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Arbuscular mycorrhiza (AM) is a symbiosis between plants and AM fungi that requires

the intracellular accommodation of the fungal partner in the host. For reciprocal

nutrient exchange, AM fungi form intracellular arbuscules that are surrounded by the

peri-arbuscular membrane. This membrane, together with the fungal plasma membrane,

and the space in between, constitute the symbiotic interface, over which nutrients are

exchanged. Intracellular establishment of AM fungi requires the VAPYRIN protein which

is induced in colonized cells, and which localizes to numerous small mobile structures

of unknown identity (Vapyrin-bodies). In order to characterize the identity and function

of the Vapyrin-bodies we pursued a dual strategy. First, we co-expressed fluorescently

tagged VAPYRIN with a range of subcellular marker proteins, and secondly, we employed

biochemical tools to identify interacting partner proteins of VAPYRIN. As an important

tool for the quantitative analysis of confocal microscopic data sets from co-expression

of fluorescent proteins, we developed a semi-automated image analysis pipeline that

allows for precise spatio-temporal quantification of protein co-localization and of the

dynamics of organelle association from movies. Taken together, these experiments

revealed that Vapyrin-bodies have an endosomal identity with trans-Golgi features, and

that VAPYRIN interacts with a symbiotic R-SNARE of the VAMP721 family, that localizes

to the same compartment.

Keywords: arbuscular mycorrhiza, symbiosis, VAPYRIN, VAMP721, petunia hybrida, endosome

INTRODUCTION

Arbuscular mycorrhiza (AM) represents a wide-spread symbiotic association of plants with a
monophyletic group of fungal endosymbionts (AM fungi) that are collectively known as the
Glomeromycotina in the order Mucuromycota (Spatafora et al., 2016). All AM fungi are obligate
biotrophs, i.e., they rely on living host cells to complete their life cycle (Smith and Read, 2008). The
establishment of AM requires fundamental reorganization of the host cells to allow intracellular
accommodation of the fungal symbiont. The early stages of AM involve an infection structure
known as the pre-penetration apparatus (PPA), which forms at the site of fungal attachment
and hyphopodium formation (Genre et al., 2005, 2008). The PPA is thought to be a prerequisite
for fungal infection, and it determines the site of penetration and the subsequent trajectory of
hyphal growth through the cells. AM symbiosis culminates with the formation of the arbuscules,
highly branched fungal structures that are separated from the surrounding host cytoplasm
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by the periarbuscular membrane (PAM). The fungal membrane,
the PAM around it, and the periarbuscular space (PAS) in
between (including the fungal cell wall), constitute the symbiotic
interface, over which signals, and nutrients are exchanged
(Harrison, 2012; Gutjahr and Parniske, 2013).

Reorganization of host cells during intracellular
accommodation of AM fungi has been described in considerable
detail. It involves changes in the organization of microtubules
and actin (Genre and Bonfante, 1998, 1999), changes in plastid
organization and dynamics (Fester et al., 2001), and a general
multiplication of the cytoplasmic constituents, including
mitochondria, ER and all other organelles. In addition, the
nucleus becomes enlarged, conceivably as a result of the
transcriptional induction of hundreds of AM-related genes, and
due to endoreduplication (Genre et al., 2008; Carotenuto et al.,
2019). In addition, mycorrhizal colonization involves ectopic cell
divisions in the root cortex (Russo et al., 2019). These features
indicate that host cells undergo fundamental reprogramming
during symbiosis.

The genetic basis of the changes associated with
the establishment of AM has been addressed with two
complementary approaches: (i) Forward genetic screens to
identify genes required for symbiosis, and (ii) transcript profiling
to identify AM-induced genes followed by reverse genetic
analysis of their function by gene knockouts or gene silencing.
The first approach has been very successful, in particular to
identify genes required for early symbiotic signaling (reviewed
in Harrison, 2012; Gutjahr and Parniske, 2013; Oldroyd,
2013). These genes, most of which are constitutively expressed
before and during symbiosis, constitute the common symbiosis
signaling pathway (CSSP), which is also required for root nodule
symbiosis (RNS). Reverse genetic analysis has been particularly
successful in the identification of genes that function after mutual
recognition, potentially in the establishment and functioning
of AM symbiosis, but also at the earliest steps of pre-symbiotic
communication (Kretzschmar et al., 2012). Among the hundreds
of genes that are induced during AM (Güimil et al., 2005;
Hohnjec et al., 2005; Fiorilli et al., 2009; Guether et al., 2009;
Breuillin et al., 2010; Gallou et al., 2011; Tromas et al., 2012;
Handa et al., 2015; Rich et al., 2017a; Sugimura and Saito,
2017; Vangelisti et al., 2018), only few have been functionally
characterized. On the other hand, for many symbiotic functions
in AM symbiosis, the genetic basis remains unknown.

An exceptional case among the essential genes in AM is
the VAPYRIN gene. It has been discovered independently in
two host species, Medicago truncatula and Petunia hybrida,
in three research groups involving both, forward and reverse
genetic strategies (Feddermann et al., 2010; Pumplin et al., 2010;
Murray et al., 2011). Vapyrin mutants have been found to have
an intact calcium spiking response, indicating that VAPYRIN
acts downstream of the calcium signal (Murray et al., 2011).

Abbreviations: ANK, Ankyrin domain; AM, Arbuscular mycorrhiza; ER,

Endoplasmic reticulum; PAM, Peri-arbuscular membrane; PPA, Pre-penetration

apparatus; RE, Recycling endosome; RNS, Root nodule symbiosis; TGN, Trans-

Golgi network; VAMP, Vesicle-associated membrane protein; VAP, VAMP-

associated protein.

VAPYRIN is required for both AM and RNS, and can therefore
be regarded as a common symbiosis gene. VAPYRIN expression
is induced during AM, in contrast to the components of the CSSP,
compatible with a role downstream of the CSSP (Feddermann
et al., 2010; Pumplin et al., 2010). The VAPYRIN protein
neither carries a signal peptide, nor does it have any predicted
transmembrane domains, it would therefore be expected to
reside in the cytoplasm. However, in both, Medicago truncatula
and Petunia hybrida, VAPYRIN-GFP localizes to small mobile
subcellular compartments (Feddermann et al., 2010; Pumplin
et al., 2010), which we will further refer to as Vapyrin-bodies. The
movement of Vapyrin-bodies is reminiscent of the movement
of organelles such as Golgi stacks, which have been shown to
exhibit stop-and-go movement as a result of their interactions
with the ER-actin network (Nebenführ et al., 1999; Brandizzi
et al., 2002; Pena and Heinlein, 2013). Interestingly, AM
fungal infection involves the accumulation of multiple exocytic
markers, including Golgi stacks and vesicles, at sites of hyphal
progression, indicating that intracellular accommodation
of AM fungi requires active membrane dynamics
(Genre et al., 2012).

VAPYRIN consists of two domains that are known as
protein:protein interaction domains, an N-terminal VAMP-
associated protein (VAP) domain [also known as major sperm
protein (MSP) domain], and a C-terminal ankyrin (ANK)
domain with 11 ankyrin repeats (Feddermann et al., 2010;
Feddermann and Reinhardt, 2011). Both domains are known
to interact with membrane proteins. In the case of the VAP
domain, the name stands for vesicle-associated membrane
protein (VAMP)-associated protein, hence, proteins with a VAP
domainmay associate with vesicles (Lev et al., 2008). On the other
hand, the ANK domain is known to bind to integral membrane
proteins such as ion channels and other membrane-resident
proteins (Michaely et al., 2002; Mosavi et al., 2004).

The similarity of the expression patterns of VAPYRIN and
the exocyst complex component EXO70I, and the fact that
VAPYRIN can interact physically with EXO70I, indicated that
Vapyrin-bodies may be involved in secretion (Zhang et al.,
2015). Secretion involves vesicles carrying internal cargo or
membrane constituents that become integrated in specific target
membranes (Surpin and Raikhel, 2004). In cells with arbuscules,
the default target membrane for secretion is the PAM that
surrounds the fungal arbuscule and controls nutrient fluxes
between both partners (Pumplin et al., 2012). However, apart
from this information, the identity and function of the Vapyrin-
bodies has remained largely elusive.

Here, we explore the identity and cellular function of
the Vapyrin-bodies with biochemical methods and with
co-localization experiments. We used a wide array of
fluorescently labeled subcellular marker proteins as reference
for co-localization studies, and we used a semi-automated
bioinformatics pipeline to quantify co-localization and
association of Vapyrin-bodies with a variety of subcellular
compartments. This analysis revealed that Vapyrin-bodies have
endosomal characteristics, and that they are associated with
Golgi stacks and move together throughout the cytoplasm. The
velocity of the Vapyrin-bodies and their association with the
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ER suggest that they are actively transported. A split-ubiquitin
interaction screen in yeast identified a VAPYRIN-interacting
protein, VAMP721, which is related to symbiotic VAMPs in M.
truncatula. Taken together, our results indicate that Vapyrin-
bodies have a mixed identity with trans-Golgi/endosomal
characteristics which are compatible with a role in transport
and secretion.

