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The dynamics of the Green Leaf Area Index (GLAI) is of great interest for numerous

applications such as yield prediction and plant breeding. We present a high-throughput

model-assisted method for characterizing GLAI dynamics in maize (Zea mays subsp.

mays) using multispectral imagery acquired from an Unmanned Aerial Vehicle (UAV). Two

trials were conducted with a high diversity panel of 400 lines under well-watered and

water-deficient treatments in 2016 and 2017. For each UAV flight, we first derived GLAI

estimates from empirical relationships between the multispectral reflectance and ground

level measurements of GLAI achieved over a small sample of microplots. We then fitted a

simple but physiologically sound GLAI dynamics model over the GLAI values estimated

previously. Results show that GLAI dynamics was estimated accurately throughout the

cycle (R2 > 0.9). Two parameters of the model, biggest leaf area and leaf longevity, were

also estimated successfully. We showed that GLAI dynamics and the parameters of the

fittedmodel are highly heritable (0.65≤H2≤0.98), responsive to environmental conditions,

and linked to yield and drought tolerance. This method, combining growthmodeling, UAV

imagery and simple non-destructive field measurements, provides new high-throughput

tools for understanding the adaptation of GLAI dynamics and its interaction with the

environment. GLAI dynamics is also a promising trait for crop breeding, and paves the

way for future genetic studies.

Keywords: diversity panel, dynamics, drought, green leaf area index (GLAI), growth model, high-throughput

phenotyping, maize, unmanned aerial vehicle (UAV)

INTRODUCTION

Crop production is mainly driven by the plant’s capacity to intercept and use sunlight through
photosynthesis. Photosynthetically active radiation is mostly intercepted by leaves, which are also
the principal interface for water and carbon exchanges. However, green leaf area is influenced by
several stresses including nitrogen, water and temperature (Çakir, 2004; Ding et al., 2005; Chen
et al., 2018), thus reducing dry matter production and yield. This underlines the importance of
green leaf area estimation for several applications such as yield prediction (Baez-Gonzalez et al.,
2005; Dente et al., 2008), precision farming (Walthall et al., 2007), and plant breeding (Yang et al.,
2017b). Green leaf area can be quantified by the Green Leaf Area Index (GLAI) defined as the
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one-sided green area of leaves per unit horizontal ground surface
area (Chen and Black, 1992). Its dynamics throughout the crop
cycle is considered as a crucial trait for improving grain yield
and adapting a genotype to a particular environment and climatic
scenario (Bänziger et al., 2000; Tardieu, 2012).

Different approaches have been developed to estimate GLAI
including in-situ methods, remote sensing techniques, and crop
models. Direct measurements of the area of a sample of green
leaves in the canopy is time-consuming, labor-intensive and
prone to errors when the sampling size is too small. Indirect in-
situ methods based on light transmission through the canopy
(Jonckheere et al., 2004) are easier to implement than direct
GLAI measurements. However, both these direct and indirect
ground-based methods remain tedious and low-throughput,
thus failing to satisfy breeders’ requirements which entail the
characterization of hundreds to thousands of microplots several
times throughout the growth cycle. Therefore, high-throughput
methods for estimating GLAI are highly desirable. Remote
sensing observations from UAVs (Unmanned Aerial Vehicles)
present the advantage of fulfilling spatial and temporal resolution
requirements while providing high-throughput measurements
at a relatively low cost, making it a valuable phenotyping tool
(Tattaris et al., 2016; Yang et al., 2017a; Reynolds et al., 2018).

Remote sensing methods rely on the use of multispectral
or hyperspectral sensors to measure canopy reflectance, which
is sensitive to variation in the GLAI. Empirical methods
have been widely used to statistically relate the GLAI to
the reflectance observed in several bands generally combined
in vegetation indices. The results of this approach depend
on the sensitivity of the selected vegetation indices to the
GLAI but also to confounding factors such as leaf orientation,
illumination conditions and soil properties (Baret and Guyot,
1991). Moreover, this approach must be applied in the same
conditions as those prevailing during the calibration of the
statistical relation, as it lacks robustness and accuracy when
applied under other conditions, i.e., outside the calibration
domain (Broge and Leblanc, 2001; Haboudane et al., 2004;
Dorigo et al., 2007). More comprehensive statistical models,
that are more robust and can be applied to different crops,
were also developed (Viña et al., 2011; Nguy-Robertson et al.,
2014; Kang et al., 2016; Kira et al., 2017). However, empirical
transfer functions are generally calibrated and applied locally,
thus limiting possible extrapolation problems. They thus must be
calibrated each time over a set of samples representative of the
range of variation.

