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Potato is an important food crop due to its increasing consumption, and as a result, there 
is demand for varieties with improved production. However, the current status of breeding 
for improved varieties is a long process which relies heavily on phenotypic evaluation and 
dated molecular techniques and has little emphasis on modern genotyping approaches. 
Evaluation and selection before a cultivar is commercialized typically takes 10–15 years. 
Molecular markers have been developed for disease and pest resistance, resulting in initial 
marker-assisted selection in breeding. This study has evaluated and implemented a high-
throughput transcriptome sequencing method for dense marker discovery in potato for 
the application of genomic selection. An Australian relevant collection of commercial 
cultivars was selected, and identification and distribution of high quality SNPs were 
examined using standard bioinformatic pipelines and a custom approach for the prediction 
of allelic dosage. As a result, a large number of SNP markers were identified and filtered 
to generate a high-quality subset that was then combined with historic phenotypic data 
to assess the approach for genomic selection. Genomic selection potential was predicted 
for highly heritable traits and the approach demonstrated advantages over the previously 
used technologies in terms of markers identified as well as costs incurred. The high-quality 
SNP list also provided acceptable genome coverage which demonstrates its applicability 
for much larger future studies. This SNP list was also annotated to provide an indication 
of function and will serve as a resource for the community in future studies. Genome wide 
marker tools will provide significant benefits for potato breeding efforts and the application 
of genomic selection will greatly enhance genetic progress.

Keywords: Solanum tuberosum, autotetraploid, SNP annotation, variant discovery, GATK, SnpEff, dry matter, 
crisp score

INTRODUCTION

Most breeding methods rely heavily on phenotypic selection for germplasm improvement with 
little importance on genotypic selection at the molecular level. Conventional breeding aims to 
combine desirable traits together from elite individuals in a step wise manner that is both 
laborious and time consuming. The resulting time frame can be 10–15 years before the commercial 
release of a new cultivar (Bradshaw and Mackay, 1994; Jansky, 2009; Slater et  al., 2014; 
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Ramakrishnan et  al., 2015). Marker-assisted selection (MAS) 
has been incorporated into the potato breeding cycle for several 
traits which has resulted in selection of individuals a few years 
earlier when compared to traditional phenotypic selection and 
is cost effective (Slater et  al., 2013). There are only a few 
examples of potato breeding programs utilizing MAS, particularly 
markers linked to disease resistance traits (Ortega and Lopez-
Vizcon, 2012; Schultz et al., 2012) and gained efficiencies when 
compared to phenotypic selection alone. Other more complex 
traits like most tuber and plant morphological traits, cooking 
characteristics and yield can be  selected for under this scheme 
(van Eck, 2007; Ramakrishnan et  al., 2015). However, due to 
their polygenic nature, it is more difficult and extremely slow 
(Hospital, 2009; Slater, 2013).

Genomic selection (GS) predicts the performance of 
individuals that have been genotyped based on a prediction 
equation that is derived from an extensively phenotyped and 
genotyped reference population (Meuwissen et al., 2001). Recent 
advances in genotyping-by-sequencing (GBS) methods using 
next generation sequencing (NGS) technologies have been able 
to deliver the necessary number of genome wide variants for 
GS at an ever-reducing cost (Davey et al., 2011). This approach 
is now extensively applied in livestock (Pryce and Daetwyler, 
2012; Wolc et  al., 2015; García-Ruiz et  al., 2016) as well as 
increasingly in plant breeding (Lin et  al., 2014; Crossa et  al., 
2017). GS requires marker saturation across the genome and 
aims to estimate the effect of all markers assuming causative 
mutations are in linkage disequilibrium (LD) with at least one 
genetic marker. Due to the marker saturation, GS can predict 
phenotypes for traits under complex polygenic control as well 
as traits under simple genetic control. Phenotypic selection in 
conventional breeding programs, particularly for complex traits 
with high environmental variation and long selection cycles 
limits genetic gain. However, the application of GS offers the 
potential to dramatically reduce the generation cycle and increase 
the rate of genetic gain (Meuwissen et  al., 2001). The potential 
of GS is now being applied to facilitate potato varietal 
development, and models have been proposed highlighting the 
benefits (Slater et  al., 2016). Several studies have developed 
genomic prediction models for important agricultural traits in 
potato (Rosyara et al., 2016; Sverrisdóttir et al., 2017; Endelman 
et  al., 2018; Stich and Van Inghelandt, 2018). Chipping quality 
and starch content prediction models were generated from 
offspring of 18 diverse breeding varieties (Sverrisdóttir et  al., 
2017), and total yield, specific gravity, and chip fry color 
(Endelman et  al., 2018) have been developed for potato.