RESULTS

Characterization of VAPYRIN-Bodies in P.

hybrida, N. benthamiana, and A. thaliana
In order to systematically explore the identity of the VAPYRIN-
bodies, we sought for an amenable expression system in which
VAPYRIN localization could be studied in combination with
a diverse panel of subcellular marker proteins. Infiltration of
tobacco leaves (Nicotiana benthamiana) with Agrobacterium
tumefaciens (agro-infiltration) is an established procedure for
transient gene expression and subcellular localization studies
(Leuzinger et al., 2013). The advantage of this method is the
relatively rapid procedure (few days until readout), and its
versatility, since different combinations of proteins can easily be
co-expressed via a single infiltration.

In order to test whether Vapyrin-bodies are formed in agro-
infiltrated leaves, we transformed tobacco with VAPYRIN-GFP,
and with free GFP as a reference (Figure 1). VAPYRIN-
GFP was localized to mobile subcellular compartments
(Figure 1a;Movie S1), unlike free GFP which exhibited a general
cytoplasmic fluorescence (Figure 1b). The mobile dots had a
similar appearance as in transgenic hairy roots of petunia (P.
hybrida) (Feddermann et al., 2010) and M. truncatula (Pumplin
et al., 2010), or as in stably transformed petunia roots expressing
a VAPYRIN-GFP fusion (Figures 1c,d). On this basis, we
consider tobacco leaves as a reliable model to study localization
and movement of Vapyrin-bodies.

Arabidopsis thaliana is the preferred plant model system for
cell biological studies due to the availability of many tools and
resources, including the so-called Wave lines, which express
a diverse range of fluorescently labeled marker proteins for
various subcellular compartments (Geldner et al., 2009). To
test the suitability of Arabidopsis for subcellular localization
studies with VAPYRIN, we introduced VAPYRIN-GFP into
A. thaliana by stable transformation. As in petunia, Medicago
and tobacco, VAPYRIN-GFP in Arabidopsis roots was localized
to small subcellular compartments (Figure 1e), unlike free
GFP that exhibited a general cytosolic localization (Figure 1f).
However, in contrast to the other model systems, the Vapyrin-
bodies in Arabidopsis did not significantly move within the
cells (Movie S2). Hence, some essential components may be
missing in Arabidopsis, consistent with the fact that this non-
symbiotic species has lost many AM-related genes (Delaux
et al., 2014; Favre et al., 2014; Bravo et al., 2016). Since
Arabidopsis did not show normal mobile Vapyrin-bodies, it
was excluded from further experiments, and instead agro-
infiltrated tobacco leaves were used for further characterization
of Vapyrin-bodies.

Both Domains of VAPYRIN Localize to
VAPYRIN-Bodies
The VAP domain and the ANK domain are both known to
interact with integral membrane proteins (Lev et al., 2008;
Bennett and Healy, 2009; Cunha and Mohler, 2009), hence
the VAPYRIN protein, which does not carry any recognizable
features for a membrane localization, is likely to bind to
the cytoplasmic surface of the membranes that surround the
Vapyrin-bodies. In order to explore which of the two domains
of VAPYRIN is responsible for the association with Vapyrin-
bodies, they were both fused separately to GFP for localization
experiments (VAP-GFP and ANK-GFP) and co-expressed with
full-length VAPYRIN (VAPYRIN-RFP). In both cases, the
truncated proteins were localized to small mobile compartments,
and the co-localization with VAPYRIN-RFP identified them
as Vapyrin-bodies (Figures 2a,b; Figures S1a,b). The overlap
was equivalent to co-expression of two full length versions of
VAPYRIN tagged with GFP and RFP, respectively (Figure S1c).
Hence, both separate domains are sufficient on their own to
mediate correct localization to Vapyrin-bodies.

Vapyrin-Bodies Have Endosomal
Characteristics
Small subcellular compartments like the Vapyrin-bodies may
represent endosomal compartments in the endo- or exocytotic
route of subcellular trafficking (Surpin and Raikhel, 2004). In
order to explore the identity of VAPYRIN-bodies, a panel of
Wave markers was employed for different endosomal subtypes,
and intermediates in cellular trafficking and secretion (Geldner
et al., 2009). Many of these markers involve highly conserved
regulatory ARF and RAB GTPases that mark various trafficking
compartments (Nielsen et al., 2008) (Table S1).

First, we employed the endosomal marker mCherry-
RabD2b (Wave 33R) together with VAPYRIN-GFP (Figure 2c;
Figure S2a; Movie S3). These two fluorescent protein fusions
co-localized to a significant degree (Figure 2c), suggesting that
Vapyrin-bodies have endosomal characteristics. An endosomal
marker with a more narrow specificity for post-Golgi endosomal
elements, RabC1 (Wave 3R) (Geldner et al., 2009), also exhibited
a high degree of co-localization with VAPYRIN-GFP, indicating
that VAPYRIN-bodies have post-Golgi identity (Figure 2D;
Figure S2b;Movie S4).

Association of Vapyrin-Bodies With Golgi
and Recycling Endosome Markers
In order to further address the relationship between Vapyrin-
bodies and the Golgi apparatus, we tested the marker MEMB12
(Wave 127R), which encodes a SNARE protein that specifically
localizes to Golgi stacks (Uemura et al., 2004). Co-expression
of VAPYRIN-GFP with mCherry-MEMB12 produced a
conspicuous localization pattern. The rate of co-localization
events was very low, but in many cases, close associations
between Vapyrin-bodies and MEMB12-labeled compartments
were observed (Figure 2e; Figures S2c, S3). Such associations
remained stable over extended periods of time and were
characterized by a constant short distance between the two
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FIGURE 1 | Localization of VAPYRIN-GFP in N. benthamiana, P. hybrida, and A. thaliana. (a) N. benthamiana leaves transformed with VARYIN-GFP by agro-infiltration

exhibit mobile Vapyrin-bodies. (b) Free GFP in N. benthamiana leaves reveal cytoplasmic localization. (c,d) Localization of VAPYRIN-GFP to mobile Vapyrin-bodies in

stably transformed P. hybrida roots. (e) Roots of stably transformed A. thaliana exhibit immobile Vapyrin-bodies. (f) Free GFP in stably transformed A. thaliana roots

exhibits cytoplasmic localization. Size bar: 10µm.

compartments (Movie S5). These results indicate that a
subpopulation of the VAPYRIN-bodies is closely associated with
the Golgi apparatus. Hence, these observations are compatible
with an identity of Vapyrin-bodies as elements of the trans-Golgi
network (TGN). An identity as TGN was also supported by the
partial colocalization of Vapyrin with the TGN marker SYP61
(Drakakaki et al., 2012; Hachez et al., 2014) (Figure S4a).

TGN elements converge with recycling endosomes (RE) in
anterograde trafficking from the Golgi (Surpin and Raikhel,
2004). Hence, we tested whether VAPYRIN-GFP co-localized
with the RE marker RabA5d (Wave 24R). Indeed, significant
co-localization was observed (Figure 2f; Figure S4b; Movie S6),
indicating that the identity of Vapyrin-bodies extended from the
TGN-domain into the RE domain. A second marker for RE
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FIGURE 2 | Localization of VAPYRIN protein domains and co-localization with Wave marker proteins. (a) Fluorescently tagged VAP domain (VAP-GFP) co-localizes

with full-length VAPYRIN (VAPYRIN-RFP) on Vapyrin-bodies. (b) Fluorescently tagged ankyrin domain (ANK-GFP) co-localizes with full-length VAPYRIN

(VAPYRIN-RFP) on Vapyrin-bodies. (c) Co-localization of the endosomal marker mCherry-RabD2b with VAPYRIN-GFP. (d) Co-localization of the

post-Golgi/endosomal marker mCherry-RabC1 with VAPYRIN-GFP. (e) Association but no co-localization of the Golgi marker mCherry-MEMB12 with VAPYRIN-GFP.

(f) Co-localization and association of the endosomal/recycling endosome marker mCherry-RabA5d with VAPYRIN-GFP. Size bar: 10µm. See Figures S1, S2, S4 for

pictures of the separate channels.

compartments, RabA1g (Wave 129R), only showed minimal co-
localization with VAPYRIN-GFP (Figure S4c), indicating that
RE represent a heterogenous category of compartments.