The dynamics of GLAI is of prime importance to understand
the functioning of crops. The growth and senescence rates
of the leaf area, the timing of the minimum and maximum
GLAI and the corresponding magnitude are important traits
for breeders (Comar et al., 2012). The continuous description

Abbreviations: AUC, Area Under the Curve; GDMM, GLAI Dynamics Maize
Model; GLAI, Green Leaf Area Index; NDVI, Normalized Difference Vegetation
Index; RMSE, Root Mean Squared Error; RMSEP, Root Mean Squared Error
of Prediction; RRMSE, Relative Root Mean Squared Error; RRMSEP, Relative
Root Mean Squared Error of Prediction; UAV, Unmanned Aerial Vehicle; WD,
Water-Deficient; WW, Well-Watered.

of GLAI dynamics based on crop models like APSIM (Keating
et al., 2003), STICS (Brisson et al., 1998), and DSSAT (Jones
et al., 2003) would provide a very efficient solution to access
similar functional traits, corresponding to genotype-dependent
parameters. However, the complexity of such models, the large
number of parameters required and the mandatory information
on important environmental conditions that are often not
well-known, still make it difficult to broaden their use (Liu
et al., 2014; Gaydon et al., 2017). Nevertheless, simpler semi-
empirical models that require a minimum set of parameters
with physiological meaning and a limited description of the
environment have already been used to estimate GLAI dynamics
or to interpolate and smooth remote sensing observations
collected throughout the cycle (España, 1997; Kötz, 2001; Lizaso
et al., 2003). Such simple dynamic models therefore appear
well-adapted in situations where information on environmental
conditions is limited and when only few field measurements
are possible.

The objectives of this study are (i) to propose a high-
throughput phenotyping method to describe maize (Zea mays
subsp. mays) GLAI dynamics from UAV observations repeated
throughout the growth cycle and a simple but physiologically
sound GLAI dynamics model (ii) to unravel GLAI dynamics
response to environmental scenarios, and (iii) to investigate the
potential interest of GLAI traits for maize breeding in well-
watered and water limited environments.

MATERIALS AND METHODS

A simple model inspired from the work of Baret (1986), España
(1997), Kötz (2001), and Lizaso et al. (2003) is proposed to
simulate GLAI dynamics from a limited set of parameters.
Empirical transfer functions are first calibrated for each flight to
estimate the GLAI from the UAV observations and additional
available predictors. The simple GLAI dynamics model is then
fitted to the GLAI estimates from the transfer functions by
adjusting the unknown parameters. The heritability of the
derived traits describing the GLAI dynamics is quantified. Their
effect on grain yield is evaluated as well as the genotypic response
to water stress.

Plant Material, Experimental Design and
Environmental Conditions
The study was carried out on a panel of lines derived from a
MAGIC population (Multi-parent Advanced Generation Inter-
Crosses). This population was created following a funnel crossing
design from 16 historical lines representative of the genetic
diversity of temperate material. The panel consisted of 400
doubled haploid lines extracted from the third generation of
population mixing (Buet et al., 2013). The doubled haploid lines
were crossed with the tester line MBS847 and their progenies
evaluated in the field. Phenotypic evaluations from test-cross
progenies aimed at comparing lines in a hybrid context and
reducing the range in flowering time to limit confounding effects
due to differences in precocity.
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Field trials were conducted in 2016 and 2017 close to Romans-
sur-Isère, France (45◦ 4′N, 5◦ 6′E) with, respectively, 360 and 347
hybrids (330 in common). Each year, two trials were carried out,
one in a Well-Watered (WW, irrigated) condition and the other
in a Water-Deficient (WD, rain-fed with monitored irrigation)
condition. The experiment was laid out as an alpha-lattice design
with two replicate blocks for each treatment in both years. The
plot length was 5.35mwith 2 rows spaced by a 0.8m interval. The
soil water potential was measured at three different depths (30,
60, and 90 cm) with a tensiometer in each treatment throughout
the cycle. Because the flowering time is known to be the most
drought sensitive period for grain yield, the WD trial irrigation
was monitored to target a water deficit from 10 days before
flowering time to 10 days afterwards. Moreover, this timing was
expected to impact not only the end of leaf development and thus
the GLAI amplitude, but also leaf longevity. The trials were sown
on 6th May 2016 and on 18th May 2017 at a density of 9 seed.m−2

in a sandy loam soil. The silking stage (defined as the time when
50% of a plot has visible silks) was reached around 19th July
(≈950◦C.d) in 2016 and around 16th July (≈900◦C.d) in 2017.
Weeds, diseases and pests were controlled using conventional
agronomic practices.