The composition and size of the reference population is 
critical as only the genetic variation that is present will 
be  predicted, and any that is missing will not have their 
performance predicted in populations that contain the genetic 
variants (Riedelsheimer et al., 2013; Stich and Van Inghelandt, 
2018). Stich and Van Inghelandt (2018) observed a 10–15% 
increase in prediction accuracy when predicting with different 
compositions of a training population. In addition, if there 
is significant population structure in the reference population 
that is being evaluated, multiple “population specific” prediction 
equations may be required. Studies have found clear separation 

between diploid and tetraploid cultivars (Simko et  al., 2006; 
Stich et al., 2013), and weak sub populations within tetraploids 
for usage and market release date have been reported (D’hoop 
et  al., 2010). For many potato breeding programs, it is still 
unclear whether a multi-prediction equation or specific reference 
populations will be  required for each of the market types, 
and this will depend on the germplasm that each breeding 
program uses.

Among the various types of markers used, SNP markers 
are the most abundant in the genome. The generation of the 
potato genome sequence (The Potato Genome Sequencing 
Consortium, 2011) revealed the high nucleotide diversity found 
in potato, estimating a SNP every 24  bp (Uitdewilligen et  al., 
2013). This also enabled the release of several genomic, genetic, 
and phenotypic databases with potato as a focus (Hamilton 
et  al., 2011; Felcher et  al., 2012; Hirsch et  al., 2013). 
Implementation of genomics in potato improvement is still in 
the early phases of development. An initial SNP genotyping 
array was developed (SolCAP 8303 SNP Chip; Hamilton et  al., 
2011; Felcher et  al., 2012), and more recently, this has been 
extended to a 20K SNP array (Vos et  al., 2015). These arrays 
were based off sequencing data generated from six cultivars 
(Hamilton et  al., 2011) and then expanded with 83 cultivars 
(Uitdewilligen et  al., 2013) that resulted in a large resource 
of reliable SNPs.

While the SNP arrays provide useful information and are 
highly accurate in dosage calling and allow many downstream 
applications, the reducing cost of sequencing is allowing GBS 
methods to become a viable genotyping option as such systems 
provide genome-wide SNPs at a lower cost per SNP than SNP 
arrays (De Donato et al., 2013). However, SNP genotype calling 
of GBS approaches is typically more intensive and accuracy 
of dosage will be  directly linked to sequencing depth which 
has cost implications. There are several methods that can 
be  applied for GBS. A complexity reduction approach works 
by capturing a representable subset of the genome, often through 
the use of restriction enzymes (Davey et  al., 2011). Sequence 
capture methods are very reliable and easy to optimize, provided 
a reference genome is available for downstream analysis. More 
recently, an enhanced restriction-associated DNA sequencing 
(RAD-seq) approach through optimal enzyme pairing was 
developed by Jiang et  al. (2016). By applying a combination 
of EcoR1 and MspI to reduce chloroplast and rDNA sequences 
in the libraries, they could call 5,000 variants in 12 potato 
genotypes. Despite differences in methodology, both GBS and 
RAD-seq approaches operate by sequencing a set of restriction 
fragments, typically between 150 and 400  bp (Elshire et  al., 
2011). Uitdewilligen et  al. (2013) used a somewhat different 
GBS approach by fragmenting and capturing targeted specific 
DNA using probes from selected genes. Following sequencing 
of the genomic fragments, almost 130k variants within 807 
genes were characterized. The difference with such targeted 
approaches is that they rely on comprehensive genomic sequence 
data already existing, as well as known SNP targets to allow 
the design of the large number of probes. There are often 
differences in probe binding efficiencies due to regions with 
a high GC content as well as indels and probe length which 
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can also cause probe failures (Mertes et al., 2011; Uitdewilligen 
et  al., 2013). However, these necessary resources are often 
available and can be generated with modest effort and investment 
where required.

The initial development of genomic selection resources benefit 
from higher levels of SNP coverage across the genome, particularly 
for traits controlled by a large number of loci, before more 
targeted genotyping can be  designed (Malmberg et  al., 2017). 
Knowledge surrounding blocks of LD and haplotypic structure 
of the genome enables efficient imputation to be  employed to 
reduce the requirement of such dense SNP genotyping. 
Genotyping variants in tetraploid species such as potato produces 
more challenges due to a given gene being represented by up 
to four different alleles per locus per genotype. When genotyping 
variants in potato and other highly heterozygous polyploid 
species, consideration must be  given to the genotyping system 
in use and its ability to distinguish between alleles and quantify 
the allele number. When provided sufficient read depth is 
obtained, GBS can provide accurate allele dosage estimates 
(Malmberg et  al., 2017).

