cDNA synthesis kit (Thermo Fisher Scientific). RT-PCR
based amplified products were then inserted into pENTR-
D-TOPO vector (Invitrogen). Virus and host sequences are
available at GenBank (CLCuMB, AM774307; GhSnRK1,
MH626512). Further, Gateway cloning based amplicons
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were used for all destination vectors using specific primers
(Supplementary Table S1).

Yeast Two Hybrid Assay
The full length host gene GhSnRK1, its four domains and
viral gene CLCuMB were sub-cloned into yeast-2-hybrid
plasmids using gateway LR clonase enzyme (Life Technologies).
For destination vectors, pEZY202 and pEZY45 (Addgene
plasmid # 18704 and 18705) (Guo et al., 2008) plasmids were
used, possessing LexA DNA-binding domain (DBD) and B42
activation domain (AD), respectively. Yeast (Saccharomyces
cerevisiae) strain EGY48 possessing pSH18-34 was used in
lithium acetate yeast transformation procedure described as
(Gyuris et al., 1993). GhSnRK1 and its four domains were cloned
separately into bait vector pEZY202. CLCuMB-βC1 was cloned
into prey vector, pEZY4,5 using Gateway cloning. Successful
transformation was observed on minimal SD Base/Gal/Raf
with double dropout supplement (DDO) −His/-Ura medium
(Clontech). Yeast cell lines yielding bait plasmids were then
cotransformed with B42-βC1 as a prey to produce diploid cells.
Pre-screening of positive clones were observed on the minimal
SD Base/Gal/Raf with triple dropout medium −His/-Trp/-Ura
(TDO/+L) and Quadruple dropout medium −His/-Leu/-
Trp/-Ura (QDO/−L). The autoactivation step was preformed
using three different constructs having GhSnRK1bait/emptyprey,
emptybait/βC1prey and emptybait/emptyprey, respectively.
Tomato spotted wilt virus-encoded nucleoprotein (N) protein
(TSWV-N) was used as a positive control to ensure the
performance of the transformation protocol and screening
steps during this assay (Tripathi et al., 2015). To further
assess the molecular strength of the GhSnRK1 with CLCuMB-
βC1, diploid cells were grown and spotted on agar plates
containing SD-His/-Leu/-Trp/-Ura supplemented with 3-
Amino-1,2,4-triazole (3-AT) ranging in a serial dilution of 0,
10, 20, and 30 mM.

BiFC Assay and Fluorescent Protein
Expression Analysis
For in vivo virus host interaction study, binary vectors based
on yellow fluorescent marker (pSITE-nEYFP-C1 and pSITE-
cEYFP-C1) were obtained from Arabidopsis Biological Research
center (ABRC; Ohio). Host proteins were cloned at “N” terminal
and CLCuMB-βC1 at “C” terminal. All clones were confirmed
using gene specific primers (Supplementary Table S1). For
Agrobacterium transformation, all the BiFC constructs were
electroporated using GV3101 strain and agroinoculation was
performed at OD600 value of 0.6–1.0 by infiltrating each BiFC
construct to 3–6 N. benthamiana leaves, fused with CFP
fluorescent marker targeted to histone 2B. These agro infiltrated
plants were grown under constant light at 25◦C. After 26–
48 h incubation, confocal microscopy was performed by keeping
leaf tissues on wet mounted slides. Fluorescence for virus host
pair was detected using CFP Ex-458 nm/Em-480 nm, YFP laser
Ex-514 nm/Em-527 nm, and CFP/YFP FRET Ex-458 nm/Em-
527 nm laser. Images were acquired using Leica TCS SP8
X microscopy at 20× dry, 40× dry, and 63× oil for fine

detail images and LAS X software were used to analyze the
fluorescence signals.

