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Unmanned aerial vehicles have an immense capacity for remote imaging of plants in

agronomic field research trials. Traits extracted from the plots can explain development

of the plants coverage, growth, flowering status, and related phenomenon. An important

prerequisite step to obtain such information is to find the exact position of plots to extract

them from an orthomosaic image. Extraction of plots using tools which assume a uniform

spacing is often erroneous because the plots may neither be perfectly aligned nor equally

distributed in a field. A novel approach is proposed which uses image-based optimization

algorithm to find the alignment of plots. The method begins with a uniformly spaced

grid of plots which is iteratively aligned with regions of high vegetation index, i.e., the

underlying plots. The approach is validated and tested on two different orthomosaic

images of fields containing wheat plots with simulated and real alignment problems,

respectively. The result of alignment is compared to manually located ground truth

position of plots and the errors are quantitatively analyzed. The effectiveness of the

proposed method is confirmed in accurately estimating the phenotypic trait of canopy

coverage compared to the common methods of extraction from uniform grids or

trimmed grids. The software developed in this study is available from SourceForge,

https://sourceforge.net/projects/phenalysis/.

Keywords: plot extraction, precision phenotyping, aerial image analysis, remote sensing, unmanned aerial

systems

1. INTRODUCTION

The United Nations estimates world population to reach 9.8 billion in 2050 (United Nations, 2017).
To meet the growing demand of food with limited resources, production needs to increase by
70%, most of which relates to the cereals (Alexandratos and Bruinsma, 2012). Efforts to identify
cultivation varieties which can perform under extreme climatic conditions have been accelerated by
breeding programs that aim to bring resilience to drought, heat and salinity in a plant species (Wang
et al., 2003; Tricker et al., 2018). Breeding is carried out through recurring cycles of “crossing,”
“selection,” and “elimination” of varieties grown in different environmental conditions over several
generations. In general, hundreds of varieties may be sown in field plots (also known as micro-
plots or research plots) from which a few superior varieties are selected for successive evaluation
cycles. Between sowing and harvest, breeders scout the field going from plot to plot and visually
assign scores based on qualitative and quantitative traits of plants (e.g., height, vigor, flowering, leaf
area, growth stage) for ranking at multiple stages of development. Amajor drawback is that manual
assessment is labor intensive, subjective, and prone to human error.
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Agricultural machinery has brought significant automation to
farming activities. Today, mechanized seeders can sow varieties
at a prescribed rate in uniformly spaced single row or multi-row
plots in a field (Unruh, 2015). Subsequently, combined harvesters
separately thresh each plot in sequence to independently record
the varietal yield from each plot (Argetsinger et al., 2010).
Driven by automation, sensor-based phenotyping platforms
are emerging as an alternative to manual field phenotyping.
Unmanned aerial vehicle (UAV), in particular, are now being
used to acquires images of field plots in an efficient and non-
invasive manner. Using photogrammetry software, aerial images
are stitched together to generate an orthomosaic image which
gives a holistic view of all field plots.

Delineation of field plots from the orthomosaic image is
a preliminary step for plot-level analysis of attributes. The
number of seedlings emerging from the seeds planted per plot
is important for early intervention and management (Sankaran
et al., 2015). Estimate of plot coverage is widely considered as a
performance trait of developing plants (Duan et al., 2017). The
number of flowers or fruits per plot is an indirect estimator of
prospective yield (Xu et al., 2018). In general, many biophysical
properties can be associated by correlation to vegetation indices
derived from the plots (Lelong et al., 2008; Di Gennaro et al.,
2017). The accuracy of such tasks is dependent on accurate
delineation of field plots from an orthomosaic image. However,
several issues hinder the extraction using primitive information
such as plot size and spacing. Practically, the following issue(s)
may arise:

1. Plots sown away due to their placement along the track of
mechanical seeder.

2. Plots appear in ambiguous location due to partial emergence
of seedlings.

3. Plots not aligned with the sown position due to geo-
referencing error of the orthomosaic.

Methods to extract plots from aerial images range in manual,
semi-automatic, or automatic. The manual approach is to mark
polygonal regions, which can be particulary suitable for arbitrary
shaped canopies (Virlet et al., 2014). However, the process of
marking of position or sequence of plots can be tedious as well
as erroneous. An automatic approach to delineate the extents of
a plot is by classifying image pixels into “plant” and “non-plant”
categories (Recio et al., 2013; Haghighattalab et al., 2016). Then,

FIGURE 1 | Aligning a grid of cells with an aerial view of an agronomic field trial. (A) An irregularly spaced range of plots planted in single rows. (B) A regularly spaced

range of cells in gross misalignment with plots. (C) The ground truth positioning of cells in alignment with actual plot location.

the minimum bounding box around each isolated cluster of plant
pixels is regarded as the plot boundary. However, such methods
assume ideal segregation between plots, failing which multiple
plots may be seen as a single plot.