For plants where genome size, different levels of ploidy, 
and frequency of SNPs differ from species to species, a method 
of complexity reduction for GBS is skim GBS-transcriptomics 
(GBS-t). GBS-t can enhance sequence alignment by removing 
complex repeat regions in the genome to focus on the 
transcriptome, where the size is relatively conserved across 
species. Other benefits include the low read depth required 
per genotype for accurate imputation (c. 3 million reads for 
diploid organisms), even sampling distribution of genes across 
the genome and that all SNPs identified are found in genic 
regions (Malmberg et al., 2017). Previous studies have identified 
the vast majority (>95%) of transcripts that are expressed in 
leaf tissues (Sudheesh et  al., 2016). Futhermore, lower expense 
through automation of single leaf sampling, lower library costs 
through reaction miniaturization, and the decreasing cost of 
sequencing (Malmberg et  al., 2017) make this method broadly 
applicable and high-throughput while still producing a 
significantly larger number of variants compared to SNP chip 
assays. With mRNA, splice junctions may cause downstream 
issues during analysis; however, these issues can be  avoided 
by either aligning to a coding DNA sequence reference or 
through appropriate selection of analysis software. Previous 
work (Pembleton et  al., 2018) implemented GBS-t on cultivars 
that are outbreeding populations where pools of plants were 
genotyped and allelic frequencies were obtained. These 
frequencies enabled genomic selection for vegetative biomass 
in perennial ryegrass across multiple seasons.

Recent developments of large genomic, genetic, and 
phenotypic data sets have assisted with breeding approaches 
(Hirsch et  al., 2014) yet more advances can be  made. In this 
paper, we  implement the GBS-t approach on a collection of 
potato cultivars for marker discovery. The data set was also 
evaluated in conjunction with historical phenotypic data, to 
assess the method’s applicability to enable GS across a range 
of traits and heritabilities. This study aims to assess the GBS-t 
method and its potential to be  used in a GS potato 
breeding context.

MATERIALS AND METHODS

Plant Materials and Phenotypic Data
The germplasm collection used in this study comprised a total 
of 181 unique tetraploid potato cultivars. Cultivar names and 
market class are listed in Supplementary File 1. All phenotypic 
data associated with traits and characteristics described in this 
study were obtained from the Australian potato breeding program.

Phenotypic data were collected from trials conducted between 
2007 and 2012 at Toolangi, 169 Victoria, Australia. Specific trait 
analyses for quality traits were conducted at Knoxfield, 170 
Victoria, Australia. A minimum of two replicates per trial were 
used for all cultivars, up to a 171 maximum of 10. All field 
based and quality phenotypic data were the result of the average 
of a 172 minimum of 3  years of trialling. An initial analysis 
of the raw phenotypic data was performed and only phenotypic 
traits that had the necessary variance and where more than 
50% of cultivars had phenotypes were included in the analysis. 
Flesh color, color when boiled (base flesh color remaining post 
boiling), skin texture (using an ordinal scale with diseases recorded 
separately), eye depth, and maturity were scored visually, and 
crisp score was assessed visually after frying (using USDA chart 
to normalize year to year), while dry matter was calculated by 
weighing tubers in air and in water. All the historic phenotypic 
data, where necessary, was converted from a descriptive to a 
numerical scale. Conversion of phenotypic data to numerical 
scales, representation of the variance, and description of numerical 
phenotypes are provided in Supplementary File 2.

mRNA Extraction and Sequencing
Tubers from each of the 181 potato cultivars were grown in 
a pine bark-based potting mix with appropriate nutrients in 
6-inch pots under glasshouse conditions. In all cases, the sixth 
leaf was sampled for an automated 96 well format mRNA 
extraction. A Dynabead extraction and library preparation 
method was performed as per Malmberg et al. (2017) including 
the Sure Select (Agilent) library prep system and their barcodes, 
modified from Kumar et  al. (2012). Library fragment size and 
quality were analyzed using a TapeStation 2200 platform (Agilent 
Technologies) (average fragment size c. 275  bp) and pooled 
and quantified using the Qubit 2.0 Fluorometer (Thermo Fisher). 
Sequencing data were generated using an Illumina HiSeq 3,000 
2 × 150 paired end reads, aiming for 3 million reads per 
sample. All sequence data are deposited in the SRA database 
under the BioProject id of SUB4142099.