GLAI Dynamics Maize Model (GDMM)
The model of maize GLAI dynamics was derived from the
previous models proposed by Baret (1986), España (1997), Kötz
(2001), and Lizaso et al. (2003). Time is described by growing
degree days (GDD) computed using a 6◦C base (Sánchez et al.,
2014). Growing degree days control the rate of leaf appearance
using the phyllochron φGDD, i.e., the GDD required between the
appearance of two successive leaves. A leaf is considered appeared
when its tip emerges visibly out of the whorl. To account for the
quick appearance of the first four leaves, the phyllochron is set to
φGDD = 20◦C.d. After leaf emergence, leaf area expands linearly
with GDD until the leaf area expansion is completed, when the
ligule emerges from the whorl (Supplementary Figure 1). The
leaf stage when the ligule of the leaf i appears, Li, is estimated as:

Li = 4.55+ 0.76 itop − 1.06
(i− itop)

2

itop
(1)

where itop is the final number of leaves.
Li and φGDD are then used to compute the GDD at which the

ligule appears.
The Maximum Area of leaf i, MAi, reached when the ligule

appears, is computed as:

MAi =
1+ sin( π

0.59526 × ( i
itop

)
1.4158

− π
2 )

2
×MAbig (2)

whereMAbig is the maximum area of the biggest leaf.
Leaf longevity, δi, defined as the GDD required between leaf

appearance and leaf death, depends on leaf order i:

δi = δ

[

1

1+ e−0.77(i−
itop
3 )

− e0.16(i−(itop+3.5))

]

+ 550 (3)

Equation 3 is an adaptation of the exponential models proposed
by Baret (1986) to describe LAI dynamics and that of Lizaso et al.
(2003) describing leaf senescence. The start of senescence for each
leaf is set equal to 75% of leaf longevity, δi. Senescence is assumed
to be linear with GDD from its start up to the death of the leaf
(Supplementary Figure 1).

The model proposed therefore describes the dynamics of the
green leaf area of each plant as the sum of the green area of each
individual leaf. GLAI is finally computed bymultiplying the plant
green leaf area by the plant density, d. The resulting GDMM
uses 5 parameters:

{

d, itop, φGDD, MAbig , δ
}

(Table 1). Every
parameter has a specific effect on the GLAI dynamics, except d
andMAbig that have a similar impact (Supplementary Figure 2).

Ground Measurements
Measurements Performed Over the Whole

Experiment
The appeared leaves were counted on a weekly basis on three
plants identified on each of the microplots in one replicate of
the WW treatment in 2016. This provided an estimate of the
phyllochron, φGDD, as well as the final number of leaves, itop.
These parameters have been shown to be dependent on the
genotype and stable between environments (Hajibabaee et al.,
2012; Millet, 2016; Parent et al., 2018). They were thus assumed
to be dependent only on the genotype and measured in 2016 over
the WW treatment. These values of

{

itop, φGDD

}

were used for
the WD treatment in 2016 and for both treatments in 2017.

The flowering date (silking date in ◦C.d) was recorded for each
microplot, as well as the plant density, d, at maturity. Plants were
then harvested on 10th October 2016 (≈2,100◦C.d) and on 25th

October 2017 (≈2,150◦C.d) to estimate grain yield adjusted to
15% moisture (in q.ha−1), thousand kernel weight adjusted to
15%moisture (in g), kernel number per square meter and harvest
grain moisture (in %).

GLAI Ground Measurements Over a Reference

Sample of Microplots (GLAIfield)
In 2016 and 2017, for both conditions (WW and WD) and the
two replicates, a reference sample of 15 (2016) and 20 (2017)
genotypes was selected amongst which 10 were common between
years. This resulted in 15 genotypes × 2 replicates × 2 water
regimes= 60 microplots in 2016 and 20 genotypes× 2 replicates

TABLE 1 | Parameters required for the GLAI Dynamics Maize Model (GDMM) and

their ground measurement in this study.

Parameter Description Unit Ground

measurements

d Plant density plant.m−2 All microplots

itop Final leaf number leaf Well-Watered 2016

φGDD Phyllochron ◦C.d Well-Watered 2016

MAbig Maximum area of

the biggest leaf

m2 Reference microplots

δ Leaf longevity factor ◦C.d Reference microplots
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× 2 water regimes = 80 microplots in 2017. Genotypes were
chosen to be contrasted for both GLAI magnitude and dynamics.

Shortly after flowering, the width, w, and length, l, of the
biggest leaf were measured on three plants per microplots
and the corresponding area estimated as MAbig = 0.72.w.l
(España, 1997). Equation 2 was then used to estimate the
area of fully expanded leaves. The fraction of green area of
each leaf was visually scored on a weekly basis to describe
senescence. The leaf longevity factor, δ, of the GDMM (Table 1)
was then adjusted using the previously measured values
of

{

itop, φGDD, MAbig

}

and the senescence fraction. Finally,
GLAIfield of a microplot was obtained by simulating the GLAI
with the GDMM for the corresponding GDD and the parameters
{

d, itop, φGDD, MAbig , δ
}

of the microplot.