A semi-automatic approach is to mark the extent of a trial
such that it can be split into equally sized plots (Deery et al.,
2016; Duan et al., 2017). The user manually marks the bounding
corners of a trial which is automatically divided into a grid of cells
based on the number of rows and columns, and reduced margin
to remove the alleyway. However, if the plots are non-uniformly
spaced, delineation will be inaccurate because a uniformly spaced
grid will not align with such plots as shown in Figure 1. A
commonworkaround is to limit the plot bounds by clipping them
to a smaller, central portion for analysis. As a consequence, the
user is deprived of the full distribution of attributes obtainable
from whole plots.

Precise location of plots is partially dependent on accurate
geo-referencing of an orthomosaic. Theoretically, if a mosaic
is perfectly geo-registered, plots can be extracted based on
the map coordinates prescribed in the sowing plan (Hearst
and Cherkauer, 2015). Ground control point (GCP) objects
are commonly used to geo-reference imagery and enable plot
extraction with sufficient accuracy. However, use of GCP only
mitigates the global image referencing error. It is important to
note that recovery of irregular space variation between plots is
not addressable through such methods.

In this paper, we present a semi-automatic method for
accurate extraction of plots from an aerial orthomosaic image.
The method assumes that a cellular grid based on the number
of plots in rows and columns has been coarsely laid over the
image. This assumption is practically feasible using information
which is readily available from a trial design as modern sowing
machines can make use of GPS based plot locations. The position
of grid cells is then automatically optimized such that each
cell accurately aligns with the underlying plots in the image.
As will be demonstrated through experiments, the method is
highly suitable for delineation of irregularly spaced plots in
a field.

The rest of this paper is organized as follows. In section 2 we
describe the field trials on which aerial images were taken and
present the plot alignment algorithm proposed in this paper. In
section 3 we present the results of validation and testing of the
algorithm on images of the field trials. We end with a discussion
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FIGURE 2 | RGB orthomosaic image of the trial sites used for (A) validation, and (B) testing of the proposed method. Rectangular region signifies an approximate

extent of the trials under consideration of this study.

of results and suggestions for future work in section 4 and a
statement of conclusions in section 5.

2. MATERIALS AND METHODS

2.1. Field Trials
The images used in this exercise were taken of two separate field
trials which are shown in Figure 2.

Our validation image is of a trial conducted to observe the
differential growth response of wheat to fertilizer treatment. A set
of ten contrasting varieties (Drysdale, Excalibur, Gladius, Gregory,
Kukri, Mace, Magenta, RAC875, Scout, Spitfire) of spring wheat
(Triticum aestivum L.) in six replicates were laid out in a 5×12
randomized split-block design of 60 plots. Additional plots, not
included in the trial were added at either end of the rows to
attenuate edge effects on the border plots. The nominal plot
dimensions were 1.2 × 4 m, comprising 6 rows each with an
inter-row spacing of 0.2 m. Three replicates of each variety were
selected for treatment, based on a top dressing of 16:8:16 N-
P2O5-K2O applied 35 days after sowing and a top dressing of
Urea applied 62 days after sowing. The other three replicates
of each variety received no fertilizer treatment and served as
controls. The experimental site was located in Mallala, South
Australia (latitude = –34.457062, longitude = 138.481487). The
trial was sown on July 8, 2016 and the aerial images were
acquired 73 days after sowing. This field trial was best suited
for validation since its plots had distinct placement (Figure 2A)
allowing for simulated experiments of plot alignment with a
rigorous evaluation of parameters.