Bioinformatic SNP Discovery, Filtering, 
and Annotation
All data were processed with a single bioinformatic pipeline 
for SNP discovery. Initial sequence data fastq files were processed 
through a custom perl script for read quality trimming (minimum 
read quality score of 20 required) and adaptor removal using 
cutadapt v1.9 (Martin, 2011). Alignment of the trimmed sequence 
data to the reference Solanum tuberosum Group Phureja  
DM pseudomolecule (v4.03) assembly (The Potato Genome 
Sequencing Consortium, 2011; Sharma et al., 2013) was performed 
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using the Spliced Transcripts Alignment to a Reference (STAR) 
software v2.5.3a using default settings (Dobin and Gingeras, 
2015). Using Picard v2.1.0 (http://broadinstitute.github.io/picard) 
the resulting sam files were cleaned using cleansam for soft-
clipping beyond-end-of-reference alignments and setting MAPQ 
scores to 0 for reads that were unmapped. Files were then 
converted to bam files with Picard v2.1.01.

Bam files were initially processed with Picard v2.1.0 to mark 
and remove duplicate reads. The Genome Analysis Toolkit 
(GATK; McKenna et  al., 2010) was used for base-score 
recalibration and variant calling using the following parameters, 
all of which needed to be  met: quality of mapped read >30; 
base quality >20; more than five reads covering the base in 
every genotype; more than four reads covering the alternate 
base (relative to the reference used) in at least one genotype; 
and a minimum alternate allele fraction of 0.4. SNP calls 
(minimum two alternate bases at dp 5 to call heterozygote 
sample) and genotype assignment (AAAA, AAAB, AABB, ABBB, 
or BBBB) were done using the HaplotypeCaller function in GATK.

The data were further filtered, and the extraction of all 
genotypes was processed through R (R Core Team, 2014). 
Variants were filtered, discarding variants that had 50% or 
more missing data and removing variants that had a minor 
allele frequency (MAF) of 5% or less. The resulting SNP data 
set was annotated using SnpEff (Cingolani et  al., 2012). The 
SnpEff binary database was generated using the whole genome 
reference sequence and an edited version of the PGSC Solanum 
tubersosum annotation file v4.03 due to overlapping entries.

Missing genotype data were imputed using a custom in-house 
linkage disequilibrium k-nearest neighbor imputation method 
as described in Pembleton et  al. (2018), originally reported in 
(Money et  al., 2015), where genotype classes were converted to 
reference allele frequency (e.g., AABB  =  0.5). Parameters for 
imputation were 11 nearest neighbors (k) and 17 closest loci, 
and these values were previously found to be  highly accurate 
for more diverse outcrossing populations (Pembleton et al., 2018).

Data Analysis, Genetic Relationships, 
and Genomic Selection
Nei’s pairwise genetic distance as a representation of genetic 
relatedness across the population was calculated using StAMPP 
(Pembleton et  al., 2013). Subsequently, a neighbor joining 
dendrogram was generated and displayed in DARwin v6.0.5 
(Perrier and Jacquemoud-Collet, 2006). SNP distribution and 
gene density across the genome were assessed by analyzing 
filtered SNP density and coverage of genes on a 10  KB bin 
basis across the genome using vcftools (Danecek et  al., 2011).

Genomic prediction accuracy was explored with 5-fold cross 
validation approach where the population was split into five 
groups. Each group was then genomically predicted using the 
remaining four groups as the reference population. Genomic 
predictions were calculated using the BayesA and BayesB models 
as proposed by Meuwissen et al. (2001) and implemented with 
the R package BGLR (Perez and de los Campos, 2014).

1 http://broadinstitute.github.io/picard
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probability π that SNP k has zero effect. The variance from each 
SNP, sv

2  was sampled from an inverted chi-squared distribution 
using the default degrees of freedom and the scaling parameter 
determined by BGLR from a trait heritability as listed in Table 2. 
Marker effects were calculated with 12,000 iterations, discarding 
the first 1,000 as burn-in. For the BayesB model, the prior 
probability that the SNP has a non-zero effect (probIn) was set 
at 0.1, 0.05, 0.01, and 0.005. The proportions were arbitrarily 
selected, but covered a range of variation that could evaluate the 
approach potential. The count parameter was set to 10,000. 
Prediction accuracy was calculated for each k-fold as the correlation 
between the predicted genomic estimated breeding values (GEBVs) 
and observed phenotypic values. A mean prediction accuracy 
and standard error were then calculated across the five-fold 
accuracies. Bias in genomic prediction was also calculated by 
regressing the observed phenotypic value on the all predicted 
GEBVs and calculating the slope. A slope coefficient of one was 
taken as representing no bias, while coefficients greater than one 
represent underprediction.

To further evaluate marker-trait linkages, the same traits 
in the above section were evaluated for marker effects. Effects 
were squared for better discrepancy between markers. Data 
for estimating marker effects were processed using BGLR, and 
Manhattan plots were generated in R for eye depth and maturity 
(Figure 4). Final estimated marker effects were then exported 
and used to generate Manhattan plots with the R package 
CMplot (LiLin-Yin, 2018).