Pull Down Assay
For in vitro study, Maltose binding protein (MBP) pull
down assay was performed as described in detail previously
(Hapiak et al., 2008). MBP-tagged “bait” crude proteins pMAL-
c2X-GhSnRK1/, domains-KD/UBA/AIS/CTD, and GST-tagged
“prey” crude protein pDEST15-βC1 were purified from E. coli
BL21 (DE3) strain using sonication method and mixed together
to produce three tubes as “Load,” “Flow-Through,” and “Elution”
after consecutive washes and final elution step. All purified
proteins with their controls (MBP alone with empty expression
vector or transformed with GhSnRK1 or CLCuMB-βC1)
were separated on sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) followed by Western blotting using
monoclonal anti-GST antibody (primary) which was further
probed with secondary antibody goat HRP-conjugated anti-
rabbit IgG (Bio-Rad). Positive signals were acquired on short
exposure x-ray films using the ECL method based on Versa Doc
imaging system (Bio-Rad) following the manufacturer’s details to
determine the interacting domains of host with CLCuMB-βC1.

RESULTS

In silico Prediction of Host and Viral
Protein Structures
GhSnRK1 and its domain-based information was retrieved
using online data servers shown in the Section “Materials and
Methods.” This sequence analysis showed GhSnRK1 encodes
a 506 aa protein, consisting of four domains, kinase domain
KD (259 aa), Ubiquitin-associated domain UBA (59 aa) and
autoinhibitory sequence AIS (104 aa), and C-terminal domain
CTD (65 aa) (Figure 2A). Structures for full length host
GhSnRK1 protein and its domains were predicted using
I-TASSER (Zhang, 2008) as tertiary structures of these proteins
are not available in PDB. Similarly, the structure of CLCuMB-
βC1 protein was also predicted using I-TASSER (Zhang, 2008).
Among all models predicted by I-TASSER, the most accurate
model was selected based on high C-score (Figure 2B). C-score is
a confidence score used to estimate the accuracy of the predicted
models in the range of −5 to +2. G. hirsutum-coded SnRK1
protein structure and CLCuMB-βC1 were used for domain-based
interaction prediction, whereas Solanum lycopersicum-coded
SnRK1 and TYLCCNB-βC1 complex were used as a control.

Sequence and Structure Alignment
Sequence and structure alignment of TYLCCNB with CLCuMB
and host protein SiSnRK1 with GhSnRK1 using Water (Rice
et al., 2000) and PyMOL (DeLano, 2009) showed that the host
proteins are 85% identical in sequence with a root mean squared
deviation (RMSD) of only 0.39 Å in their predicted structures. At
domain level, these host proteins have low similarity between AIS
domains of the two proteins (73% sequence identity) (Figure 2C).
However, βC1 proteins from TYLCCNB and CLCuMB possess
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FIGURE 2 | Domain identification and structure prediction for interaction study. (A) Full length GhSnRK1, and its domains are predicted using several databases
based on sequence information. GhSnRK1 protein and its domains are individually analyzed with CLCuMB-βC1 to identify interaction within a domain using
bioinformatics approach. (B) PDB structures are determined based on C-score using I-TASSER. Full length SnRK1 protein (gray) and its domains are shown here
with different colors. Virus protein structure (gray) is shown on the right side. (C) Sequence and structure analysis using alignment tools shows AIS domain among all
four domains possess low similarity between tomato coded SnRK1 protein and cotton coded SnRK1 protein.

only 30% sequence identity with an RMSD of 7.19 Å (Figure 2C).
This low sequence to structure identity between CLCuMB and
TYLCCNB shows that it is impossible to deduce a possible
interaction of CLCuMB-βC1 with SnRK1 based on the known
interaction between TYLCCNB-βC1 with SnRK1.

Binding Affinity Prediction
To determine the possible interaction between CLCuMB-βC1
and GhSnRK1, we used several binding affinity prediction
methods. For binding energy, change in Gibbs free energy
11(G) score between CLCuMB-βC1 and GhSnRK1 protein
was determined. Negative value for 11G (Table 1) indicated

TABLE 1 | Values for change in Gibbs free energy (11G).

11G kcal/mol

Domains PPA-Pred PRISM PRODIGY

KD −9.2 −14.02 −46.5

UBA −11.3 −19.2 −66.3

AIS −11.5 −23.7 −71.8

CTD −8.7 −14.8 −49.1

Bold values for UBA and AIS domain showing higher negative value in terms of rrG
which means they are more interacting.

interaction between full length proteins as lower free energy
change (more negative value) is directly proportional to more
stable protein complex.