Golgi stacks are known to be closely associated with the ER
and to move along ER strands in a stop-and-go mode (Pena and
Heinlein, 2013). Given the TGN identity of Vapyrin-bodies, we
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tested the relationship of VAPYRIN-bodies with the ER by co-
expression of VAPYRIN-RFP with GFP carrying an ER-specific
localization signal (GFP-HDEL). In general, Vapyrin-bodies were
closely associated with ER strands and in addition, they moved
along ER strands (Figure S5). Based on these results, we suggest
that Vapyrin-bodies feature TGN and RE identity.

Vapyrin-Bodies Have no Pre-vacuolar,
Vacuolar, or Autophagosomal Identity
In plant cells, anterograde trafficking comprises two main
directions, the route toward the vacuole, and secretion to the
apoplast across the plasma membrane (Surpin and Raikhel,
2004). In the case of mycorrhizal cells, the latter route becomes
diverted to the symbiotic interface around the arbuscules
(Pumplin et al., 2012). In order to distinguish between these two
routes, we employed several markers that highlight the vacuolar
pathway. RabF2b (Wave 2R) and RabF2a (Wave 7R) highlight
multivesicular bodies (MVB), late endosomes, and prevacuolar
compartments (Geldner et al., 2009). Thesemarkers did not show
significant co-localization with VAPYRIN-GFP (Figures 3a,b;
Figures S6a,b), neither did a third late endosomal/vacuolar
marker, RabG3c (Wave 11R) (Figure 3c; Figure S6c), that has
been detected in the vacuolar proteome (Carter et al., 2004). In
addition, we tested two vacuolar aquaporins, gamma-TIP, and
delta-TIP, that localize to a subdomain of the tonoplast (Saito
et al., 2002), and which did not show any co-localization with
Vapyrin (data not shown).

Finally, no co-localization was observed of VAPYRIN-RFP
with the autophagic marker GFP-ATG8a (data not shown),
which localizes to autophagosomes (Zhuang et al., 2017), small
prevacuolar compartments implicated in degradation of cellular
constituents (Michaeli et al., 2016). We also employed markers
formitochondria and peroxisomes to test whether they interacted
with Vapyrin-bodies. The mitochondrial marker pIVD145-
eqFP611 (Forner and Binder, 2007) did not at all co-localize
or associate with VAPYRIN-GFP (Figure 3d; Figure S7a), nor
did the peroxisomal marker GFP(S65T)-APX(36) (Forner and
Binder, 2007) (Figure 3e; Figure S7b). Furthermore, no co-
localization was detected with the plasma membrane marker
PIP1;4 (Wave 138) (Figure 3f; Figure S7c). Taken together, these
results show that Vapyrin-bodies are not intermediates in the
trafficking route toward the vacuole, nor are they part of an
autophagic pathway.

Quantitative Analysis of Protein
Co-localization and Compartment
Association
Characterization of subcellular compartments by protein co-
localization studies requires detailed spatio-temporal image
analysis. Selection of representative images and counting
of co-localizing structures by visual inspection may not
always be sufficient for a quantitative analysis of such
phenomena. In addition, individual images cannot reveal
dynamic aspects that can only be observed in movies.
Hence, we developed a semi-automated bioimage-informatics
pipeline based on the Kalaimoscope MotionTracker software

(Kalaidzidis et al., 1997; Rink et al., 2005; Collinet et al.,
2010) (http://www.kalaimoscope.com/science.html). This tool
uses specialized algorithms to process movies, involving global
object recognition, establishment of movement tracks over time,
and quantification of various parameters related to object area
and movement tracks. Quantification frommovies by movement
tracks allows more consistent analysis than assessment of
individual images. We used this tool to quantify co-localization
and object association with a range of Wave markers and
additional subcellular marker proteins.

To quantify the degree of co-localization, we first determined
the number of objects in the red and the green channel, and
the number of colocalizing objects defined by an overlap of at
least 50% of their area at half maximum intensity (Figure S8;
Figure 4A). In cases, in which the number of objects in the two
channels is different (for example due to a lower expression level
of one of the two fluorescent marker proteins), the degree of
overlap is limited by the channel with fewer objects. We defined
the degree of colocalization as the number of overlapping objects
relative to the number in the channel with fewer objects, because
colocalization can only be defined for objects that have a signal
in both channels. This has the disadvantage that less objects with
the more abundant marker can be assessed.

To calibrate the quantification pipeline with positive controls,
we used co-localization of VAPYRIN-RFP with ANK-GFP
and VAP-GFP, which exhibited an indistinguishable subcellular
localization pattern (Figure 1). In addition, VAPYRIN-GFP
was co-expressed with VAPYRIN-RFP as a positive control.
These positive controls yielded co-localization coefficients in
the range of 75–90% (Figure 4B). As a negative control, the
mitochondrial marker eqFP611 was used, which exhibited a
co-localization coefficient of <5% (Figure 4B). These results
show that this methodology allows to assign quantitative co-
localization coefficients in the range of 5–90%.

Using this semi-automated quantification pipeline, we
determined the level of co-localization of VAPYRIN-GFP with
the following subcellular markers: RabD2b, RabC1, RabA5d,
SYP61, MEMB12, RabA1g, and RabF2a. Consistent with the
visual interpretation from individual representative images
(Figures 2, 3; Figures S1–S4), the analysis revealed significant
co-localization of VAPYRIN with RabD2b, RabC1, and RabA5d,
whereas no significant co-localization resulted from MEMB12,
RabA1g, and RabF2a (Figure 4B; Table S2). SYP61 took an
intermediate position (Figure 4B; Table S2). Statistical analysis
by Tukey HSD post-hoc test clearly distinguished significantly
co-localizing markers (marked with asterisks in Figure 4B) from
the rest (Table S2). This co-localization analysis confirms the
conclusion that Vapyrin-bodies have a dual identity as TGN
and RE.

Besides MEMB12, which exhibited association rather than
co-localization with Vapyrin-bodies (Figures S2c, S3), two
additional markers (RabD2b and RabA5d) showed association
with Vapyrin-bodies in addition to co-localization (Figures 2c,f).
This phenomenon was quantified using the movies used
for co-localization analysis (Figure 5). First, paired tracks of
objects in the red and green channel were identified and
their tracks analyzed over multiple time frames (Figures 5a–c,
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FIGURE 3 | Lack of co-localization of VAPYRIN with markers for the vacuolar trafficking pathway and other subcellular compartments. (a) Co-expression of the late

endosomal/prevacuolar marker mCherry-RabF2b with VAPYRIN-GFP reveals no co-localization. (b) Co-expression of the late endosomal/prevacuolar marker

mCherry-RabF2a with VAPYRIN-GFP reveals no co-localization. (c) Co-expression of the late endosomal/prevacuolar marker mCherry-RabG3c with VAPYRIN-GFP

reveals no co-localization. (d) Co-expression of the mitochondrial marker pIVD14s-eqFP611 with VAPYRIN-GFP reveals no co-localization. (e) Co-expression of the

peroxisomal marker GFP(S65T)-APX(36) with VAPYRIN-RFP reveals no co-localization. (f) Co-expression of the plasma membrane marker PIP1;4-RFP with

VAPYRIN-GFP reveals no co-localization. Size bar: 10µm. See Figures S6, S7 for pictures of the separate channels.

left). Then the distance between the associated objects in
the two channels was determined over time (Figures 5a–c,
middle). Secondly, the distance distribution was derived from
the same data set (Figures 5a–c, right), and the average distance
between the objects was calculated (Figure 5d). This analysis
showed that the distance between Vapyrin-bodies and the other
endosomal compartments was within characteristic windows for
each pair of markers. For example, for VAPYRIN-GFP and
mCherry-RabA5d, the average distance was 0.79 ± 0.17µm
(median= 0.80µm), whereas for VAPYRIN-GFP and mCherry-
RabD2b, the distance was 0.40 ± 0.16µm (median = 0.41µm)
(Figure 5d). This analysis shows that the two compartments
were not associated in a random fashion. For comparison,
the co-localizing marker RabC1 (Wave 3R) yielded an average
distance between the two channels of 0.12 ± 0.07µm (median
= 0.11µm) (Figure 5d). These small values are below the
threshold of optical resolution for confocal microscopy, and
are consistent with the conclusion that VAPYRIN and RabC1
co-localize on the same objects (compare with Figure 2d).
Student’s pairwise t-test revealed that the differences in the
average distances of the three pairs (Figure 5d) were highly
significant (p < 0.001). Taken together, these results suggest
that Vapyrin-bodies have an identity that involves features of

recycling endosomes and TGN, and that they are associated with
the Golgi apparatus.