RESULTS

SNP Discovery and Genetic Diversity 
in Transcriptome Aligned Data
An average of 3,108,151 reads per sample was generated from 
the 181 cultivars, with >79% of all cultivars having over 1M 
reads and over 89% of the high-quality reads aligned to the 
reference genome. A total of 3,971,538 SNPs were initially 
discovered, then following the application of stringent read 
depth, missing data and minor allele frequency filters, 183,848 
high confidence SNPs remained (Supplementary File 3). The 
high confidence SNPs were evenly distributed amongst the 
chromosomes with at least 10,000 SNPs present on each. 
However, SNP number per chromosome was not always 
proportional to chromosome size. This was demonstrated by 
chromosome 11, the smallest chromosome, which had the third 
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largest number of SNPs (Table 1). Evaluation of genomic 
distribution of SNPs showed that SNP density is higher toward 
the telomeric ends of the chromosome and much lower in 
the regions of predicted centromeres (Figure 1).

To obtain genomic variant annotations (defined as assignment 
of variant function) and ascertain potential functional effects 
for the complete SNP set identified, all 183,848 high confidence 
SNPs were annotated using SnpEff to provide the most extensive 
resource possible (Figure 2). The largest proportion of the 
SNPs was categorized as synonymous variants (34.42%) with 
the second largest category being missense variants (22.22%). 
Variants that were located in UTRs, upstream and downstream 
regions accounted for 33.98%. A proportion of the SNPs were 
categorized as intergenic (7.78%), and these are believed to 
correspond to expressing repeat elements and distant UTRs, 
as well as potential errors in the initial gene prediction models.

The potato cultivars that were sequenced more than once 
and other highly related cultivars showed close relatedness 
(average distance for complete data 0.3, maximum 0.45, for 
replicate samples 0.08–0.12). Small clades formed for some 
usage groups such as French fry, fresh and crisping, for example, 
the russet samples have a slightly reduced distance (0.26) when 
compared to the average distance for the complete data. Overall, 
with the exception of the russet varieties that group together 
and have the same processing purpose, a lack of population 
structure is apparent between the 181 potato cultivars, 
demonstrating broad genetic diversity in the samples chosen. 
It was also apparent that usage is not a good demarcation of 
population structure (Figure 3).

Application of SNP Data Into  
Genomic Selection
From the complete sample data set, a total of 169 individuals 
had phenotypic information generated from the historic 
breeding program activities (Slater, 2016) and were 
subsequently used for the development of genomic selection 
prediction equations.

Phenotypic data were available for a range of traits, from 
highly complex polygenic to known single gene genetic control. 
Consequently, BayesA and BayesB genomic prediction selection 
models were explored. BayesA accuracies of 0.81, 0.77, 0.46/0.45, 
0.49/0.55, 0.42/0.42, 0.37/0.37, and 0.23 were achieved for flesh 
color, color when boiled, skin texture, dry matter, eye depth, 
crisp score, and maturity, respectively (Table 2). For the BayesB 
models, the analysis was repeated four times with varying levels 
of markers permitted to be  responsible for the trait (Table 2). 
In the majority of instances, the prediction accuracies for BayesA 
were inferior to the prediction accuracies that were generated 
by one of the BayesB thresholds. However, the gains achieved 
by applying the BayesB approach were minor, for example, the 
maximum prediction accuracy for flesh color using BayesA was 
0.81, while BayesB with a probIn value of 0.01 representing 
the proportion of markers explaining trait was 0.80 (Table 2). 
Moderate underprediction bias was observed for eye depth 
(1.14), crisp score (1.17), color when boiled (1.18), skin texture 
(1.22), flesh color (1.24), and dry matter (1.39), while minor 
overprediction was observed for maturity (0.94).

Estimation of Marker Effects
Varying magnitudes of marker effects were observed across 
chromosomes. For the trait eye depth (Figure 4A), the locus 
having the largest effect was found on chromosome 11; however, 
most chromosomes had markers that appeared to be contributing 
to the trait. For maturity (Figure 4B), the largest effect was 
seen on chromosome 5, but markers varying in effect and 
contributing to the trait can be  seen spread across the entire 
genome. Marker effect plots for additional traits were generated 
and are provided in Supplementary File 4.