In case of domain-based interaction, 11G values for KD and
CTD were less negative while UBA and AIS (bold) values were
more negative shown in Table 1. These high negative values also
indicated possible binding of these proteins especially UBA and
AIS domains with CLCuMB.

In silico Identification of
Protein–Protein Interactions
In addition to the binding affinity prediction, we used multiple
binding site prediction methods based on protein sequence
and structure. Binding score from sequence-based methods and
predicted relative accessible surface area (RASA) values from
structure-based methods identified residues mostly from UBA
and AIS domains and very few (13 out of 269) residues were
predicted from KD domain. This interaction was further studied
in detail with docking and machine learning based methods.
Docking methods such as ZDOCK 3.0.2 (Pierce et al., 2014)
and Docking2 at ROSETTA v3.2 (Lyskov et al., 2013) predicted
ten models along with their expected confidence values. To
evaluate models from both methods, residues within 5 Å between
both chains were selected as possible binding sites. Our analysis
revealed a high tendency for UBA and AIS domains to be
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involved in the interaction using ZDOCK. Moreover, result from
Docking2 showed a region in the C-terminal of UBA domain and
N-terminal of AIS domain are potentially involved in binding
(Supplementary Figures S2A,B). In case of βC1 of CLCuMV,
residues from the main α-helix and myristoylation-like motif
(101–108) forming a loop-turn structure are predicted to be
involved in the interaction. Sequence-based machine learning
method, PPiPP (Ahmad and Mizuguchi, 2011), also pointed to
the central region of βC1 for binding. In case of SnRK1, most of
the residues from KD and UBA domains were predicted in case of
binding site with βC1. Structure-based machine learning method,
PRISM (Baspinar et al., 2014) extracted data from surface and
core of the rigid body structures of both βC1 and SnRK1 gene
(Supplementary Figure S2C). Another sequence- and structure-
based method, PAIRPred (Minhas et al., 2014) predicted the
binding site in AIS domain based on heatmap (Supplementary
Figure S2D). For βC1, similar results were obtained as previously
from ZDOCK and Docking2 method.

Predictions obtained with all computational interaction
methods were combined to identify potential interacting site(s) in
GhSnRK1 protein using majority consensus. This bioinformatics
approach was applied to CLCuMB-βC1 with GhSnRK1 and
the control, TYLCCNB-βC1 with SiSnRK1 (Supplementary
Table S2). For host protein, UBA and AIS domains were
predicted to be involved in binding, while in case of the satellite
protein, the interaction site in βC1 associated with CLCuMB
turned out to be the same as in TYLCCNB (Supplementary
Table S3), indicating potential binding site in its α-helix and
myristoylation-like motif (Figure 3). It should be pointed out that

both betasatellite proteins belonging to two different viruses had
only 30% sequence identity as well as low structural similarity to
each other. However, predicted regions in βC1 to be involved in
α-helix formation, suggesting that the α-helix forms a primary
binding pocket with its targeted protein in multiple hosts.

We also used Consurf (Ashkenazy et al., 2010) to study
the evolutionary conservation. Multiple sequence alignment
identified less conservation score for C-terminal of UBA
and N-terminal of AIS domains (Supplementary Table S4).
While the KD domain including serine-threonine positions
constitute highly conserved regions and deletion of Ser-
Thr residues could cause loss of function of GhSnRK1
protein thus limiting the interaction with CLCuMB-βC1.
However, SnRK1 causes phosphorylation of TYLCCNB-βC1
mainly through Ser-33 and Thr-78 residues in βC1. While
CLCuMB-βC1 possesses positive charged Lys at position 78
instead of a non-charged Thr-78, it remains to be seen what
other residues are involved in phosphorylation. Moreover,
it was observed that substitution-deletion in UBA and AIS
domains resulted in weak interaction between GhSnRK1
and βC1 using interface alanine scanning (Kortemme et al.,
2004). In this in silico mutagenesis study, chain “A” shows
virus protein and “C” shows host protein structure in the
complex, and yellow colored residues in pdb# are the amino
acids mainly from UBA and AIS domain (Supplementary
Table S5). Value of int-id in these residues is zero, indicating
unbound amino acids with the interacting partner βC1.
Similarly, score in DDG 11(G) is also positive possessing
low binding energy with the residues present in virus protein.