Search for Interacting Partners of VAPYRIN
Since VAPYRIN has no predicted transmembrane or membrane
association domain, and since both, the VAP domain and
the ankyrin domain, are known to interact with integral
membrane proteins in other eukaryotic systems, we reasoned
that the localization of tagged VAPYRIN to Vapyrin-bodies
may reflect interactions with resident membrane proteins. In
order to identify such interacting partners of VAPYRIN we
decided to perform co-immuno-precipitation (CoIP). Thus,
VAPYRIN-GFP and VAP-GFP were expressed either transiently
in N. benthamiana, or in the native context, namely in
P. hybrida stably transformed by Agrobacterium tumefaciens
through leaf disc transformation, and in hairy roots of
P. hybrida transformed by Agrobacterium rhizogenes (see
Supplementary Materials and Methods for more details).

In general, expression of VAPYRIN-GFP and VAP-GFP
was always observed at low levels, although the constitutive
cauliflower mosaic viral 35S-promoter was used. In addition
to the low levels of expression, part of the fluorescent
signal corresponded to free GFP (Figure S9). This suggests
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FIGURE 4 | Quantification of VAPYRIN co-localization with various subcellular markers. (A) Fluorescent objects were detected by MotionTracker and assessed for

co-localization by scoring the frequency of a 50% area overlap between adjacent objects in the two channels (see Figure S8 and Materials and Methods). The

average number of objects per frame in the VAPYRIN channel (green), the other channel (red), and the number of colocalizing objects (yellow) are indicated. (B) The

degree of co-localization was calculated by the number of co-localizing objects relative to the number of objects in the channel with fewer objects. Error bars

represent standard deviations from 15 to 35 frames with an average of 31 objects per frame. Asterisks indicate pairs of markers that showed significant co-localization

according to Tukey HSD post-hoc test (Table S2).

that VAPYRIN-GFP can be cleaved, and may reflect the
cytoplasmic and nuclear signal in roots that express VAPYRIN-
GFP (Figure 1). Due to the generally low expression level of
VAPYRIN-GFP, and to the partial cleavage in the soluble fraction,
we decided to search for interacting partners in the membrane-
bound fraction. Hence, we attempted to solubilize VAPYRIN-
GFP and VAP-GFP from purified microsomal membrane
fractions (Figures S9–S12).

The central issue in solubilizing protein complexes for CoIP
and MS analysis is to solubilize the complexes with detergents
without interfering with the protein:protein interactions in the
complex. A number of protocols have been established for
receptors and other membrane proteins to achieve this goal
(Avila et al., 2015). Using the non-ionic detergent Nonidet P-40
(NP-40) at a concentration of 1% (w/v), no VAPYRIN-GFP was
solubilized from the membrane fraction (Figure S9), although
this concentration is sufficient to solubilize the membrane
receptor FLS2 (Chinchilla et al., 2006). Since both domains
of VAPYRIN were localized to the same compartment, we
reasoned that they may both interact with the same or adjacent
target proteins in the same membrane, hence reinforcing the
association with the target membrane. To avoid this problem,
we next used only the N-terminal VAP domain of VAPYRIN
fused to GFP to establish a solubilization protocol for CoIP.
We prepared microsomal fractions from hairy roots transformed
with VAP-GFP and treated them with different concentrations
of three detergents that have been previously established for
the solubilization of resident membrane proteins (le Maire

et al., 2000; Arachea et al., 2012; Avila et al., 2015), namely
NP-40, octylglucoside (OG), and Triton-X-100 (Figure S10).
Since protein solubility can depend on pH, we also used
different buffer systems (Figure S10). In addition, we used two
protocols for the preparation of microsomal membranes, a
classical protocol involving ultracentrifugation (Fabregas et al.,
2013), and an alternative small-scale protocol that produces
less dense membrane pellets, thereby facilitating solubilization
(Abas and Luschnig, 2010). However, despite the use of up
to 5% detergent, none of the protocols resulted in significant
solubilization of VAP-GFP to amounts that would have
allowed for CoIP (Figures S11, S12). These results document
the strong association of VAPYRIN with the membrane
of VAPYRIN-bodies.

Yeast Two-Hybrid Screening for Interactors
of VAPYRIN
Yeast two-hybrid interaction screens have been successfully
used to identify protein-protein interactions in plants (Causier
and Davies, 2002). We employed a system known as split-
ubiquitin interaction screening that is based on the recognition
of reconstituted ubiquitin resulting from the interaction of two
hybrid proteins (Möckli et al., 2008). This system involves a
membrane-bound bait at the ER surface. Because this interaction
system operates outside the nucleus, it allows to use baits that
have a tendency toward autoactivation. At the same time, this
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FIGURE 5 | Distance between Vapyrin-bodies and associated endosomal compartments. Paired objects were identified in cells co-expressing Vapyrin-GFP and

mCherry-RabA5d (a), mCherry-RabD2b (b), or mCherry-RabC1 (c). Object pairs identified in a minimum of 10 consecutive frames were used for the measurement of

the distance between their centers over time. Distances were plotted over time (middle), and the corresponding frequency distributions were determined from the

same data (right). (d) Average distances of approximately 0.4µm (RabD2b) and 0.8µm (RabA5d) indicate non-random associations. The small distance of

0.1–0.2µm for RabC1 indicates bona fide co-localization (compare with Figures 2, 4). All three distances in (d) were significantly different (t-test; p < 0.001).

system is suited to identify protein-protein interactions that
involve membrane proteins.

We first prepared a cDNA library derived from a 50:50
mixture of RNA from mycorrhizal and control roots. This
library, which represented 4 × 106 independent clones, was
screened with the VAP domain as a bait (pDHB1-VAP). A
total of 324 clones were recovered from a primary screen on
3.2 × 106 clones (see Supplementary Materials and Methods

for more details). After secondary screening for LacZ activity,
288 yeast clones were retained. From these candidate clones,
plasmid DNA was extracted for amplification in E. coli and re-
transformation of yeast for confirmation of the interaction with
the VAP domain. Finally, 23 candidate clones were retained
that showed a reproducible VAP-dependent growth phenotype
in drop tests, and which were positive for ADE2 and LacZ
activity (Figure S13; Table S3). Interestingly, 14 of the putative

interactors (61%) were predicted to be membrane proteins with
one to six predicted membrane-spanning domains.

Interacting proteins are expected to colocalize on the same
subcellular compartment. We therefore generated RFP fusions
of the candidate interactors to test for subcellular colocalization
with VAPYRIN-GFP. Only one candidate, which had been
classified as a VAMP/R-SNARE protein by automated blast
annotation (ID J17 I; Table S3) showed a significant overlap
in localization with VAPYRIN-bodies (Figure 6). Because of its
interaction with a mycorrhiza-related protein (VAPYRIN), it
was designated as VAMP721m. In depth phylogenetic analysis
showed that VAMP721m was closely related to VAMP721 in
other species (Figure S14). Phylogenetic analysis of all VAMP72
members in Petunia axillaris (Pa), M. truncatula (Mt), L.
japonicus (Lj), rice (Oryza sativa; Os), and A. thaliana (At)
revealed that VAMP721m, together with 3 additional paralogs,
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FIGURE 6 | Co-localization of VAPYRIN with VAMP721m. Co-expression of VAPYRIN-GFP (a) with RFP-VAMP721m (b) revealed an overlapping localization pattern

(arrows in a,b) (c), consistent with an interaction of VAPYRIN with VAMP721m on the Vapyrin-bodies. Nuclear signal (n) was only observed in the green channel

(reflecting cleaved VAPYRIN-GFP). Green arrows highlight Vapyrin-bodies, red arrows highlight the same objects with RFP-VAMP721m.

(VAMP721x through VAMP721z) falls into a clade with the
symbiotic VAMPs from M. truncatula (MtVAMP721d and
MtVAMP721e) (Figure S14; File S1), that are required for AM
(Ivanov et al., 2012). This clade does not contain a homolog
of Arabidopsis, a phylogenomic signature that was found
in other symbiosis-related genes (Delaux et al., 2014; Favre
et al., 2014; Bravo et al., 2016). These results are compatible
with the hypothesis that this clade contains symbiosis-related
genes that have been under selection for a role in AM in
the dicots.

Although Vapyrin-bodies exhibited RFP-VAMP721m signal
(Figures 6a,b), an even stronger signal was observed along
the cell periphery, possibly from the plasma membrane
(Figures 6b,c). No RFP signal was observed in the nuclei, that
usually exhibited GFP signal (Figures 1c, 3f, 6a) resulting from
cleavage of VAPYRIN-GFP (Figure S9). These results suggest
that the strong RFP-VAMP721m signal along the cell periphery
does probably not reflect a cytoplasmic localization resulting
from protein cleavage. In addition, these results exclude that the
relatively weak RFP signal on Vapyrin-bodies could have resulted
from “bleeding-through” from the GFP channel, which would
also be the case for the nuclear signal.