Our test image is of a trial targeted at phenotyping of three
different crosses of wheat for breeding. For each cross, 80 double

haploid (DH) lines were planted unreplicated, along with 24
check varieties of soft and hard wheat, replicated twice. The DH
lines of each cross was grown in a block of 4 ranges and check
varieties were randomized within the block. Further to increase
the disease pressure, a highly susceptible line (Morocco) was
repeated regularly in each range. Germplasm entries were planted
in a 48×12 fully randomized layout of 576 single-row plots of
size 0.3 × 5 m each. The experimental site was located between
Mallala and Balaklava, South Australia (latitude = 34.301192,
longitude = 138.482500). The trial was sown on May 25, 2016
and the aerial images were captured 72 days after sowing. This
field trial was ideally suited for testing the alignment algorithm
because its plots were inherently misaligned due to variability in
sowing position (Figure 2B).

2.2. Aerial Image Acquisition and
Processing
Aerial images were collected by RX100 MIII Digital Compact
camera (Sony Corp., Japan) mounted on a 3DR Solo Quadcopter
drone (3D Robotics Inc., USA). Flight mission was planned
using ground control station software, Mission Pilot (ArduPilot).
The UAV followed a path directed by the controller to cover
the geographical extent of a sites. The camera acquired 20.1
megapixel images at 2 second intervals from a constant
height of 30 meters, maintaining an image-overlap of more
than 80%. Radiometric calibration was performed using a
standard reflectance panel (MicaSense Inc., USA) which
was photographed before commencement of a flight. The
captured images were stored in compressed JPEG format.
A photogrammetry software, Pix4Dmapper v4.0 (Pix4D,
Switzerland) was employed to process raw aerial images into an
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FIGURE 3 | Illustration of interactive grid manipulation functions (top to bottom) offered in the graphical user interface. (A) Scale cells to adjust to the plot size (B) Shift

margin between cells to remove alleyways (C) Rotate cells to align with the orientation of trial (D) Translate cells to position over the plots.

orthomosaic image. The orthomosaic images were generated
at a resolution of 0.8 cm per pixel and stored in georeferenced
TIFF format.

A graphical user interface was developed in MATLAB R2018b
(Mathworks Inc., USA) for laying out a grid over the orthomosaic
image. The tool enabled interactive placement of a grid of
cells over a field image before proceeding with the automatic
alignment function, which aligned each cell so as to correspond
to an individual plot in the field. The following two dimensional
geometric transformations are supported for placement of
the grid:

• Translation: Displace the grid position.
• Rotation: Orient the grid at an angle.
• Scaling: Resize the grid to given plot dimensions.
• Shifting: Modify the grid cells to match plot spacing.

The specification of a grid may be achieved using the above
functions, in any order, combination and as many times
as necessary, as exemplified in Figure 3. In addition to the
grid layout, a cell sequence corresponding to the research
trial can also be specified. The position and attribute(s) of
the grid can be exported in the shapefile format for use in
external software.

2.3. Grid Alignment Function
We formulate a cost function to find the optimal alignment of a
grid of rectangular cells, where the size, shape and orientation of
the cells is fixed, whereas their relative distance varies. Consider
a grid G = {ηpq} of P × Q cells which represent the plots, where
P is the number of rows (P ≥ 1) and Q is the number of columns
(Q ≥ 1). A cell ηpq is characterized by its fixed size, Wpq × Hpq,
corresponding to the width (Wpq > 0) and height (Hpq > 0) of
the plot, and its position (upq, vpq), corresponding to the spatial
coordinates of the center of the plot. The grid is located in a
finite discrete scalar field S : RU×V → R (as shown in Figure 4A)
such as a vegetation index signifying the level of greenness on a
numeric scale.

The von Neumann neighborhood of cell ηpq in the grid can
be represented by a set of index pairs corresponding to the cell’s
immediate neighbors in rows/columns. The index pair

(

ṕ, q́
)

of a
neighboring cell thus satisfies

(

ṕ, q́
)

∈ {(p− 1, q), (p, q− 1), (p+ 1, q), (p, q+ 1)} (1)

where indices ṕ and q́ must satisfy the inequalities 1 ≤ ṕ ≤ P
and 1 ≤ q́ ≤ Q to be valid neighbors. Therefore, a cell can be
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A B

FIGURE 4 | Characterization of grid cells in a discrete scalar field S ∈ R
U×V . (A) A plot is characterized by a cell ηpq of size Wpq × Hpq centered at (upq, vpq), and its

neighbor ηṕq́. (B) Displacement of cells ηpq and ηṕq́ by parameters (ûpq, v̂pq) and (ûṕq́, v̂ṕq́) resulted in overlap.

neighbor to 2, 3, or 4 cells depending on its location (corner, side
or internal to the grid).