Multispectral Image Acquisition From the
UAV and Data Processing
A hexacopter UAV was used for nine (2016) and eleven (2017)
flights on dates selected to represent the dynamics of GLAI
over the growth cycle. Furthermore, the UAV was flying always
under clear sky and low to medium wind speed conditions. The
AIRPHEN multispectral camera (www.hiphen-plant.com) was
fixed on a two-axis gimbal to point downward, vertically. The
device is composed of six cameras equipped with an 8mm focal
length lens. They record 1,280 × 960 pixel images with 10 nm
spectral resolution bands centered at 450, 532, 568, 675, 730,
and 850 nm. The integration time of each camera was adjusted
automatically to minimize saturation and maximize the range of
variation. Images were acquired continuously during the flight
at a 1Hz frequency. The flight plan was designed to ensure
80% overlap both across and along the track. The flight altitude
was fixed to 60m to provide a ground spatial resolution of
around 2.5 cm.

Radiometric calibration was performed using a 3 m2 reference
panel. In addition, nine circular panels of 60 cm diameter were
placed within the field and used as ground control points (GCPs).
The positions of the GCPs were measured with RTK-GPS,
providing an accuracy of around 2 cm.

The multispectral images were first corrected for the
vignetting effect, and then co-registered using the method
proposed by Rabatel and Labbé (2016). Agisoft Photoscan
software (v1.2.2, 2015, Agisoft LLC., Russia) was used to find the
position and orientation of the camera for each individual image.
This information was then used to project the images onto the
ground and to extract the microplots based on the coordinates
of their corners measured previously. The GCPs were used to
ensure good geometric consistency between the projected images
and the microplots coordinates. Finally, radiometric calibration
was applied to compute the bidirectional reflectance factor, rb,
in the six bands b using the recorded integration time and
the images captured over the radiometric panel. To limit the
impact of possible variations of illumination conditions during
the flight, normalized reflectances, r∗

b
were computed by dividing

the reflectance in each band by that observed in the near infrared:
r∗
b
=

rb
r850

with b ∈ {450, 532, 568, 675, 730}. More details can
be found in Jay et al. (2018).

Estimation of GLAI of Each Microplot
(GLAITF) Using Transfer Functions
Calibrated Over the Reference Microplots
For each flight, an empirical transfer function was
calibrated between GLAIfield and the corresponding values

of
{

r∗450, r
∗
532, r

∗
568, r

∗
675, r

∗
730, d, itop, φGDD

}

used as predictors.
To improve the performance of the transfer function,
variables

{

d, itop, φGDD

}

were added to the normalized
reflectances

{

r∗450, r
∗
532, r

∗
568, r

∗
675, r

∗
730

}

since they were
available for all the microplots and expected to impact the
GLAI (Supplementary Figure 2). Ridge regression (Hoerl
and Kennard, 1970) was used to calibrate the transfer
functions (Equation 4) to deal with possible multicollinearity
between predictors.

GLAIfield = µ +

5
∑

j=1

αjr
∗
bj
+ α6d + α7itop + α8φGDD + E (4)

where µ is the intercept, αj,j∈[[1,5]] the effect of normalized
reflectance r∗

bj
observed in the wavelength bj (b =

{450, 532, 568, 675, 730}), α6 the effect of the density d, α7 the
effect of the final number of leaf itop and α8 the effect of the
phyllochron φGDD. E is the random residual, with E ∼ N (0, σ 2I)
and I the identity matrix. Ridge regressions were computed with
the glmnet R package v2.0-13 (Friedman et al., 2010; R Core
Team, 2017).

To evaluate the relevance of the additional variables
{

d, itop, φGDD

}

as predictors jointly with the normalized
reflectance

{

r∗450, r
∗
532, r

∗
568, r

∗
675, r

∗
730

}

, transfer functions using
only the multispectral data, TFUAV, or only the additional
variables, TFprior, were considered in addition to the transfer
function TFfull using all eight variables. A leave-one-out cross-
validation approach (Efron and Tibshirani, 1993) was used
to evaluate the prediction performance of the three different
transfer functions by computing the Root Mean Squared Error
of Prediction (RMSEP) and the Relative RMSEP (RRMSEP).

The calibration domain, defined as the distribution of the
predictors

{

r∗450, r
∗
532, r

∗
568, r∗675, r

∗
730, d, itop, φGDD

}

over the
reference microplots, was compared to the application domain,
defined as the distribution of the predictors over the whole
experiment. The convex hull of the calibration domain was first
computed over the reference microplots using the R package
geometry v0.3-6 (Habel et al., 2015). It was then expanded by
5% over all eight dimensions, assuming that in the vicinity of
the calibration domain, the transfer function should behave with
similar performance. For each date, the percentage of microplots
included in the calibration and extended calibration domain was
computed to evaluate the representativeness of the reference
microplots used to calibrate the transfer function.