FIGURE 3 | Cumulative score of all prediction methods for CLCuMB-βC1 binding with host protein GhSnRK1. Graphical representation corresponds to the binding
region predicted from bioinformatics analysis. Data shows that residues specifically from C-terminal of UBA (green) and N-terminal of AIS (blue) domain possess high
score for binding. For virus protein CLCuMB-βC1, all sequence and structure prediction methods identified binding site mainly in α-helix region shown in orange
color. Light and dark gray color indicates GhSnRK1 and βC1 protein, respectively. Red color indicates interacting residues in GhSnRK1 and blue color indicates
interacting residues in βC1
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This data was further verified using sequence tolerance tool
(Smith and Kortemme, 2011). This tool predicted the relative
frequencies for GhSnRK1 residues, identified as “tolerated”
without compromising the stability of a protein structure.
Introducing Alanine (334-AAAAAA-339) shows tolerance
frequency in amino acids 336 and 337 was low compared to
other four amino acids (Supplementary Figure S3A). However,
insertion of Alanine did not cause conformational changes
in GhSnRK1 protein structure (Supplementary Figure S3B).
Altogether, positive values for DDG complex and stable
GhSnRK1 structure after substitution is a better choice for
mutagenesis study.

Identification of Binding Sites
Within Domains
The above predictions were further verified at the individual
domain level. For this propose, all four domains were analyzed
individually with CLCuMB-βC1. This analysis has identified
that C-terminal of UBA and N-terminal of AIS domains are
involved in interaction with CLCuMB-βC1. Machine learning
and docking methods including PAIRPred, ZDOCK and
Docking2 at ROSETTA showed that UBA and AIS domains
have maximum likelihood for interaction (Figures 4A–C),
while KD and CTD domains were predicted to have a
lower probability for interaction. Therefore, we overlaid the
predicted accessible surface area score from all sequence-

and structure-based methods for UBA and AIS (Figure 4D)
which verified previous results obtained from full length virus-
host protein interaction prediction. Deletion of these two
domains reduced 11G value for both viral proteins, showing
a weaker affinity. Results from this analysis indicated that
in silico interaction prediction could be useful in predicting
binding between two proteins. Moreover, independently of any
reference-based analysis, this computational approach is useful
in determining potential protein–protein interactions especially
at the domain level.

In vivo GhSnRK1 and CLCuMB-βC1
Interaction Using Y2H
Y2H assay was used to verify the in silico interaction predictions
between full length and domain-based interactions between
GhSnRK1 and CLCuMB-βC1. Basic Gateway cloning strategy is
shown in Figure 5A where bait plasmids were transformed, and
colonies were obtained on+L medium. Bait-prey transformation
on –L media showed strong interaction between full length
GhSnRK1 and CLCuMB-βC1 (Figure 5B), thus validating the
computational prediction for both proteins. Based on the
three-dimensional structure analysis of SnRK1 protein, it was
investigated that which domain, within the full length protein,
was responsible for interaction with CLCuMB-βC1. Similar
results were observed as predicted from the in silico analysis.
Very weak or almost no interaction was observed between

FIGURE 4 | Interaction prediction analysis within a domain using sequence and structure approach. (A) ZDOCK predicted C-terminal region of UBA domain in
binding with virus protein. In AIS domain, N-terminal region forming a loop structure is predicted for interaction. (B) Docking2 at Rosetta dock predicted similar
results for UBA domain as previously in ZDOCK. For AIS domain, N-terminal and few residues from C-terminal are found in high binding affinity. (C) Using PAIRPred,
residues with red hot color in UBA and AIS domain are involved in interaction. For CLCuMB-βC1, residues mainly from α-helix are found in interaction.
(D) Consensus of all binding and interface methods identified C-terminal of UBA domain and N-terminal of AIS domain for binding with virus protein CLCuMB-βC1.
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FIGURE 5 | Validation of computer aided results for interaction using yeast two hybrid assay. (A) Schematic representation of constructs designed for yeast two
hybrid. Full length GhSnRK1 (506 aa), its domains KD (259 aa), UBA (59 aa), AIS (104 aa), and CTD (65 aa) fused with LexA DBD in pEZY202. CLCuMB-βC1
(357 bp) protein is fused with B42 TAD in pJG45. (B) First two plates on top panel shows positive result for full length GhSnRK1 and CLCuMB-βC1 on
SD-Ura-His-Trp (+L) and SD-Ura-His-Trp-Leu (–L) media. Second lane shows results for autoactivation and positive control (TWSWV-N). Third and forth lane shows
domain based results. Only UBA and AIS domain shows positive colonies on both +L and –L media, validating in silico results. (C) Results were further verified on
SD-Ura-His-Trp-Leu media provided with different concentration of 3-amino-1,2,4-triazole (3-AT).