Our objective is to find the optimal displacement θ̂pq =

(δ̂upq, δ̂
v
pq) with which to move a grid cell ηpq from its initial

position at (upq, vpq) to its optimal position (ûpq = upq + δupq,

vpq = vpq + δ̂vpq), without change in lateral dimensions. The
optimal displacement vector is a member of the discrete set

2 =
{

θpq =
(

δupq, δ
v
pq

)

: |δupq| ≤ 1u
pq and |δvpq| ≤ 1v

pq

}

(2)

where 1u
pq and 1v

pq are the respective bounds on the orthogonal
components of the 2D vector displacement.

Expressing an arbitrary displacement in a subset of2 as θpq =

(δupq, δ
v
pq) = (w+ δ̂upq, h+ δ̂vpq), we define the intra-cell energy dpq,

in the scalar field S, as

dpq =
∑

−
Wpq
2 ≤w≤

Wpq
2

−
Hpq
2 ≤h≤

Hpq
2

S(w+ upq + δ̂upq, h+ vpq + δ̂vpq) (3)

which is the energy of S accumulated within the bounds of
the cell ηpq, hence termed as the intra-cell energy. The intra-
cell energy signifies the level of vegetation inside a cell at a
certain location.

In contrast to the intra-cell energy, consider the mutually
shared energy resulting from the interaction of cell ηpq with
its neighbors, ηṕq́, as illustrated in Figure 4B. Following an
arbitrary displacement of cells ηpq and ηṕq́, the coordinates of
their mutually overlapping region are given by

(x1, y1) =

(

max

{

upq + δ̂upq −
Wpq

2
, uṕq́ + δ̂u

ṕq́
−

Wṕq́

2

}

,

max

{

vpq + δ̂vpq −
Hpq

2
, vṕq́ + δ̂v

ṕq́
−

Hṕq́

2

})

(4)

(x2, y2) =

(

min

{

upq + δ̂upq +
Wpq

2
, uṕq́ + δ̂u

ṕq́
+

Wṕq́

2

}

,

min

{

vpq + δ̂vpq +
Hpq

2
, vṕq́ + δ̂v

ṕq́
+

Hṕq́

2

})

(5)

We define the inter-cell energy, gpq, in terms of the mutually
shared energy in the scalar field S

gpq =
∑

ṕq́

dṕq́

dpq + dṕq́

∑

x1≤w≤x2
y1≤h≤y2

S(w, h) (6)

which is the sum of accumulated energy of S due to the overlap
of ηpq and its neighbors ηṕq́. The inter-cell energy signifies the
level of vegetation in the overlapping region of a cell and its

neighbors at their respective locations. Note that the term
dṕq́

dpq+dṕq́

is the ratio of the intra-cell energy of neighbor ηṕq́ to the sum
of their respective intra-cell energies. This coefficient attributes
the mutually shared energy to a pair of neighboring cells being
proportional to their intra-cell energies. When a cell does not
overlap with any of its neighbors (x1 � x2, y1 � y2) then its
inter-cell energy gpq = 0.

Our objective is tomaximize the intra-cell energy to encourage
alignment, and to minimize the inter-cell energy to discourage
overlap. Therefore, we define the net energy, fpq, of cell ηpq to be,

fpq =
dpq − gpq

Wpq × Hpq
(7)
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FIGURE 5 | Illustration of the proposed optimization approach for plot alignment. Particles are characterized by a P×Q grid graph where each cell (plot) is initially

placed at a uniform random position. A cost function whose output is proportional to underlying vegetation is evaluated for all particles. Particle positions are updated,

weighted by the difference between their current and individual best position, best position in the neighborhood and the best overall particle position so far (outlined

bold). Particles progressively align with regions of vigorous vegetation. The final alignment is given by the particle with the minimum cost achieved upon termination.

(Pseudocolor scale from low:L to high:H vegetation index).

which is normalized by the area of the cell. The energy of the grid
G is then given by the uniformly averaged net energy of all PQ
cells and the cost function is taken to be,

f = exp



−
1

PQ

∑

pq

fpq



 (8)

where the exponential decay function has been used to ensure
numerical stability. The cost function f forms the basis for the
optimization algorithm.