It should be noted here that co-expression of VAPYRIN-
GFP and RFP-VAMP721m in N. benthamiana proved rather
difficult. In most cases, agro-infiltration experiments produced
very few cells that co-expressed both markers, whereas this
method worked routinely with other fluorescent markers (see
above). These results suggest that the co-expression of VAPYRIN
and VAMP721m at elevated levels is detrimental to tobacco leaf
cells. As a consequence of the problems with co-expression and
the resulting deficit in image quality, the imaging results from
confocal microscopy of VAPYRIN-GFP and RFP-VAMP721m
were not suitable for processing with the MotionTracker
quantification pipeline.

More direct information on protein:protein interactions can
be obtained with bi-molecular fluorescence complementation
(BiFC). BiFC is based on the reconstitution of YFP fluorescence
from two split halves that are brought together by the interaction

of two fused proteins of interest (Kerppola, 2008). Using the
system described in Waadt et al. (2008), we did not obtain a
significant reconstitution of YFP fluorescence, with VAPYRIN
and VAMP721m whereas positive controls yielded the expected
readout (data not shown). This may be a consequence of the
difficulty to co-express VAPYRIN and VAMP721m in the same
cells (see above).

Expression of VAMP Genes in Mycorrhizal
Petunia
VAMPs, also known as R-SNAREs, are encoded by large gene
families in angiosperms (Uemura et al., 2004; Sanderfoot,
2007). VAMP721m falls into the VAMP72 family, of which
seven members were identified each in A. thaliana and M.
truncatula (Uemura et al., 2004; Ivanov et al., 2012). Using
VAMP721m as the query for a blastp search against the
predicted P. axillaris proteome (Bombarely et al., 2016), we
detected eight VAMP72 members (Figure S14) and four
VAMP71 members, and we determined their gene expression
patterns in mycorrhizal roots vs. control roots from a recently
generated RNAseq data set (Rich et al., 2017a) (Table S4).
Interestingly, none of the 12 petunia VAMP72 and VAMP71
members were significantly regulated upon mycorrhizal
colonization, except for two that were slightly but significantly
repressed in mycorrhizal roots (Peaxi162Scf00149g01112.1,
Peaxi162Scf00367g00010.1). Notably, VAMP721m was not
induced during AM symbiosis (Table S4). This is reminiscent
of the symbiosis-related VAMP721 homologs in M. truncatula,
VAMP721d and VAMP721e, the expression of which remained
constant in AM and during nodulation (Ivanov et al., 2012).

DISCUSSION

Vapyrin-Bodies Can Be Formed in Diverse
Plant Species and Cell Types
In order to study the identity and function of Vapyrin-
bodies, we tested two expression systems with VAPYRIN-
GFP: transgenic Arabidopsis roots, and agro-infiltrated tobacco
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leaves (N. benthamiana). Both exhibited distinct Vapyrin-
bodies, however, in Arabidopsis roots, they were immobile,
suggesting thatArabidopsis has subcellular compartments similar
to Vapyrin-bodies, but lacks a trafficking component required for
their active translocation. In contrast, tobacco leaves exhibited
Vapyrin-bodies with a similar behavior as in P. hybrida roots
(Feddermann et al., 2010) or M. truncatula roots (Pumplin
et al., 2010). Hence, we further employed agro-infiltrated tobacco
leaves for the characterization of Vapyrin-bodies.

Both Domains of VAPYRIN Bind to
VAPYRIN-Bodies
Usually, subcellular localization of proteins is determined by
specific peptide signatures in the primary amino acid sequence.
In VAPYRIN, no such sequence was found that would have
allowed to predict its subcellular localization. Hence, it was
surprising to find that both, the VAP domain and the ANK
domain, independently mediated localization to the same
endosomal compartment (Figures 2a,b, 4). This shows that both
domains together contribute to VAPYRIN localization, and it
explains the fact that VAPYRIN is very strongly bound to
membranes (Figures S9–S12). VAP domains can be expected to
localize to the membranes of vesicles through their interaction
with VAMPs (Lev et al., 2008). Similarly, the ANK domain is
known as the membrane-binding domain of ANKYRIN proteins
in animals (Michaely et al., 2002;Wang et al., 2014). In particular,
some conserved regions on the inner (concave) side of the
solenoid structure of the crescent-shaped ANK domain represent
a strong interaction surface, with which it interacts with resident
membrane proteins such as ion channels (Wang et al., 2014).
Importantly, such binding areas are usually constituted by several
adjacent ankyrin repeats (Cunha and Mohler, 2009), and indeed,
VAPYRIN carries a similar highly conserved region of several
ankyrin repeats on the concave side of the ANK domain,
indicating that this region may represent a conserved interaction
surface (Feddermann and Reinhardt, 2011).

Movement of VAPYRIN-Bodies
Vapyrin-bodies move rapidly in plant cells (Feddermann et al.,
2010; Pumplin et al., 2010), indicating that they may play a role
in transport and/or secretion of either membrane material or an
unknown cargo. Since VAPYRIN-bodies are often observed in
the vicinity of the fungal tips in cells with developing arbuscules,
they have been implicated in the delivery of factors required
for fungal morphogenesis and growth (Zhang et al., 2015).
Vapyrin-bodies do not exhibit a steady mode of movement,
but they either move rapidly along ER strands (Figure S5), or
they suddenly stop and pause at particular sites, before moving
further in the same or in another direction. This pattern of
movement has been described as stop-and-go movement, which
is characteristic for the movement of subcellular compartments
such as Golgi stacks (Boevink et al., 1998; Nebenführ et al.,
1999). Recently, the mechanistic basis of this behavior has
been proposed to represent an ER-based, actin-driven transport
system that interacts withmicrotubules at specific sites referred to
as “cortical microtubule-associated endoplasmic reticulum sites”
(C-MERs) (Pena and Heinlein, 2013). This movement pattern

is fundamentally different from the general movement of the
cytoplasmic constituents, known as cytoplasmic streaming.

Quantitative Image Analysis Reveals
Endosomal Identity of Vapyrin-Bodies and
Association With the Golgi Apparatus
In addition to visual readouts (Figures 1–3), we performed
a quantitative analysis of protein co-localization (Figure 4),
and organelle association (Figure 5). This allowed us to
reliably characterize the Vapyrin-bodies relative to well-defined
markers for subcellular compartments in plants (Geldner
et al., 2009). With this approach, we excluded an identity
of vacuolar, prevacuolar, late endosomal, mitochondrial, and
peroxisomal identity. Instead, we show that Vapyrin-bodies
have an endosomal identity. Using a range of endosomal
markers which reveal specific subpopulations of the different
endosomal compartments, we then narrowed down the identity
of the Vapyrin-bodies. In particular, the endosomal/TGN
markers RabC1, RabD2b, SYP61 and the (recycling) endosome
marker RabA5d co-localized with Vapyrin-GFP (Figures 2,
4). These results indicate that Vapyrin-bodies have a trans-
Golgi/endosomal identity with an additional component of
recycling endosomes (Figure 7). This rather broad identity may
explain the fact that the size of Vapyrin-bodies is variable
(Figures 1–3), reflecting either a certain heterogeneity in actual
size of the compartment, or the aggregation of multiple
closely associated compartments that cannot be resolved by
confocal microscopy.

The fact that none of the late endosomal/prevacuolar/vacuolar
markers overlapped with VAPYRIN-GFP suggests that
VAPYRIN is not involved in trafficking toward the vacuole.
Instead, it appears that Vapyrin-bodies may be involved in
anterograde trafficking from the Golgi. Considering the fact that
colonized mycorrhizal cells exhibit a redirected default transport
route toward the symbiotic interface (Pumplin et al., 2012) we
hypothesize that VAPYRIN-bodies are involved in transport
from the Golgi to arbuscular branches (Zhang et al., 2015).