the KD domain and CLCuMB-βC1 (Figure 5B), and the
same results were obtained for the CTD domain (Figure 4B).
However, UBA and AIS domains showed strong interaction
in Y2H assay on appropriate selection media (Figure 5B).
Because of the LEU2 reporter gene in EGY48/pSH18-34
strain, autoactivation screening onto SD media lacking Leu
showed growth reduction after 2– 3 days (Figure 5B). This
screening step confirmed the positive interaction along with
all the controls used in the experiment. Adding 3-amino-
1,2,4-triazole (3-AT) to yeast media and then increasing the
dose of 3-AT resulted in an enhanced growth of positive
colonies only. Furthermore, only the UBA and AIS domains
expressed strong interaction on SD-His/-Leu/-Trp/-Ura + 3-
AT (Figure 5C). These results confirmed that CLCuMB-βC1
interacts with GhSnRK1 through UBA and AIS domains, while
CTD and KD domains seem to have limited or no role in the
interaction, confirming the predictions in the in silico template-
based study.

In planta GhSnRK1 and CLCuMB-βC1
Interaction Study
BiFC assay was performed to confirm the results of in silico
studies for CLCuMB-βC1 protein interaction with GhSnRK1.
For this assay, GhSnRK1 and all four domains were

separately fused with the n-terminal fragment of pSITE-
EYFP-C1. CLCuMB-βC1 was introduced into the C-terminal
fragment of pSITE-YFP-C1. All constructs were separately
agroinfiltrated into wild type and transgenic N. benthamiana
plants expressing cyan fluorescent protein carrying nuclear
marker histone 2B (CFP-H2B) for subcellular localization
of the nucleus/nucleolus in the leaves (Martin et al., 2009).
Under confocal microscopy, no fluorescence signal was
observed for the control carrying the empty N-terminal and
C-terminal fragments of YFP vector (Figures 6A–C). Constructs
with the empty N-terminal fragment and CLCuMB-βC1
on C-terminal produced little or no BIFC signal in both
CFP and YFP markers (Figures 6D–F). Full length host
protein GhSnRK1 showed strong binding affinity with the
CLCuMB-βC1 and interaction was localized to cytoplasm
and nuclear compartment of wild type leaves as well as CFP-
H2B-based marker leaves after 48 h (Figures 6G–I). This
sub-cellular localization of these proteins was determined
using PredictProtein (Yugandhar and Gromiha, 2014) showing
SnRK1 and βC1 in cytosol which means their presence
occurs in two organelles including nucleus and cytoplasm.
A higher magnification (20×) showed the nuclear location with
cytoplasmic veins (Figures 7A,B) and highlights the interaction
in cytoplasm and its epithelial cells. Bright-field image of both
interacting partners with nucleus surrounded by red chlorophylls
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FIGURE 6 | Bimolecular fluorescence complementation assay for co-localization of GhSnRK1 protein with CLCuMB-βC1 in epidermal cells of Nicotiana
benthamiana leaves. Images were captured at 48 h dpi. (A–C) First row represents agroinfiltration of empty vector in N. benthamiana. (D–F) Second row shows
transformation of CLCuMB-βC1 protein in cEYFP with empty nEYFP vector to confirm autofluorescence. (G–I) Third row shows positive interaction of GhSnRK1 with
CLCuMB-βC1 in nEYFP:cEYFP vector. Maximum projections used x20 with scale bar 50 µm, (1) CFP-H2B, (2) YFP, (3) overlay of both markers.

confirmed the interaction between GhSnRK1 and CLCuMB-βC1
proteins (Figures 7C).