2.4. Optimization Algorithm
The idea of particle swarm optimization (PSO) was initially
proposed in Kennedy and Eberhart (1995) and various
improvements to the algorithm and parameters have since been
proposed (Pedersen, 2010; Mezura-Montes and Coello, 2011).
We leverage this algorithm’s ability to seek the displacement θ

required to align a grid from a random set of solutions 2 as
illustrated in Figure 5. The algorithm begins with a swarm of
particles 2 ∈ RN×K (candidate solutions), all but one randomly
initialized within the predefined bounds of a search space1θ and
one particle initialized as null. The cost function (f ) is evaluated
for all particles and the best function value and its corresponding
best particle state are recorded. A particle is updated based on its
current state, the difference from its best state, and its difference

from the best particle among its neighbors. Particles move in
a dynamic neighborhood and are iteratively updated until a
convergence criterion is satisfied. The final solution is given by
the particle with the best function value in the swarm. A more
detailed description of the optimization algorithm can be found
in the Supplementary Material.

3. RESULTS

The ground truth location of all plots was manually labeled in
the orthomosaics to validate and test the performance of the
alignment algorithm. Denote the 2D displacement vector of the
grid cell ηpq from its initial position (upq, vpq) in the uniform

grid to the ground truth position by (δ
u
pq, δ

v
pq), and the 2D

displacement vector of the grid cell ηpq from its initial position in

the uniform grid (upq, vpq) to the computed position by (δ̂upq, δ̂
v
pq).

The Euclidean distance between the ground truth displacement
vector and the computed displacement vector was chosen as the
basis for error estimation

error =

√

(

δ
u
pq − δ̂upq

)2
+

(

δ
v
pq − δ̂vpq

)2
(9)

This metric served as the criterion used to measure the overall
performance. The alignment errors were computed in physical
units for all PQ grid cells corresponding to the plots. Box
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FIGURE 6 | Simulating misaligned plots in an orthomosaic (A) Original validation image (B) Linear displacement of an image region leaves void areas at the plot’s

position (C) Reflection of an image region displaced from the plot’s original position leaves no discontinuity.

FIGURE 7 | Boxplot of errors for 50 random initializations in 1 random validation trial. Outliers are individually plotted as “+”.

and whisker diagrams were utilized to graphically illustrate the
error distributions.

The discrete scalar field S in the definitions of intra-cell energy
(Equation 3) and inter-cell energy (Equation 6), was defined in
terms of information obtainable from the channels of an RGB
image. To be precise, we implemented a green-red difference
vegetation index defined as,

S(u, v) =
G(u, v)− R(u, v)

G(u, v)+ R(u, v)
(10)

where G and R are the values in green and red channel,
respectively, at pixel position (u, v).

In general any vegetation index which numerically
distinguishes plant pixels from the background can be considered
as S. This point is further elaborated in the Discussion.

3.1. Validation
From the validation orthomosaic image, we generated new
images of artificially distributed plots based on known but
random set of displacements. The validation images with known
misalignment enabled the calculation of errors and an assessment
of the stability of our results. However, simply displacing plots
in a mosaic was unhelpful as this created voids in the original
position of the plots and thus introduced discontinuities in
the image data, as shown in Figure 6B. This problem was
addressed by taking a unique approach of reflecting larger,

randomly displaced regions around a plot in the mosaic as
shown in Figure 6C. The resulting mosaic contained no voids,
and the discontinuities were limited to low texture (soil)
regions. The modified orthomosaic images with artificially
misaligned plots appeared more realistic and were used for
validation experiments.

Several aspects pertaining to the initialization, termination,
and problem size of the optimization algorithm; as well as the
role of cost function were explored using the validation images.
These features are discussed in turn below.

3.1.1. Initialization
The dependency of the solution on the swarm initialization
(see Supplementary Materials) was evaluated by running the
algorithm with 50 different swarms. Each swarm is a random set
of solutions independently drawn from a uniform distribution.
In Figure 7, we present the whisker diagram of errors for
each run. It can be observed that 48 initializations resulted in
successful alignment, whereas only two resulted in failure. This
shows that the optimization algorithm is largely invariant to
the initialization.