DISCUSSION

The difficulties of breeding with autotetraploids are well known 
but not impossible to overcome. Phenotypic selection has long 
been the chosen method of breeding for potato when 
improvement to agronomic and quality traits has been targeted. 
With the release of the potato genome sequence (The Potato 
Genome Sequencing Consortium, 2011), reducing sequencing 
costs and an increase in computational power and analysis 
tools, the extensive application of GS to potato will become 
the modern era of breeding. By employing a tailored GBS 
method for potato, we  were able to identify a high number 
of SNPs in a broadly applicable germplasm collection to enable 
foundation genomic resources in this area. It should be  noted 
that the computational pipeline used can have dramatic effects 
on the number and accuracy or SNPs identified and should 
be  designed with as much care and thought as the genotyping 
assay (Clevenger et  al., 2015; Money et  al., 2015).

This study confirmed the high sequence diversity of potato 
previously reported (Hamilton et  al., 2011; Uitdewilligen et  al., 
2013). This approach has been exemplified as effective in both 
terms of data and cost with large numbers of SNPs being generated 
from only c. 3 million sequence reads per sample. SNPs were 
identified in 53,669 genes relating to 95.5% of genes identified 

TABLE 1 | Distribution of filtered SNPs called from RNA-seq data across 
chromosomes. Gene counts exclude annotations from unaligned contigs in the 
reference (Chromosome 00).

Chromosome Length (bp) Genes per 
chromosome

Number of 
SNPs detected

SNPs per 
gene

1 88,663,952 4,692 13,446 2.9
2 48,614,681 3,214 12,771 4
3 62,290,286 3,601 10,468 2.9
4 72,208,621 3,441 13,921 4
5 52,070,158 2,642 13,437 5.1
6 59,532,096 3,295 14,444 4.4
7 56,760,843 2,711 15,455 5.7
8 56,938,457 2,698 14,963 5.5
9 61,540,751 3,012 15,236 5.1
10 59,756,223 2,847 18,552 6.5
11 45,475,667 2,423 17,689 7.3
12 61,165,649 2,906 23,466 8.1
Total 37,482 183,848
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in the potato genome, which is in agreement with previous studies 
(Sudheesh et  al., 2016). The overall variant frequency was found 
to be  close to 1  in 20  bp, similar to what was reported by 
Uitdewilligen et  al. (2013) calculated by the number of bases in 
the transcribed portion of the genome (c. 81Mbp) divided by 
the complete variant list (c 3.9 M). The highest degree of nucleotide 
diversity was exhibited on chromosomes 5 and 11. This is 
unsurprising as chromosomes 5 and 11 contain large clusters of 
introgressed resistance genes from wild species. In contrast, the 
lowest diversity was exhibited on chromosome 10. All of these 
results are in agreement with Uitdewilligen et  al. (2013). This 
can potentially be  explained by the large number of conserved 
genes located near the skin color, tuber shape, and eye depth 
QTLs that will have been under strong selection in the germplasm 
evaluated (van Eck et  al., 1994, 1995; Li et  al., 2005).

The samples used in this study were selected for its diversity 
and applicability to the potato industries within Australia and 
globally. There was an apparent lack of population structure 
within our germplasm, especially when compared to other studies 
(Hamilton et  al., 2011; Uitdewilligen et  al., 2013; Boudhrioua 
et al., 2017). However, by using a higher number of SNP markers 
and a larger sample number, a more accurate description of 
the true genetic diversity of the population can be  obtained. 
While acknowledging the value of the previously developed SNP 
chips (Felcher et  al., 2012; Vos et  al., 2015), the unavoidable 
ascertainment bias and cohort of uninformative SNPs reduces 
the applicability to large data sets (Hirsch et  al., 2013). This 
study illustrates the benefit of using the broadly applicable GBS-t 
method for SNP discovery on a multi usage collection 

representative of the major markets, including allele dosage calls 
at a much lower cost per sample and per SNP than the genotyping 
arrays. The use of arrays can lead to strong ascertainment bias, 
especially when an array’s markers were discovered from a small 
number of samples or samples that do not represent the wider 
population. General ascertainment bias will always arise from 
SNP arrays even with a broader discovery panel as genotyping 
in this manner does not enable ongoing discovery and inclusion 
of new variants (Albrechtsen et al., 2010; Lachance and Tishkoff, 
2013). Additionally, SNP arrays used in potato and other crop 
species have resulted in large amounts of unusable data (~50%) 
resulting from missing data, low SNP calling, errors during 
SNP calling of polyploids, and non-variant SNPs in the populations 
under investigation. For example, of the 8,303 SNPs on the 
initial SolCAP array, tetraploid allele dosage frequencies could 
only be determined with 3,763 SNPs for 250 potato lines (Hirsch 
et  al., 2013) and similarly, for the 20  K SNP array, genotypes 
were only successfully called for just over 15  K SNPs from a 
diverse set of 569 potato genotypes (Vos et  al., 2015).