Furthermore, we have investigated domain-based interaction
of GhSnRK1 with CLCuMB-βC1 using the BiFC assay. For
this purpose, all the domains of GhSnRK1 and CLCuMB-
βC1 were independently expressed in wild type and CFP-H2B
marker-based N. benthamiana plants. No interaction signals were
observed for KD with CLCuMB-βC1 (Figures 8A,B), while weak
signals were observed for CTD (Figures 8G,H). However, UBA
and AIS domains showed strong interactions under confocal
microscopy using YFP and CFP markers (Figures 8C–F). This
indicated that the residues present in both UBA and AIS
domains play a role in interaction between GhSnRK1 and
CLCuMB-βC1, while KD and CTD domains do not seem
to, which was again in correlation with the results obtained
from the bioinformatics analyses and Y2H assay. TSWV N
protein’s interaction was used as a positive control to verify

the transformation event and post-infiltration experimental
steps (Figures 8I,J).

In vitro GhSnRK1 and CLCuMB-βC1
Interaction Using Pull Down Assay
Pull down assays were carried out to confirm the observed
interaction of CLCuMB-βC1 with GhSnRK1. Purified protein
samples were resolved using Western blot. Incubation of the
blotted membrane with anti-GST antibody showed the bands for
interacting partners after ECL-based detection, indicating that
the virus interacts and potentially interferes with the modulating
pathway of GhSnRK1 (Figure 9A). Next, we investigated the
domain-based binding affinity for CLCuMB-βC1. Weak signals
were detected for CLCuMB-βC1 interaction with KD and CTD
domains (Figures 9B–E) which further validated our results from
Y2H and BiFC assays. Brighter bands in eluted samples for UBA
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FIGURE 7 | Co-expression of GhSnRK1 and CLCuMB-βC1 at higher
magnification during BiFC assay. All images indicate interaction is spread in
the cytoplasm and around the nucleus. (A) Confocal micrograph showing
subcellular localization of GhSnRK1 with CLCuMB-βC1 in nucleus.
(B) Predominant interaction was determined with clear expression of nucleus
and nucleolus marked specifically with CFP-H2B and chlorophyll in red.
(C) Bright field image of interacting pair in N. benthamiana leaves with high
resolution. Panels (A,B) 20× magnification, 25 µm scale bar. Panel (C) 40×
magnification, 50 µm scale bar. White arrow indicates nucleus location.

and AIS showed that both domains have strong binding affinity
with CLCuMB-βC1 (Figures 9C,D). These results confirmed
that CLCuMB-βC1 interacts with GhSnRK1, and UBA and AIS
domains are involved in the binding. GST-tagged CLCuMB-βC1
with MBP alone and MBS-tagged GhSnRK1 with GST alone were
examined as two sets of negative controls (Figures 9F,G) and
TSWV-N protein (Figure 9H) was expressed as a positive control.

DISCUSSION

Here we have shown, through multiple lines of evidence,
that CLCuMB-βC1 serves as a pathogenicity determinant by
interacting with GhSnRK1 through UBA and AIS domains.
One of the highlights of our study was the demonstration
of the relatively high reliability of the various bioinformatics
algorithms in first predicting the interacting domains using
machine learning and docking methods which were then
validated through three independent experimental approaches.
Plants infected by Tomato yellow leaf curl China-betasatellite
(TYLCCNB) overexpressed SnRK1 protein through UBA and
AIS domains resulting in a delay in symptom induction and
reduced DNA level by phosphorylating βC1 (Shen et al., 2011).
This previous work has been used in a parallel to identify binding

FIGURE 8 | In vivo domain-based interaction of GhSnRK1 with CLCuMB-βC1
protein. All the constructs were agroinfiltrated into Nicotiana benthamiana
plants at an OD600 of 0.8, and confocal microscopy study was done after
48 h post infiltration. (A,B) KD domain does not show any positive signal for
interaction with CLCuMB-βC1 on both YFP and CFP-H2B marker. (C–F) UBA
and AIS domains produces strong signals for CLCuMB-βC1. (G,H) CTD
domain shows zero to almost no signals for CLCuMB-βC1 protein. (I,J) TSWV
N proteins self-interaction confirms the successful transformation event and
true signals under confocal microscopy. All the images were acquired at 20×
zoom option. Scale bar = 50 µm.

sites for SnRK1 gene for another betasatellite protein CLCuMB
using computational biology to determine its function in cotton.