3.1.2. Random Trials
We tested the adaptability of the algorithm to different randomly
simulated trials from the original validation image. In Figure 8,
we present the distribution of cell alignment errors for each of
the 50 different randomly simulated validation trial images. It can
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FIGURE 8 | Boxplot of errors in 50 random validation trials. Outliers are individually plotted as “+”.

FIGURE 9 | Boxplot of errors for using 5 different tolerance values in 5 random

validation trials. Outliers are individually plotted as “+”.

be observed that the median error is 5 cm in general with the
existence of a few outliers varying in each trial.

3.1.3. Tolerance
The tolerance value for termination of an optimization procedure
can play an important role in the final result as well as for
efficiency. Given the nature of the optimization, the minimum
cost function value is maintained or improved with each
iteration. The procedure is terminated if the change in minimum
value does not differ by more than the specified tolerance,
for a fixed set of consecutive iterations. In Figure 9, we show
the distribution of errors in five random simulated trials for
tolerance values ranging over five orders of magnitude, i.e., from
10−2 to 10−6. It can be observed that there was no significant
improvement in errors for tolerance smaller than 10−4.

3.1.4. Swarm Density
We also considered how the swarm size affected the quality of
the optimized solution. In Figure 10 we show the distribution
of errors in 5 random trials for 10 different swarm sizes (K)
in relation to a fixed problem size (N). It can be seen that a

swarm density (K/N) ranging from 6 to 12 generally resulted in
lower errors.

3.1.5. Cost Function
We computed the contributions of the two constituent parts of
the cost function and evaluated their influence on the overall
performance in terms of errors.

The intra-cell energy component of the cost function
established a baseline level of performance. The inter-cell energy
term penalizes solutions with overlapping cells. To evaluate the
usefulness of the inter-cell energy component, we simulated
an artificial image with significantly more misalignment in one
direction such that alternate pairs of plot rows had no gap.
This created a challenging scenario since the absence of a
significant gap presents a difficulty in demarcating plot boundary.
Furthermore, we paired rows of fertilized plots with those of
unfertilized plots. This offered a more challenging scenario
because cells tend to overlap or align with plots which have a
higher vegetation index due to the greedy nature of intra-cell
energy function.

Figure 11 shows that cell alignment is erroneous when solely
based on the intra-cell energy. It has been demonstrated here
that alignment of cells of unfertilized plots (which are less
vigorous and have low vegetation index values) tends to be
biased toward fertilized plots (which are more vigorous and have
high vegetation index values). This is as expected since the cost
function seeks to align grid cells to areas of high vegetation index.
With the addition of an inter-cell energy penalty, the anomaly
is significantly reduced. The overlap of nearby cells, is generally
limited to non-vegetative regions, i.e., to the gaps between
consecutive plots.

3.2. Testing
The result of cell alignment errors on the test image
are summarized in Figure 12. The alignment errors of the
automatically refined grid are compared with that of a regular
uniformly spaced grid. The cell alignment error is significantly
reduced through the application of the proposed algorithm as
shown in Figure 12, based on an initialization using the same
uniformly spaced grid. To complement these graphical results we
visually compare the errors on a few sample plots in Figure 13.
The sample plots have been selected to show variety of cases in
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FIGURE 10 | Boxplot of errors for using 10 different swarm sizes in 5 random validation trials. Outliers are individually plotted as “+”.

FIGURE 11 | Effect of the constituent parts of the cost function on alignment errors. (A) Initially overlaid grid with regular spacing and its alignment error (B) Using only

the intra-cell energy resulted in cells to overlap with poor alignment (C) Using both the intra-cell and inter-cell energy significantly improved alignment.

terms of density of vegetation as well as accuracy of result. It can
be seen that in general, the alignment errors are longitudinal, i.e.,
they lie along the direction of the sowing track. The alignment
result is highly accurate in fully emerged plots, one such example
from a large majority of these plots is shown in Figure 13A.
The alignment can be erroneous in case of partial emergence
of seedlings, a rare worst-case scenario of which is shown in
Figure 13B. The sparsity of vegetation along the ends of a
partially emerged plot can also translate into positional ambiguity
as shown in Figure 13C. When seedling growth is present at the
extreme edges despite missing in between, the result can still align
with the ground truth position as shown in Figure 13D.