Once calibrated over the referencemicroplots for a given flight
date, the full transfer function TFfull was finally applied to the
whole experiment to predict the GLAI value, GLAITF , for each
microplot on the date considered.
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Estimation of MAbig and δ Over the Whole
Experiment
For each microplot, the unknown parameters of the GDMM,
{

MAbig , δ
}

were estimated by inverting the GDMM, i.e., by
fitting the GDMM over the GLAITF values for the nine (2016)
or eleven (2017) flight dates. The other three parameters were
either measured directly (Table 1) over each microplot (d) or
over the 2016 WW treatment (

{

itop, φGDD

}

), since they were
considered to be dependent only on the genotype. A Look-Up-
Table approach was used since it is easy to implement, runs fast
and avoids trapping in local minima. It consisted in simulating
the GLAI value with the GDMM for 10,000 combinations of
the two parameters to be estimated,

{

MAbig , δ
}

, for each flight

date and each set of
{

d, itop, φGDD

}

. Parameters
{

MAbig , δ
}

were randomly drawn using uniform distributions within their
possible range of variation: 2.10−2 m2 < MAbig < 8.10−2 m2;
250◦C.d < δ < 2, 000◦C.d. These ranges were estimated based
on the reference plot variations. A cost function, J, computed for
the 10 000 simulations of the GDMM, quantified the agreement
between the simulated GLAI, GLAIsim, and the GLAI estimated
with the transfer function, GLAITF :

J =
1

n

n
∑

t=1

(

GLAITF(t)− GLAIsim(t)

σ (t)

)2

(5)

where σ (t) is the corresponding uncertainty of both GLAITF
estimation and GDMM for the date t, approximated as:

σ (t) =

{

0.1 if GLAITF(t) < 1
0.1× GLAITF(t) if GLAITF(t) ≥ 1

(6)

The solution was computed as the average of the combinations
leading to J ≤ 1, i.e., for which the difference between
the simulated GLAIsim and GLAITF is smaller than the
associated uncertainty σ (Diner et al., 1999; Zhang et al., 2000;
Wang et al., 2001).

The estimated values of
{

MAbig , δ
}

were used along with the

known GDMM parameters
{

d, itop, φGDD

}

to estimate the GLAI
values, GLAIest , continuously from emergence to harvest. The
Area Under the Curve (AUC) ofGLAIest was also computed from
emergence to harvest to account for both the magnitude and
duration of GLAI dynamics.

Statistical Analysis
Adjusted Means and Broad-Sense Heritability
Best linear unbiased estimates of the genotypes (adjusted means)
were estimated from a linear mixed model fitted for each
combination of trait, year, and treatment.

Yij = µ + bi + gj + Eij (7)

Where Yij is the phenotypic value, µ the overall mean, bi the
fixed effect of replicate i and gj the fixed effect of genotype
j. E is the random residual, E ∼ N [0, σ 2(Rr ⊗ Rc)] with
Rr and Rc the correlation matrices for the row and column
first order autoregressive processes, respectively, as proposed by
Gilmour et al. (1997).

Broad-sense heritability (H2) was computed following
Cullis et al. (2006):

H2 = 1−
ν̄1BLUP

2σ 2
G

(8)

where σ 2
G is the genetic variance and ν̄1BLUP the mean

variance of a difference between two BLUPs (Best Linear
Unbiased Predictions).Model 7 was fitted again, considering the
genotype as a random effect, to estimate σ 2

G and ν̄1BLUP. All
linear models were fitted using the R package ASReml-R v3.0
(Butler et al., 2009).

Impact of GLAI on Grain Yield and Drought Stress

Tolerance
A linear model (9) was used to evaluate the effect of the
estimated GLAI traits MAbig , δ and AUC on grain yield in
each environment. The effect of genotype earliness was also
considered in the model.

Yi = µ + afi + bAUCi + cMAbig,i + dδi + Ei (9)

where Yi is the grain yield or its components of genotype i, µ

is the intercept, a the effect of the flowering date f , b the effect
of AUC, c the effect of MAbig and d the effect of the δ. E is the

random residual, with E ∼ N (0, σ 2I) and I the identity matrix.
The drought response of a trait (GLAI dynamics or grain yield

and its components) was defined as the normalized difference
between the value of this trait in the WW condition and in the
WD condition:

NDY =
YWW − YWD

YWW
(10)

where YWW and YWD are respectively the trait values in the
WW and WD treatments of the same year. For GLAIest , the
normalized difference was computed every 25◦C.d from 50
to 2,000◦C.d for each year and a hierarchical clustering was
performed using Ward’s distance and the stats R package. The
inertia gain method was used to choose the number of clusters.
This allowed identifying groups of genotypes that exhibit similar
changes in the shape of GLAI dynamics between WW and
WD conditions.