The GBS-t approach identifies large numbers of variants 
that do require strict filtering in order to identify those of 
high quality. This results in a large amount of unusable data. 
However, the SNP density in potato is sufficiently high so that 
less than 5% of SNPS can pass these filters and there are still 
c. 184  K remaining. This volume of variants is more than 
sufficient for GS as this study has investigated. An additional 
issue of the GBS-t method in autotetraploid samples would 
be  accurate allele dosage detection and allele specific gene 
expression (ASE) causing incorrect genotypes which could have 

FIGURE 1 | Heatmap of SNP density across the  potato genome. SNP density is shown per chromosome in 100 KB blocks. The color scale indicates the density 
of markers in that segment of the chromosome (blue, low density; red, high density). SNP density is shown to increase toward the telomeric ends of the 
chromosomes where gene density is higher. Dark blue regions are indicative of centromeric regions.
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implications on genotype accuracy. In this study, cost effectiveness 
was a consideration, which limited the sequencing depth 
performed. As a result, absolute accuracy in genotypes, particularly 
in the heterozygous class, cannot be evaluated. For this, tetraploids 
and other polyploids require more sequencing depth which in 
turn, increases the cost per sample. However, the GBS-t approach 
was being validated with GS to asses its applicability in routine 
genotyping in breeding programs. Previous studies have identified 
that the modest error in genotyping c. 10% has limited effect 
on GS accuracy (Pérez-Enciso et  al., 2015). While the allelic 
context of potato is more difficult than a standard diploid, the 
GBS-t method has been successfully applied to determine allelic 
frequencies in outbreeding perennial ryegrass cultivars across 
multiple years which is a more complex scenario than is being 
evaluated in this study (Pembleton et  al., 2018).

The genomic prediction accuracy for important agricultural 
traits across the population was investigated. The highest genomic 
prediction accuracy was achieved for flesh color and the lowest 
for maturity. The prediction accuracy for traits typically followed 

the heritability of the traits (with maturity as an extreme 
exception). This trend was expected given a higher proportion 
of the observed phenotype is explained by genetics, rather 
than environment in those traits with high heritability, such 
as flesh color. While GS is optimal for highly complex traits, 
studies have shown that it is still highly effective for traits 
under simpler control (Daetwyler et  al., 2010; Hayes et  al., 
2010). Prediction bias was observed in the traits evaluated in 
this study, ranging from minor over-prediction for maturity 
to moderate underprediction for dry matter. Bias in predictions 
can have negative effects on selection if plant GEBVs are 
compared with other plant breeding values that were obtained 
via different methods; however, the method of GS does not 
typically incorporate such values, and it is proposed that all 
breeding values be  genomically predicted (Lin et  al., 2016).

The small population size of 169 cultivars in this study likely 
contributed to the lower prediction accuracy of those highly 
complex polygenic traits with lower heritability, such as yield. 
Traits such as these would require a larger reference population 

FIGURE 2 | Annotation of 183,848 high-quality transcript SNPs using SnpEff showing the classification of SNPs based on effects. The category titled “Other” 
is comprised of the classes: non-coding transcript exon variant, splice acceptor variant, splice donor variant, splice region variant, start lost, stop gained, and 
stop lost.
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to accurately estimate the individual effects of the large number 
of loci controlling the trait. This is also supported by the 
underprediction bias observed for these traits, indicating the 
genetic effect was not fully estimated, likely due to shrinkage, 
given the small population size. It is recommended that further 

studies aimed at developing prediction equations for these traits 
utilize a much larger reference population. Alternative strategies 
would be  to either include a more diverse selection of cultivars 
in the population to make a more broadly applicable prediction 
equation or to focus on restricted specific genetics within specific 

FIGURE 3 | Unrooted neighbor joining dendrogram of the genetic dissimilarity between all samples. Color coding indicates usage type (light blue – French fry;  
red – crisping; dark blue – fresh).

TABLE 2 | GS prediction accuracies for seven phenotypes (flesh color, color when boiled, skin texture, dry matter, eye depth, crisp score, and maturity). For each trait, 
the following is shown: heritability (h2), maximum theoretical prediction accuracy of the model (Max. potential prediction), accuracy achieved using the BayesA model 
(BayesA), and the accuracy achieved when using the BayesB model (BayesB) at four settings, differing the probIn at 0.1, 0.05, 0.01, and 0.005.