3.2.1. Effect on Phenotypic Trait
The potential benefit of accurate plot extraction can be
appreciated when it is ultimately used for the analysis of a
phenotypic trait. One way to evaluate its advantage is to derive
a common trait such as the canopy coverage from extracted plot
location. Estimation of canopy coverage requires segmentation of
plant pixels from the background which can be accomplished by
applying a threshold to the discrete scalar field S. Pixels having
a higher value than the threshold are regarded as belonging to
the plants and vice-versa. We empirically selected a value of
threshold to achieve the visually best result by overlaying the
segmentation mask over the RGB image. The canopy coverage
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of plant pixels could then be expressed as a percentage of the
total number of pixels in a cell. The coverage was estimated
based on a regular grid of uniformly spaced cells, a regular
grid of uniformly spaced cells with length trimmed (50%)

FIGURE 12 | Boxplot of alignment errors of the automatically refined grid

compared to errors of a regular grid with uniform spacing on test orthomosaic

image. Significant differences are indicated by non-overlapping box notches.

Outliers are individually plotted as “+”.

and an automatically refined grid obtained with the proposed
method. The suggested coverage estimates of each grid were
compared to the actual coverage values obtained from the ground
truth grid.

Figure 14 shows the scatter chart of canopy coverage obtained
using the different types of grid against those of using the ground
truth grid. A regular grid underestimated the coverage in most
cases as it was not in positional alignment with the plots but
rather overlaid on portions of soil. A regular grid with trimmed
edge overestimated the coverage as it was generally positioned
in the center of plots where vegetation was more likely to be
present but did not take the excluded region into consideration.
In contrast, a regular grid with automatic refinement returned
better coverage estimates corresponding well with the ground
truth estimates as its position was correctly aligned.

An analysis of variance (ANOVA) was conducted on plot
coverage computed from the different types of grids (seeTable 1).
The result was significant and a low p-value indicated that
coverages estimated from regular, trimmed, refined and ground
truth grids are not same (F = 14.17, p = 3.77 × 10−9). Further
multiple comparison suggested that coverage estimated from
either regular or trimmed grid were different from all others,
including the ground truth grid. However, coverage estimated
from refined grid was different from regular and trimmed
grids only.

FIGURE 13 | Example of cells aligned by the proposed method (red, dashed) in comparison to the uniformly spaced cells (blue, dashed) and ground truth cells (white,

continuous). (A) Full emergence, good alignment (B) Partial emergence, bad alignment (C) Partial emergence, fair alignment (D) Partial emergence, good alignment.
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FIGURE 14 | Comparison of plot coverage estimated from three different

types of grid with the coverage obtained from the ground truth grid. Regular

grid with uniformly spaced cells (blue circles), regular grid with uniformly

spaced cells and trimmed edges (yellow squares), and refined grid obtained

using the proposed method (red triangles).

4. DISCUSSION

Any form of image analysis of a remotely sensed field trial,
whether it be for assessment of canopy vegetation index (Khan
et al., 2018b), estimation of canopy vigor and height (Cai et al.,
2018; Khan et al., 2018a), or for estimation of yield by counting
heads (Fernandez-Gallego et al., 2018; Hasan et al., 2018; Zhou
et al., 2018), must begin with establishing the precise location
and perimeter of field plots. Agronomic field trials can have an
enormous scope, especially in plant breeding. Consequently, the
magnitude of the task to manually demarcate individual plot
sites on an image becomes considerable. Assuming a uniform
grid of cells based on an expected experimental design (such as
those shown in Figure 13) or even further clipping the cells to
central portion of plots will almost certainly lead to significant
errors in estimates of many phenotypic traits, which are normally
quoted per unit area. As it has been demonstrated that canopy
coverage, related to green pixel area relative to plot area can
be in significant error (underestimated or overestimated) if
predicted cell locations are grossly misplaced from the actual
plots. Analogous to canopy coverage, vegetation index estimates
could be under-represented if soil area was captured instead of
true canopy area. Similarly, the assessment of crop germination
and yield can be in error as a consequence of the failure to
properly align cells with actual plot locations.

The main aim of this paper has been to introduce a robust
algorithm to accurately superimpose cells of specified dimensions
in an irregular grid over an image of a field trial, so that
the positions of grid cells optimally correspond to actual field

TABLE 1 | Analysis of variance of plot coverage from four different grids (regular,

trimmed, refined, and ground truth).