It has been studied that SnRK1-α subunit in plants comprises
of four domains (KD, UBA, AIS and CTD) that acts as an
important key regulator against abiotic stresses especially in
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FIGURE 9 | Identification of domain-based interaction between GhSnRK1 and CLCuMB-βC1 using pull down assay. The upper most panel shows protein samples
are initially loaded to the column buffer as crude extract, middle panel shows wash samples that are purified with column buffer to remove unbound proteins and
lower most panel represents the eluted samples that are purified from amylose resin with maltose. (A) The purified sample carries MBP-tagged GhSnRK1 fused with
GST-tagged CLCuMB-βC1, (B) MBP-tagged KD fused with GST-tagged CLCuMB-βC1, (C,D) MBP-tagged UBA and MBP-tagged AIS domain were fused with
GST-tagged CLCuMB-βC1, (E) MBP-tagged CTD fused with GST-tagged CLCuMB-βC1, (F,G) MBP-alone fused with GST-tagged CLCuMB-βC1, and MBP-tagged
GhSnRK1 fused with GST-alone was used as negative control, (H) MBP-tagged TSWV-N fused with GST-tagged TSWV-N used as positive control. All protein
samples were developed on x-ray film in Western blot using anti-GST primary antibody.

abscisic acid signaling (Cutler et al., 2010). Against the stress
response, KD supports catalytic mode for SnRK1α protein to
retain its structure and function. While UBA, AIS, and CTD
domains act as a linker region to interact with other regulatory
subunits (β,γ) of SnRK family to maintain energy metabolism
(Broeckx et al., 2016). G. hirsutum coded SnRK1 protein also
consist of four domains with a size of 506 aa, and in order
to overcome some of the logistical constraints in analyzing
the data, we first adopted a computational approach based on
multi-variant approach which helped us to identify domains
that are involved in interaction with CLCuMB-βC1. PPI study
investigates the interaction among interfacial residues of two
proteins using sequence and structure information (Rice et al.,
2000; Xiao et al., 2013). Sequence-based approach extracts
the information from orthology, gene ontology, and molecular
interaction databases to predict the function of an unknown
protein using function of an immediate neighbor protein (Ma
et al., 2011). Sequence analysis predicted a higher negative
value of 11G for GhSnRK1 and CLCuMB-βC1, showing strong
binding association between them. In silico deletion of UBA
and AIS domains in the GhSnRK1 protein reduced the 11G
value, predicting a weak interaction among them. Binding site
prediction approach uses protein secondary structure, solvent
accessibility and conservation score from both sequence and
three dimensional structure to identify putative domain based
binding sites (Ohue et al., 2013). From binding site methods,
it was observed that residues in SiSnRK1 at positions Phe-172,
Thr-214, Phe-271, Val-301, Ser-446 have the same binding score
for GhSnRK1 at positions Phe-170, Thr-212, Phe-269, Val-299,
and Ser-449. However, residues present at 51–65 and 96–106
in TYLCCNB-βC1 and CLCuMB-βC1 have a higher likelihood
for interaction.

Sequence-based methods rely on knowledge-based data that
requires prediction for each residue present in a protein.
Binding site prediction methods alone may not generate

reliable information especially where the structure has not
been determined experimentally using X-ray crystallography or
nuclear magnetic resonance (NMR) spectroscopy (Xiao et al.,
2013). Here we have successfully used a multi-pronged approach
based on sequence conservation analysis, energetics, binding site
and interface prediction methods to first predict the interaction
between viral and host proteins, identify domains within the
host protein responsible for binding with viral protein and
furthermore, localize the residues in the interacting domain that
are responsible for their binding affinity. All three computational
approaches were applied first to full length host protein and
then domain-based independent interactions were studied with
viral protein to formulate an overall picture of binding site.
In addition, protein docking data showed that amino acids
at the C-terminal of UBA (residues at position 333–336) and
N-terminal (residues at position 337–343) of the AIS domain
are responsible for binding activity, suggesting that these two
domains may phosphorylate CLCuMB-βC1 after virus infection.
Moreover, it remains to be studied that mutagenesis study
including alanine-substitution of these predicted residues either
weakens the host protein interaction with viral protein or not.