VAPYRIN Interacts and Co-localizes With a
Close Homolog of the Symbiotic
R-SNAREs MtVAMP721d and MtVAMP721e
In order to identify interacting partners of VAPYRIN, we
carried out a yeast-two-hybrid (Y2H) screen with the VAP-
domain as a bait. With this strategy, we identified a vesicle-
associated membrane protein (VAMP721m) that co-localized
with VAPYRIN (Figure 6). Phylogenetic analysis identified it
as a close homolog of the symbiotic VAMPs in M. truncatula
VAM721d and VAMP721e (Figure S14), which fall into a
separate symbiosis-related clade (Ivanov et al., 2012). As in the
case of VAM721d and VAMP721e, the VAMP721m gene exhibits
constitutive expression and does not respond to AM colonization
(Table S4). This is consistent with the idea that VAPYRIN is a
symbiosis-specific component that interacts with a constitutive
and ubiquitous secretion pathway that is not restricted to
symbiotic organs or to plant species competent to engage in
endosymbiosis. In this sense, VAPYRIN would represent a
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FIGURE 7 | A model for the role of VAPYRIN and the Vapyrin-bodies in AM symbiosis. (a) Transmission electron micrograph of an AM fungal hypha in a colonized

petunia root cortex cell. The hypha is surrounded by a peri-arbuscular membrane (white arrows) and embedded in an organelle-rich cytoplasmic pocket with Golgi

stacks (green arrows), and numerous ER cisternae (yellow arrows). Size bar: 0.5µm. (b) Schematic representation of the constitutive trafficking system in a

non-colonized plant cell with subcellular compartments such as Golgi stacks, trans-Golgi network (TGN) and early endosomes (EE), recycling endosomes (RE), and

the prevacuolar compartment (PVC). Protein markers used in this study are indicated in black on the respective organelle, to which they localize. (c) Schematic

representation of a mycorrhizal cell with the analogous complement of subcellular trafficking intermediates as in (b). In addition, VAPYRIN is indicated as blue color in

the compartments that were identified in our study by co-localization with subcellular markers. Note that the default secretion pathway is diverted toward the AM

fungus.

symbiosis-related component of a pathway that interacts with a
constitutive secretion machinery through VAMP721m. Hence,
we hypothesize that the redirection of the secretory route toward
the fungus in colonized cells (Pumplin et al., 2012) may require
only a few symbiosis-specific components such as VAPYRIN
and EXO70I (Pumplin et al., 2012; Zhang et al., 2015), or
SYP132 that has overlapping functions in symbiosis, and defense
(Catalano et al., 2007; Kalde et al., 2007; Huisman et al., 2016;
Pan et al., 2016).

Are VAPYRIN-Bodies Involved in
Secretion?
Taken together, our results complement the findings that
VAPYRIN interacts with EXO70I (Zhang et al., 2015), a
component of the exocyst complex, which promotes exocytosis
and secretion into the apoplast (Zhang et al., 2010). In colonized

cells of M. truncatula, VAPYRIN and EXO70I have been shown
to be located in the vicinity of the peri-arbuscular membrane
(PAM) around the tips of branching hyphae (Zhang et al.,
2015). These are sites of intense exocytotic activity (Genre et al.,
2012). Interestingly, the secretion of the AM-associated ABC
transporters STR and STR2 is abnormal in exo70i mutants of
M. truncatula, consistent with the idea that VAPYRIN-bodies
are involved in secretion of membrane constituents of the PAM.
Symbiotic cells need an active secretion pathway, in order to
deliver to the symbiotic interface nutrient transporters (Pumplin
et al., 2012), extracellular proteases (Takeda et al., 2007), and
possibly other cargo that is essential for AM fungi. A role
for VAPYRIN-bodies in secretion is not in contradiction with
their endosomal identity, since endosomes can be integrated
as recycling endosomes into the anterograde secretory pathway
from the trans-Golgi to target membranes (Figure 7) (Robinson
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et al., 2008). In this context, it is interesting to note that the
membrane dynamics in symbiotic cells involves markers of both,
endocytosis and secretion, thus indicating the operation of active
endosomal recycling in mycorrhizal cells (Russo et al., 2019).

A Model for the Function of VAPYRIN in
Symbiosis
Mycorrhizal cells undergo fundamental reorganization, starting
from installation of the PPA (Genre et al., 2005, 2008).
Subsequently, colonized cells induce hundreds of AM-related
genes, and finally, the symbiotic interface has to be established
for bidirectional nutrient transfer (Karandashov and Bucher,
2005; Rich et al., 2017b; Roth and Paszkowski, 2017). This
involves increased secretion activity (Genre et al., 2012), and
redirection of secretion toward the symbiotic interface (Pumplin
et al., 2012). Arbuscular fine hyphae are surrounded by large
amounts of cytoplasm rich in organellar constituents (Figure 7a).
Based on the collective available evidence, it appears that
plant cells normally have a secretion pathway with two main
directions, a route to the plasma membrane and one to the
vacuole (Figure 7b). In colonized cells, transport is redirected to
the fungus, involving an endosomal compartment that carries
VAPYRIN and VAMP721 (Vapyrin-bodies). This endosomal
compartment has both TGN and RE identity, and is as such not
restricted to specific cell types or AM-competent plant species.
Uponmycorrhizal colonization of root cells, these compartments
carry VAPYRIN and become recruited for symbiosis-related
functions, possibly secretion of membrane material and/or
cargo to the symbiotic interface at the tips of arbuscular fine
branches (Figure 7C).

EXPERIMENTAL PROCEDURES

Plant Material
Seeds of Nicotiana benthamiana and Petunia hybrida were
surface sterilized in 70% ethanol (1min), followed by 7%
bleach with 0.1% Tween 20, and rinsed 5 times before
sawing to seedling substrate (Klasman). After 1 week from
germination, plantlets were transferred to single pots with
clay substrate (Klasman). Once a week soil was treated with
iron fertilizer (Optifer from Optima). Temperatures in growth
chambers were adjusted to 32◦C during the light phase (12 h)
and 22◦C during the dark phase (12 h). For the production
of sterile in vitro plant material for transformation (see
Supplementary Materials and Methods), sterilized seeds were
plated onto MS medium.

Transient Expression by Agro-Infiltration
and Confocal Microscopy
Transient expression assays were performed with three to 5-
week-old plants as described (Leuzinger et al., 2013) with some
modifications. Briefly, A. tumefaciens strains transformed with
the vector of interest were grown for 2 days at 28◦C on solid LB
media with the appropriate antibiotics. One colony was picked
and grown overnight in 3ml LB medium with the appropriate
antibiotics at 28◦C and 210 rpm. The pre-culture was then
diluted 1:1000 in 15–20ml LB with the appropriate antibiotics

and incubated overnight at 28◦C and rotation (210 rpm). The
culture was then centrifuged at 4,000 g for 15min at room
temperature. The pellet was resuspended and adjusted to an
OD600 of 0.7 in AS medium (For 100 ml: 1ml 1M MES-KOH
pH 5.6, 333 µl 3M MgCl2 and 100 µl 200µM acetosyringon).
Each culture was mixed 1:1 with a culture expressing the viral
repressor p19 (Voinnet et al., 2003), or 1:1:1 in the case of
co-expression with to fluorescent proteins. The cultures were
incubated at room temperature for 2–4 h under gentle shaking.
The leaf abaxial side of 2–3 N. benthamiana plants per construct
were infiltrated with bacterial suspensions with a 1ml syringe.
The infiltrated leaves were analyzed after 2–5 days by confocal
laser scanning microscopy with a Leica SP5 microscope. For
eGFP and YFP, an argon laser was used for excitation (488 nm),
and signal was acquired between 500 and 550 nm. For mCherry
and mRFP, a helium-neon laser was employed for excitation
(543 nm), and fluorescence was acquired between 590 and
640 nm. Confocal images were analyzed with the Leica LAS AF
Lite and FIJI/ImageJ softwares. All double-channel analyses were
acquired in the sequential mode to avoid “bleeding-through”
between the channels. For the analysis of the dynamic behavior
of Vapyrin-bodies, and for quantitative analysis of colocalization
and association (see below), time series (movies) were acquired.
For each construct, at least three independent transformation
experiments were conducted, each with several plants of which
several leaves were infiltrated. Representativemovies were chosen
for quantitative analysis.

Quantitative Analysis of Co-localization
and Association
Quantification of object co-localization and association was
performed with a semi-automated image processing pipeline
based on the Kalaimoscope MotionTracker software version
8.88.15 (Kalaidzidis et al., 1997; Rink et al., 2005; Collinet
et al., 2010), running in Windows 10 (64 bits) (http://www.
kalaimoscope.com/science.html). This software identifies elliptic
objects by fitting Lorenzian functions to them according to user-
defined object-search parameters. This allows to determine the
x-y position with sub-pixel accuracy, as well as further object
properties including size, area, intensity and position. Once
the object search is complete for all the consecutive frames
of a time-series (movie) in two channels, MotionTracker can
then search for tracks. To this end, its algorithm searches the
most probable association between objects in adjacent frames
of the two channels, and establishes the path of all objects
during the time-series. Object size, speed and direction are
calculated to determine the object tracks. The visualization of the
object tracks by plotting their path as an overlay on the image
sequence allows easy visual inspection of the object tracking
results to confirm their accuracy and, if necessary, to adjust the
tracks manually.

To extract the co-localization data, MotionTracker computes
the overlap between objects by determining the peak cross-
section of the fitted Lorenzian at half-height and by computing
the area that is covered by another cross-sections belonging to a
different channel. The co-localization measure was parametrized
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by a co-localization threshold set at 50% overlap (Priya
et al., 2015), i.e., each object in channel A overlapping
with an object in channel B with at least half of its
area was counted as a co-localized object. Finally, the co-
localization data plotted in Figure 4 represent the percentage
of all the objects of a movie fulfilling the above criteria.
Since co-localization is asymmetric in cases where object size
and/or expression level differ between the two channels, these
calculations were performed with both GFP and RFP as the
basis channel.