The effect of dynamics’ drought response patterns on grain
yield stability was finally tested jointly with the genotype
precocity effect in the following model:

Yij = µ + afij + Cj + Eij (11)

where Yij is the normalized difference of grain yield (or its
components) for the individual i in the cluster j, µ the intercept,
a the effect of the precocity f and Cj the effect of cluster j. E is the
random residual, with E ∼ N (0, σ 2I) and I the identity matrix.

RESULTS AND DISCUSSION

Environmental Conditions and Field
Measurements
In 2016, soil moisture monitoring and water balance showed
that the flowering drought stress was limited for the WD
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FIGURE 1 | Effect of drought stress on GLAIfield dynamics in 2016 and 2017. Boxplots are built from the reference microplots data for each flight date. The horizontal

line in the boxplots corresponds to the median, while the diamond corresponds to the mean. The lower and upper hinges show the first and third quartiles, and the

whiskers correspond to 1.5 times the inter-quartile range or to the most extreme value, whichever is smallest. Dots represents values outside this range. Black arrows

indicate flowering time.

treatment due to rainfalls just around flowering, and that only
a light stress occurred from 8th July (≈800◦C.d) to 5th August
(≈1,250◦C.d). Nevertheless, a more severe stress occurred during
the grain filling stage from approximately 5th August to 25th

August (≈1,550◦C.d). The water stress impacted the reference
microplots GLAI with an earlier senescence (Figure 1). It also
resulted in a 40% loss for grain yield over the whole panel
in WD compared to the WW treatment (Table 2), explained
by a 20% reduction of both the kernel number and the
thousand kernel weight. In 2017, water stress took place in the
WD treatment around flowering, from 8th July (≈750◦C.d) to
29th July (≈1,100◦C.d), delayed the senescence (Figure 1) and
reduced yield by 21% mostly because of a reduction of the
kernel number. For both years, no water stress was detected in
the WW condition. However, in 2017 soil crusting impacted
stand establishment in both conditions, with an actual density
of around 8 plants.m−2 in WW and 7.5 plants.m−2 in the WD
treatment. Comparison of GLAI dynamics between years shows
that maximum GLAI was significantly higher and more variable
in 2017 than in 2016.

Combining UAV Observations and GDMM
Enables Accurate and High-Throughput
Phenotyping of GLAI Dynamics and
Underlying Traits
The phenotyping method developed in this study is divided in
two steps. First, transfer functions are calibrated using UAV
observations and field reference measurements, and are then
used to predict GLAI of the whole panel for each flight date
(GLAITF). Secondly, the GDMM is inverted based on GLAITF
data to finally provide the continuous GLAI dynamics (GLAIest)
and two underlying traits (MAbig and δ).

TABLE 2 | Climatic conditions, yield and its components in 2016 and 2017 for the

Well-Watered (WW) and Water-Deficient (WD) conditions.

2016 2017

WW WD WW WD

Cumulated global radiation

(MJ.m−2)

2,969 2,990

Average day temperature (◦C) 22.0 22.8

Average night temperature (◦C) 16.3 16.9

Vapor pressure deficit (kPa) 1.08 1.28

Rainfall (mm) 358 170

Irrigation (mm) 310 109 365 235

Yield at 15% moisture (q.ha−1) 95 59 94 75

Kernel number per square meter 3,522 2,804 3,257 2,597

Thousand kernel weight at 15%

moisture (g)

269 212 289 288

Harvest grain moisture (%) 25 23 23 23

GLAITF estimated from TFfull using the eight predictors
{

r∗450, r
∗
532, r

∗
568, r

∗
675, r

∗
730, d, itop,φGDD

}

agrees closely
with the reference GLAIfield over the cycle for both years
(Supplementary Figure 3) with a high coefficient of
determination (R2≈0.95), and a low Root Mean Squared
Error (RMSE≈0.3, Relative RMSE≈13%). Moreover, the RMSEP
shows that the prediction error is low and similar to the RMSE
of the reference sample with 0.01≤RMSEP≤0.62 for 0≤GLAI≤5
depending on the flight date (Figure 2). The RRMSEP was
close to 10% for both years throughout the whole growth cycle,
except for the two last dates, because RMSEP remained fairly
constant but GLAIfield decreased due to senescence (Figure 1).
This increase in RRMSEP for the last dates may be due to
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FIGURE 2 | Comparison between the Root Mean Squared Error of Prediction (RMSEP) of TFfull, TFUAV, and TFprior for each flight date in 2016 and 2017. TFfull is the

transfer function based on the eight predictors
{

r*450, r
*
532, r

*
568, r

*
675, r

*
730,d, itop, φGDD

}

, while TFUAV is based only on
{

r*450, r
*
532, r

*
568, r

*
675, r

*
730

}

and TFprior

only on
{

d, itop, φGDD
}

. Black arrows indicate flowering time.

confounding effects originating from the similarity of senescent
vegetation and bare soil spectra (Girard and Girard, 2003).