Source SS dF MS F p

Groups (between) 0.8519 3 0.28398 14.17 3.77× 10−9

Error (within) 46.0978 2300 0.02004

Total 46.9498 2303

SS, Sum of squares; dF, Degrees of freedom; MS, Mean square; F, F-statistic; p, p-value.

plot locations. Through the application of a series of validation
experiments on simulated images and testing on real image of
trial sites, we have demonstrated that the method is accurate,
while requiringminimal manual input. Although it can be argued
that the extreme displacement of plots (Figure 6) simulated for
validation studies is not usually encountered in practice, the
accurate results of our algorithm suggest that cell alignment
with actual plots in less severe circumstances would be even
more easily achieved. The procedure thus offers the potential for
automatic application to actual plant breeder trials.

Assuming only fixed dimensions of grid cells, our proposed
algorithm, invoking the combination of two complementary
(nigh competing) cost functions shows remarkable results, as
measured by our error metric in Equation (9). That an intra-
cell energy is insufficient to optimize grid position is clear from
Figure 11. By not including an inter-cell energy cost function,
which penalizes overlap with neighboring cells, can result in a
higher energy value when cells overlap green pixel-rich regions of
neighboring plots. Our choice of inter-cell function is of course
not unique. An extreme alternative inter-cell energy function
could operate by simply excluding configurations in which any
two cells overlap. In this case

gpq =

{

∞, x1 ≤ x2, y1 ≤ y2

0, otherwise

which is akin to assuming that cell displacement is “hard limited,”
or equivalently that the energy of any overlap is infinite. While
this may seem to be a simpler prospect, such a penalization
would lead to a high(er) number of rejected moves, thus
forcing a greater number of iterations, thereby interrupting the
optimization procedure. In contrast, the present approach allows
“soft limited” cell displacements, with overlapping cells penalized
with a cost proportional to the amount and content of overlap.
This results in a more stable and robust optimization.

The proposed energy functions depend on a discrete scalar
field which can be derived from the channel(s) of an image.
In this study, we used a vegetation index derived from RGB
images, which has elsewhere (Khan et al., 2018a,b) been shown
to correlate well with normalized difference vegetation index
(NDVI). It is, however, also possible to employ a different
vegetation index as fundamental determinant, based on e.g.,
multispectral images. However, our preferred choice was based,
at least partly, on the high resolution capabilities of the RGB
camera, which can more accurately differentiate plant canopy
(foreground) pixels from soil (background) pixels. Arguing on
the basis of its correlation with NDVI, the scalar field we used
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possessed sufficient information about the state of vigor of
the canopy.

Finally, from a technical perspective, the proposed cost
function is related to the alignment of cells to plots based on an
accumulation of underlying vegetation index.While this function
has been shown to work in most circumstances, it needs to
be recognized that the best objective value does not guarantee
the best cell alignment; although they are related, they are not
necessarily equivalent. Also, the final optimal solution was found
to be largely invariant to the initialization of the swarm. In rare
instances where a given initialization fails to lead to a converged
solution, a possible corrective measure one can employ is
simply to restart/rerun the algorithm with a different random
seed initialization.

In future work it could be useful to extend the method to
allow for possible variations in cell dimensions in addition to
cell positions. However, it is important to reiterate that “total”
measures of phenotypic traits such as germination and yield
are more appropriately determined by computing the content
of a developed canopy within a theoretically sown plot position
represented by a fixed size cell. This is one reason why it may
be preferable to fix cell dimensions and determine the optimal
cell position rather than employ other boundary establishing
techniques such as the level set method or the method of active
contours (Mumford and Shah, 1989; Chopin et al., 2016), which
explicitly capture the actual boundaries of plot canopy but would
not be useful for quantifying traits in the same manner.

5. CONCLUSIONS

The tedious pre-analysis task of identifying field plots in an
orthomosaic image of a plant research field trial can be simplified
by the automatic registration of plot locations provided by the
grid cell optimization algorithm proposed here. Being able to
specify the location of separated field plots in a robust and

accurate way sets the stage for a subsequent accurate analysis
of a range of crop phenotypic traits such as total canopy
coverage and canopy vigor. The proposal suits this general
purpose and has the potential to be adapted for more specific
purposes, such as cell dimension adjustment to capture exact
canopy structure.
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