Object association was quantified as the distance between
two objects in the red and the green channel, respectively, over
time. For this analysis, the tracks of associated pairs of objects
were first identified by their distance of ≤2µm between their
centers of mass, over at least 9 consecutive frames (average
21.7 frames) (Figures 5a–c, left). With an average object size
of ca. 0.65µm, this distance threshold includes objects that are
either in close proximity, touching each other, or overlapping.
This first filtering allowed to identify pairs of objects that
appeared to be physically connected. For two markers that
associated with Vapyrin-bodies (24R and 33R), and a marker
that was shown to colocalize (3R), the distance was then
measured for at least 5 paired tracks. Distances were then plotted
over time for all the analyzed tracks (Figures 5a–c, middle).
The same data was then binned to distance classes to show
the distribution of distances of the entire analyzed data set
(Figures 5a–c, right).

Yeast 2-Hybrid Screening Procedures and
Bait Cloning
In order to identify interacting partners of VAPYRIN, the
split-ubiquitin Y2H screen from DUALhunter was employed
(DUALsystems Biotech AG, Switzerland). All procedures were
carried out as detailed in the manufacturers protocol (). To
prepare the bait vector, the VAP domain was amplified by PCR
from cDNA prepared from RNA extracted from mycorrhizal
petunia roots using the following primers:

Forward primer:
5′-GAGTGGCCATTACGGCCATGGATAGACTATTAA

GCTTAGAGCCATC-3′; Reverse primer:
5′-TCGACATGGCCGAGGCGGCCGTAGCTCCAGGGG

CTACAAC-3′.
Both primers contained asymmetric SfiI restriction sites to
allow directional cloning into the SfiI sites of the pDHB1
vector. The amplicon was cloned into pGEM R©T-easy (Promega,
USA), sequenced and recovered by SfiI digestion (New
England Biolabs, Inc.:U.S.). It was then ligated into pDHB1
to obtain the pDHB1-VAP bait vector and transformed
into Saccharomyces cerevisiae reporter strain NMY51 (kindly
provided by Claudio de Virgilio) by electroporation according to
the manufacturers protocol. S. cerevisiae NMY51 is auxotrophic
for tryptophan, leucine, histidine, and adenine [MATa his31200
trp1-901 leu2-3,112 ade2 LYS2::(lexAop)4-HIS3 ura3::(lexAop)8-
lacZ ade2::(lexAop)8-ADE2 GAL4]. All procedures were carried
out according to the recommendations of the provider.

Preparation of a Prey Library for Split
Ubiquitin Screening
The cDNA library (prey vectors) was constructed with the
EasyClone cDNA Library Construction Kit (Dualsystems Biotech
No. P01010), according to the provider’s recommendations.
In brief, 5 µg total RNA extracted from a 50:50 mixture of
non-colonized roots and mycorrhizal roots colonized by R.
irregularis MUCL 43,204 was used for cDNA synthesis. Before
reverse transcription, mRNA was enriched with Oligotex Direct
mRNA Mini Kit (Qiagen, Germany). The first strand cDNA
was synthesized by the EasyClone reverse transcriptase (RT)
using a 3′-end adapter containing an SfiI site and oligo (dT).
This RT reaction adds oligo (dC)s to the 5′-end of the first
strand, allowing the 5′-end adapter that contains the second
SfiI site to bind. An evaluative PCR using 1 µl of the first
strand cDNA was performed to determine the optimal number
of cycles for PCR amplification. Based on this test, the second
strand was amplified by PCR from the first strand cDNA with 17
cycles, using primers containing SfiI sites A and B. DNAs were
purified with the NucleoSpin Extract II kit (Macherey-Nagel,
Germany) and digested with 2 µl SfiI restriction enzyme during
an overnight incubation at 50◦C. cDNAs longer than 400 bp were
selected by size fractionation (CHROMA SPINTM-400 columns;
Clontech). Note that in contradiction to the recommendations of
the provider, cDNAs were collected in the third elution, which
was controlled by gel electrophoresis. cDNAs were purified by
phenol/chloroform extraction and quantified using a NanoDrop
spectrophotometer (Thermo Fisher Scientific). The cDNA was
then directionally inserted downstream of NubG using two
asymmetric SfiI restriction sites. A test transformation in E. coli
Top10 was performed to check for the number of independent
transformants in the final library. To test the quality of the library,
10 randomly picked colonies were analyzed by colony PCR with
pPR3N primers.

Optimization of Screening Conditions
To optimize the stringency of the screen, a first pilot screen was
carried out that simulated the conditions of a library screen, but
with the empty library vector (no bait) instead of the cDNA
library vectors. NMY51 cells expressing DHB1-VAP were pre-
cultured in liquid SD-Leu, then grown to an OD600 of 0.6–
0.8 in 2x YPAD, and transformed with pPR3-N (empty library
vector; EV) using a high-efficiency library scale transformation.
For that, they were incubated 45min. at 30◦C with the master
mix and the plasmids and then heatshocked for 20min. at 42◦C
with DMSO. Transformed yeast was re-suspended in 2x YPAD
and incubated 90min. at 30◦C with slow shaking for recovery.
The cells were then resuspended in 0.9% NaCl and plated on
differentmedia of increasing stringency: (i) SD-2D: three 100mm
ø plates, to test for transformation efficiency. (ii) SD-3D: six
150mm ø plates lacking W, L and H, each supplemented with
an increasing concentration of 3-aminotriazole (3-AT): 0, 1,
2.5, 5, 7.5, 10mM. (iii) SD-4D: six 150mm plates lacking W,
L, H, and A, containing the same concentration of 3-AT as
SD-3D plates. Plates were then incubated at 30◦C and yeast
growth was assessed. VAP bait should not interact with the
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empty library vector (Table S3). However, the HIS3 reporter
gene can be leaky and lead to unspecific growth. To inhibit this
background growth and increase the selection stringency, 3-AT,
a competitive inhibitor of the HIS3 gene product is used. SD-
4D plates are more stringent that SD-3D. Since too stringent
conditions lead to false negative and not stringent enough
conditions leads to false positive, the pilot screen was performed
to determine the optimal medium to use for the library screen
with pDHB1-VAP. This medium corresponds to the plates where
no background growth was observed with the minimal amount
of 3-AT.

Isolation and Characterization of VAP
Interactors
VAP-expressing NMY51 was transformed with 28 µl library
plasmid with a high-efficiency transformation method (see
above). Transformants were plated on SD-2D plates to test for
transformation efficiency and on SD-4D without 3-AT, because
this condition was establishes as 100% selective. Positive clones
where recovered and cultured on SD-2D plates for the X-Gal
filter assay. For further characterization, DNA from yeast clones
with putative interactors was extracted and transformed into
XL1-blue. PlasmidDNA from transformed bacteria was extracted
with ZR miniprep kit and tested for candidate cDNA insert by
digestion with SfiI.

Interaction strength and specificity with the VAP domain
was determined by a drop test. Candidate clones were re-
transformed into NMY51expressing the bait VAP fusion protein.
Transformed yeast was cultured in 2ml selective medium (SD-
2D) overnight at 30◦C, adjusted to an OD600 of 0.2 and re-
grow to an OD600 of 0.8–3. 200 µl of each culture was diluted
to an OD600 of 1 in a microtiterplate in 4 dilution series: 1/1,
1/10, 1/100, 1/1000. Sterile water was used for the dilutions. 3
µl of each dilution were spotted onto 2 plates in parallel: SD-
2D, to test for the presence of the plasmids and the cell number
of a drop and SD-4D, to test for protein-protein interaction of
the bait and prey protein pairs. After 24 h at 30◦C, colonies
started to be visible on SD-2D plates. After 36–48 h, growth
was observed on SD-4D plates. Pictures were taken after 36 h
for SD-2D plates and after 3 days for SD-4D plates. Control
vectors were used for comparison in combination with pDHB1-
VAP; pA1-Alg4 as a positive control and pPR3-N (EV) as a
negative control of interaction. Additionally, each candidate
clone was also tested with the empty bait vector (pDHB1,
EV) by a drop test to test for specificity of the interaction
with the VAP domain. Prey candidates interacting strongly
with the empty bait were eliminated, the other candidates were
considered true interactors of VAP. Additional information
concerning the biochemical and genetic search for interactors
of VAPYRIN can be found in the Supplementary Materials and
Methods (File S2).