The transfer functions in Equation 4 combine two types
of GLAI predictors. We further evaluated the contribution
of these two types of predictors by considering two other
transfer functions: TFUAV when using only the five normalized
reflectance

{

r∗450, r
∗
532, r

∗
568, r

∗
675, r

∗
730

}

and TFprior when using
only the three additional predictors

{

d, itop, φGDD

}

. Results
clearly show that the transfer functions using the eight
predictors, TFfull, perform better than the two other transfer
functions (Figure 2). This is particularly clear for the early
stages, when

{

d, itop, φGDD

}

are the key drivers of the GLAI
dynamics (Supplementary Figure 2). Furthermore, during the
end of the vegetative and plateau periods, when GLAI was
high, saturation of the reflectance signal could degrade GLAI
retrieval from the multispectral data (Baret and Guyot, 1991).
This explains the higher RMSEP of TFUAV in 2017, especially
during the plateau period, because the GLAI was higher in
2017 as compared to 2016 (Figure 1). Nevertheless, during
the senescence period the impact of parameter δ is dominant
(Supplementary Figure 2) and UAV observations bring valuable
information that significantly improve GLAI predictions. Indeed,
using the spectral predictors leads to moderate RRMSEP
values during the critical period of the senescence because
it limits RMSEP inflation when the GLAI values decrease
substantially (Figures 1, 2).

Parameters
{

MAbig , δ
}

of the GDMM were adjusted over
the GLAITF dynamics estimated from each of the three transfer
functions. The GDMM was then run with the estimated values
of

{

MAbig , δ
}

to get GLAIest that describes the continuous
GLAI dynamics of each microplot. Results show that GLAIest is
highly correlated to GLAITF for the three transfer functions with
R2 ≥ 0.98 and RRMSE ≤ 0.08. However, the estimation accuracy

of parameters
{

MAbig , δ
}

varies greatly depending on the use
of GLAITF dynamics from TFfull, TFUAV or TFprior to invert the
GDMM. Indeed, when using TFfull estimates to fit the GDMM,
the parameters

{

MAbig , δ
}

are retrieved with a good accuracy

(R2≈0.6 and RRMSE< 9%, Figure 3), although the R2 values are
relatively low forMAbig when computed for each individual year
(Table 3) due to the restricted range of variation observed in 2016
and 2017. Conversely, inverting the GDMM based on GLAITF
dynamics obtained from TFUAV or TFprior significantly degraded
the accuracy of

{

MAbig , δ
}

retrieval (Table 3). Differences of

retrieval accuracy between GLAIest dynamics and
{

MAbig , δ
}

when using TFUAV and TFprior estimates to invert the GDMM
are not surprising, as numerous combinations of parameters can
lead to the same expected dynamics.

Currently, UAV is the only phenotyping tool able to deliver
both high spatial resolution (Tattaris et al., 2016) and throughput
(Madec et al., 2017; Yang et al., 2017a) in the field. These
characteristics, added to its reasonable cost (Reynolds et al.,
2018), explain its growing popularity in the last decade (Yang
et al., 2017a). Although numerous studies have been conducted
about crop phenotyping from UAV, most of them focus on
vegetation indices to describe the evolution of the canopy. Very
few studies such as Lelong et al. (2008), Potgieter et al. (2017)
and Yao et al. (2017), aimed at characterizing the GLAI dynamics
throughout the whole cycle from UAV imagery. Moreover, these
studies dealt with few genotypes and/or microplots and delivered
GLAI estimates on a limited number of time points distributed
throughout the cycle. In this study, we proposed an innovative
way of developing transfer functions, consisting in using
spectral predictors

{

r∗450, r
∗
532, r

∗
568, r

∗
675, r

∗
730

}

concurrently with
additional known variables

{

itop, φGDD, d
}

to predict GLAI
dynamics of a large panel. The resulting transfer functions
provided good accuracy compared to other studies where GLAI
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FIGURE 3 | Correlation between the biggest leaf area (MAbig) and leaf longevity (δ) assessed in the field and estimated by inverting the GLAI Dynamics Maize Model

based on GLAI dynamics obtained from TFfull. TFfull is the transfer function based on the eight predictors
{

r*450, r
*
532, r

*
568, r

*
675, r

*
730,d, itop, φGDD

}

.