To validate the predictions obtained by computational
analyses, three independent molecular techniques were used to
know the interaction between GhSnRK1 and CLCuMB-βC1 at
the domain level. Y2H is an in vivo tool to investigate possible
interacting partners, identifying protein role at a cellular level
(Rodríguez-Negrete et al., 2014; Lin and Lai, 2017). Y2H data
confirmed that SnRK1 of G. hirsutum interacts with CLCuMB-
βC1. Further, positive results for UBA and AIS domains on
3-AT-SD/-His/-Leu/-Trp/-Ura media also confirmed the in silico
predictions for PPI. Same results were obtained in planta BiFC
assay. Gateway vectors compatible for in planta detection of
multiple protein interactions using BiFC system is a robust
and rapid method to identify subcellular localization of a
protein in organelle (Kamigaki et al., 2016). We performed
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BiFC experiments using full-length as well as domain-based host
proteins with CLCuMB-βC1 using Gateway vectors. Expression
pattern driven by CFP-H2B and YFP marker indicated strong
signals between GhSnRK1 and CLCuMB-βC1. Within this host
protein, no interaction was found between CLCuMB-βC1 and
KD and CTD domains, while strong interaction was observed
for UBA and AIS domain. These findings indicate that CLCuMB-
βC1 protein disturbs the signaling pathway of GhSnRK1 against
stress mechanism and overcomes the nutrient metabolism of the
host protein for its pathogenicity.

Basically, SnRK1 are protein kinases that are involved
in various physiological processes which regulates energy
metabolism in plants to provide nutrients against biotic and
abiotic stress (Halford et al., 2003; Baena-González et al.,
2007). The SnRK (SnRK1, SnRK2, SnRK3) protein in plants
act as antiviral agent, producing resistance against pathogen by
phosphorylation of either pathogen or host protein (Hulsmans
et al., 2016; Bai et al., 2017). Therefore, very likely mode of
action after GhSnRK1 binding with CLCuMB-βC1 indicates
SnRK1 protein phosphorylates βC1 to attenuate viral infection in
the cotton. However, this GhSnRK1 interaction with CLCuMB-
βC1 was also tested physically using pull down assay based on
affinity purification method (Louche et al., 2017). Protein binding
experiment using anti-GST antibody in the pull down assay
produced strong signals for GhSnRK1 and CLCuMB-βC1 on
PVDF membrane after Western blotting. Again, positive signals
were detected only for UBA and AIS domain.

In conclusion, our findings provide new insights into
begomovirus–cotton interactions at the molecular level and
lays foundation for further studies on structure-function
relationships. Our findings suggested that bioinformatics
approach could predict potential protein binding sites in viral-
and host-coded proteins. And the evidence that CLCuMB-βC1
binds with GhSnRK1 through UBA and AIS domains. Our study
also demonstrated that substitution mutants in a host protein
could be a better choice to produce resistance against viruses,
while at the same time keeping the host protein structure and
function stable. Our results have shown that computational
methods followed in present study could be useful in predicting
and validating PPI. We also postulated that GhSnRK1 function
becomes irreversible in the presence of any third protein
related to the defense mechanism that may unphosphorylate
CLCuMB-βC1, that enhances virus replication and movement
caused during CLCuD.

FUTURE PROSPECTS

The comprehensive bioinformatics analyses that was carried
out could facilitate further in depth study on the effects of

substitution mutations of predicted binding residues on protein
structure and its conformation, to gain further insights into the
complex biological mechanisms of the cell. The computational
approach combined with experimental verification presented
here could be used to further understand the interactions between
geminivirus-host and their biological significance. Geminiviruses
mainly interfere with plant’s signaling pathways and its defense
mechanism. The tools and materials developed in this study could
facilitate further studies on fine-structure mapping of various
motifs in both viral and host proteins and their role in modulating
geminivirus replication and spread in cotton and the interacting
partners in cotton. Knowledge gained from such studies could be
useful in developing novel virus suppression strategies.
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