Phylogenetic Analysis
Sequence comparison and generation of the phylogenetic
tree with VAMP721m and closely related family members
(File S1) was carried out with the predicted amino acid
sequences using the “advanced” function of the software

package at www.phylogeny.fr (Dereeper et al., 2008), with 100
bootstrap replicates.

SHORT SUMMARY

VAPYRIN interacts with VAMP721 on an endosomal
compartment (Vapyrin-bodies) required for the establishment of
arbuscular mycorrhiza.
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S1; Data Sheet 4 contains File S2 with Supplementary Materials
& Methods.

Figure S1 | Subcellular localization of VAPYRIN protein domains VAP and ANK.

Simultaneous co-expression of full-length VAPYRIN tagged with RFP

(VAPYRIN-RFP) together with GFP-tagged VAP (a) and ANK (b) domains reveals

complete co-localization on Vapyrin-bodies. Positive control: VAPYRIN-GFP

together with VAPYRIN-RFP (c). Size bar: 10µm.

Figure S2 | Co-localization of VAPYRIN with endosomal markers. Co-expression

of VAPYRIN-GFP with the endosomal marker mCherry-RabD2b (a), with the

trans-Golgi/endosomal marker mCherry-RabC1 (b), and with the Golgi marker

mCherry-MEMB12 (c). Size bar: 10µm.

Figure S3 | Association of Vapyrin-bodies with Golgi stacks. A consecutive series

of images from a movie reveals the long-term association of Vapyrin-bodies with

MEMB12-compartments. Time steps are 5.16 seconds, a white circle highlights a

small group of paired compartments. Size bar: 10µm.
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Figure S4 | Co-localization of VAPYRIN with markers for post-Golgi and recycling

endosome. Co-expression of VAPYRIN-GFP with the post-Golgi marker

mCherry-SYP61 (a), with the trans-Golgi/endosomal marker mCherry-RabA5d

(b), and with the endosomal/recycling endosome marker mCherry-RabA1g (c).

Size bar: 10µm.

Figure S5 | Association of Vapyrin-bodies with the ER system. A series of images

from a movie reveals the association of Vapyrin-bodies (arrows; marked with

VAPYRIN-RFP) with the endoplasmic reticulum (marked with GFP-HDEL), and

their movement along ER strands (orange arrow). Time steps are indicated. Size

bar: 5µm.

Figure S6 | Co-expression of VAPYRIN with pre-vacuolar markers. Co-expression

of VAPYRIN-GFP with the late endosomal/prevacuolar marker mCherry-RabF2a

(a), with the late endosomal/pre-vacuolar marker mCherry-RabF2b (b), and with

the late endosomal/vacuolar marker mCherry-RabG3c (c). Size bars: 10µm.

Figure S7 | Co-expression of VAPYRIN with non-endosomal markers.

Co-expression of VAPYRIN-GFP with the mitochondrial marker

pIVD145seqFP611 (a), with the peroxisomal marker GFP(S65T)-APX(36) (b), and

with the plasma membrane marker RFP-PIP1;4 (c). Size bar: 10µm.

Figure S8 | Concept of quantification of colocalization. (a) Intensity plot of an

image with two adjacent nearly circular objects in the green and red channel,

respectively. At the half intensity level (blue arrow) the objects are hardly touching.

(b) Intensity plot as in (a) with two objects that are virtually overlapping. (c)

Definition of the threshold level for co-localization. Objects were considered to

co-localize if their cross-section at half-height intensity overlapped by at

least 50%.

Figure S9 | Preparation of microsomal membranes and attempted solubilization

of VAPYRIN-GFP. (a) Western blot with monoclonal anti-GFP antibody using N.

benthamiana leaves expressing VAPYRIN-GFP. After removal of crude cellular

debris, the supernatant (input) was ultracentrifuged to yield microsomal

membranes (MEM) and soluble supernatant (SP). The MEM fraction was then

treated with 1% NP-40 in order to solubilize VAPYRIN-GFP, but it remained entirely

associated with the MEM fraction. (b) Same procedure as in (a), but with leaves

expressing ER-localized GFP-HDEL. (c) Same procedure as in (a), but with leaves

expressing free cytoplasmic GFP.

Figure S10 | Experimental conditions in tissue fractionation for the extraction and

solubilization of VAPYRIN-GFP and VAP-GFP. Transgenic hairy roots of P. hybrida

were used to extract membrane pellets with a large-scale and a small-scale

protocol (see Materials and Methods). Subsequently, the membranes were

resuspended in different buffers containing various concentrations of different

detergents as indicated.

Figure S11 | Attempted solubilization of VAP-GFP with NP-40. Microsomal

membrane fractions prepared from hairy roots expressing VAP-GFP were

resuspended in different buffers with various concentrations of NP-40 as

indicated. After incubation for 1 h at 4◦C, the membrane pellets (MEM) were

recovered by centrifugation and subjected to Western blot analysis next to the

respective soluble fraction (SP; supernatant after detergent treatment). In all

cases, most of the VAP-GFP remained associated with the membranes.

Figure S12 | Attempted solubilization of VAP-GFP with Triton-X-100 and

octylglucoside. Microsomal membrane fractions prepared from hairy roots

expressing VAP-GFP were resuspended in different buffers with various

concentrations of Triton-X-100 (T), or octylglucoside (OG) as indicated. After

incubation for 1 h at 4◦C, the membrane pellets (MEM) were recovered by

centrifugation and subjected to Western blot analysis next to the respective

soluble fraction (SP; supernatant after detergent treatment). In all cases, most of

the VAP-GFP remained associated with the membranes.

Figure S13 | Drop test with interactor candidates from split-ubiquitin screen.

Interaction between the bait and the respective candidates is revealed by the

white color and the better growth on selective medium (SD-4D) with the bait

(pDHB1-VAP), relative to the empty vector control (pDHB1-EV). Growth on

non-selective medium (SD-2D) is independent of an interaction and just reflects

the presence of the bait and prey vectors. Highly specific interactors are signified

by a + sign, moderately specific interactors are indicated with a ∼ sign. A positive

control is provided by pA1-Alg5 vs. pPR3N.

Figure S14 | Phylogenetic analysis of petunia VAMP721. The petunia VAMP721m

(red asterisk) in this study was compared with all related VAMPs from Petunia

axillaris (Pa), Medicago truncatula (Mt), Lotus japonicus (Lj), Oryza sativa (Os), and

Arabidopsis thaliana (At). Symbiosis-related (blue asterisks), and non-symbiotic

(black asterisks) VAMP721 members from M. truncatula are indicated.

Table S1 | List of subcellular fluorescent makers employed in this study.

Table S2 | Statistical analysis of quantitative co-localization analysis. Tukey HSD

post-hoc test was performed to test for the significance of co-localization (see

Figure 4). Two clear groups emerged: ANK-GFP, VAP-GFP, VAPYRIN-RFP,

RabD2b-RFP, RabC1-RFP, and RabA5d-RFP significantly co-localized with

VAPYRIN-RFP or VAPYRIN-GFP, respectively, whereas MEMB12, RabA1g,

RabF2a, and eqFP611 did not. SYP61 took an intermediate position, but was

closer to the colocalizing group.

Table S3 | List of interactor candidates identified by the split-ubiquitin screen.

Indicated are assigned function by automatic BLAST, recovered protein length, %

recovered protein relative to the full-length protein, presence of a signal peptide

(cleavage site indicated), predicted subcellular localization, and the number of

predicted transmembrane TM domains in the entire protein.

Table S4 | RNAseq data for 12 VAMP genes of P. hybrida in mycorrhizal roots vs.

control roots. Indicated are the individual RPKM values for mycorrhizal samples

(M1–M3), and control samples (c1–c3), as well as the respective averages (M ave

and c ave, respectively). Asterisks indicate p-values from Baggerley’s test for

differences between treatments M and c (original values—FDR p-value correction),

and the induction ratio mycorrhizal vs. control (M/c) (see Rich et al., 2017a for

further information).

Movie S1 | Expression of VAPYRIN-GFP by agro-infiltration in N. benthamiana.

Movie S2 | Expression of VAPYRIN-GFP in stably transformed A. thaliana.

Movie S3 | Co-expression of VAPYRIN-GFP with mCherry-RabD2b by

agro-infiltration in N. benthamiana.

Movie S4 | Co-expression of VAPYRIN-GFP with mCherry-RabC1 by

agro-infiltration in N. benthamiana.

Movie S5 | Co-expression of VAPYRIN-GFP with mCherry-MEMB12 by

agro-infiltration in N. benthamiana.

Movie S6 | Co-expression of VAPYRIN-GFP with mCherry-RabA5d by

agro-infiltration in N. benthamiana.

File S1 | Protein sequences used for phylogenetic analysis of VAMP proteins.

File S2 | Supplementary Materials and Methods.
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