Trait   h 2 a  Max. potential 
predictionb

Bayes A Bayes B

0.1 0.05 0.01 0.005

Flesh color 0.8 0.89 0.81 (0.012) 0.80 (0.018) 0.81 (0.019) 0.80 (0.019) 0.81 (0.016)
Color when boiled 0.69 0.83 0.77 (0.014) 0.75 (0.021) 0.72 (0.037) 0.75 (0.022) 0.73 (0.027)
Skin texture 0.5 0.71 0.46 (0.062) 0.50 (0.055) 0.52 (0.054) 0.48 (0.033) 0.56 (0.053)

0.75 0.87 0.45 (0.064) 0.49 (0.036) 0.51 (0.07) 0.48 (0.029) 0.5 (0.035)
Dry matter 0.5 0.71 0.49 (0.042) 0.48 (0.083) 0.49 (0.075) 0.49 (0.075) 0.54 (0.071)

0.74 0.86 0.55 (0.071) 0.48 (0.071) 0.47 (0.083) 0.48 (0.072) 0.47 (0.069)
Eye depth 0.5 0.71 0.42 (0.055) 0.44 (0.095) 0.47 (0.091) 0.50 (0.092) 0.54 (0.099)

0.75 0.87 0.42 (0.055) 0.39 (0.092) 0.39 (0.093) 0.38 (0.094) 0.37 (0.098)
Crisp score 0.59 0.77 0.37 (0.074) 0.46 (0.084) 0.45 (0.078) 0.45 (0.076) 0.46 (0.080)

0.75 0.87 0.37 (0.078) 0.69 (0.093) 0.69 (0.092) 0.67 (0.089) 0.67 (0.092)
Maturity 0.83 0.91 0.23 (0.061) 0.27 (0.080) 0.29 (0.057) 0.27 (0.067) 0.27 (0.083)

aHeritabilities listed were not calculated from the described phenotypic data set, but are estimates from previous sources (Slater et al., 2014) or have been estimated by correlated 
traits. Where there are multiple parameters or uncertainty regarding the trait’s heritability, multiple options have been included to allow for different scenarios.
bThe maximum potential prediction was calculated by taking the square root of the heritability.
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breeding programs for specific targets. It has been shown that 
populations with a higher degree of genetic variance have displayed 
better GS accuracies (Heslot et  al., 2012; Crossa et  al., 2014). It 
should also be  noted that the material available for this study 
is advanced cultivars and has already undergone rigorous selection, 
leading to a reduced spread of some phenotypes. For example, 
commercial cultivars will have to pass a certain threshold for 
some common traits in all usage classes, for example, yield and 
eye depth (71% of all samples with shallow or shallow-medium 
eye depth). This “bottlenecking” of phenotypes requires less genetic 
variation for accurate prediction especially when selecting within 
a population. However, the restricted variance in the population 
depends upon the heritability of the trait and the proposed degree 
of variance that is controlling the phenotype. Despite the heritability 
of these traits and number of markers used in prediction, the 
lack of genetic variance in this population may have influenced 
the predictive ability of the models used in this study.

From the evaluation of marker effects, some loci were 
identified as having larger effects and were concordant with 
the identified loci previously published. This was shown for 
traits including maturity and eye depth, where the major locus 
controlling eye depth has been located on chromosome 10 
(Li et  al., 2005) and the QTL controlling maturity is located 
on chromosome 5 (Visker et  al., 2003; Gebhardt, 2007; 
Kloosterman et  al., 2013). The region controlling eye depth 
and an extensive gene list was proposed by Li et  al. (2005), 
and the markers of the highest effect identified in this study 
fall within this region but in a more refined area. However, 
a much broader range of effects on other chromosomes was 
identified (Figure 4A). It is highly likely that the eye depth 
locus on chromosome 10 has been heavily selected for in all 
cultivars and therefore does not have the full spread of variation, 
hence reducing the predicted effect. This shows the benefit of 
a genome wide association study to understand comprehensively 
genetic control as well as giving confidence approach taken 
in this study. The limitation of QTL mapping has historically 
underrepresented many regions of small effect which have been 
already identified (Fikere et  al., 2018).

In conclusion, this study validates the application of GBS-t 
as a method for genome wide genotyping in potato with some 
advantages over other commonly used genotyping techniques. 
The GBS-t method has also delivered downstream benefits 
establishing a comprehensive genomic resource of annotated 
variants for the community. Functional genomic studies on 

any trait of interest would also benefit from this approach as 
the resulting data set enables a more complete characterization 
of the regions of effect, as well as providing gene expression 
information. It also enables regions of small effect to be identified 
in a reduced time frame compared to other classical methods. 
The results will assist in the application of GS in breeding 
programs for tetraploid potato which enables greater genetic 
gain per unit time that has been previously described in Slater 
et  al. (2016) as well as a more inclusive understanding of the 
genetic control of certain traits.
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