TABLE 3 | Coefficient of determination (R2), Root Mean Square Error (RMSE) and Relative RMSE (RRMSE) values obtained when using three sets of predictors in the

transfer functions to estimate the biggest leaf area (MAbig) and leaf longevity (δ) by inverting the GLAI Dynamics Maize Model.

Name MAbig δ

2016 2017 2016 2017

R2 RMSE RRMSE (%) R2 RMSE RRMSE (%) R2 RMSE RRMSE (%) R2 RMSE RRMSE (%)

TFprior 0.13 0.0050 11 0.23 0.0052 10 −0.04 163 14 0.24 141 12

TFUAV 0.18 0.0047 10 −0.81 0.0077 14 0.40 126 11 0.62 93 8

TFfull 0.36 0.0043 10 0.35 0.0048 9 0.58 104 9 0.56 107 9

TF full is the transfer function based on the eight predictor
{

r*450, r
*
532, r

*
568, r

*
675, r

*
730,d, itop, φGDD

}

, while TFUAV is based only on
{

r*450, r
*
532, r

*
568, r

*
675, r

*
730

}

and TFprior only on
{

d, itop, φGDD
}

.

was retrieved from remote sensing observations (Haboudane
et al., 2004; Walthall et al., 2004; Verger et al., 2014; Verrelst
et al., 2015; Kang et al., 2016), especially given the small size of
the microplots, and the diversity of the genotypes characterized.
However, possible residual genotypic effects related to differences
in leaf orientation or aggregation may be present because a
unique transfer function was used for all genotypes on each date.
Additional view directions or the use of a proper 3D model
of canopy architecture may help to solve this structure effect
problem and further improve the prediction accuracy (López-
Lozano et al., 2007; Baret et al., 2010; Liu et al., 2016).

Inversion of the GDMM also appears to be a valuable
approach as it provides continuous dynamics that are more
biologically meaningful than time point estimates or dynamics
obtained by adjusting purely mathematical functions (Koetz
et al., 2005). Two fine scale traits: the area of the biggest leaf
(MAbig) and leaf longevity parameters (δ) were also retrieved
with a satisfying accuracy, providing that priori information was
available. However, the temporal sampling of GLAITF might
have a strong impact on the retrieval performances of the

inversion process (Kalogiros et al., 2016). The flight dates were
approximately evenly distributed along the growth cycle in our
study, but a simulation approach using the GDMMmodel could
be used to determine the optimal temporal sampling.

The good performance of our approach is partly explained
by the good representativeness of the reference plots as
compared to the whole experiment. The convex hull of
the calibration domain computed for the eight predictors
{

r∗450, r
∗
532, r

∗
568, r

∗
675, r∗730, d, itop, φGDD

}

and extended by 5%
to account for the associated uncertainties included 87% (2016)
and 91% (2017) of the whole dataset. These results show that
ground measurement for only 5% of the total number of
microplots is sufficient to accurately predict the GLAI dynamics
and its two underlying traits on the whole experiment. However,
in our case the genotypes were selected to represent a wide
range of variation based on prior knowledge gained on the
genotype characteristics, which may not be possible in all
the situations.

This method reduced the phenotyping time by a factor
of about 20 compared to fully ground-based phenotyping.
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This makes possible for only one person to perform all
the ground measurements and assess GLAI dynamics of
large populations that were previously unmanageable. To
our best knowledge, this study is one of the first describing
a field phenotyping method to characterize the maize
GLAI dynamics continuously throughout the cycle, with
sufficient throughput and accuracy to fit breeding and genetic
studies requirements.

Unraveling GLAI Dynamics Response to
Contrasted Environmental Conditions
The differences observed for the GLAI dynamics between water
treatments (Figure 1) can be better understood by analyzing
its underlying components. In 2016, AUC was greatly reduced
under the WD condition compared to the WW condition
(-8%, Figure 4) which is mainly explained by the decrease of
δ (Supplementary Figure 4). This decreased stay-green under
drought (-13.7%) is consistent with the timing of the water stress
as reported by previous results (Kamara et al., 2003; Çakir, 2004;
Young et al., 2004; Li et al., 2018; Mangani et al., 2018). On
the contrary, in 2017 the reduced MAbig and density, d was
compensated by an increase of δ, leading to almost similar AUC
values for both treatments (−1.7%). Conversely to 2016, this
increased stay-green (+7.9%) under drought is surprising. A
possible explanation is that the reduced MAbig and d probably
led to an increased light homogeneity in the canopy. Indeed,
better light distribution in the canopy strata have been shown to
delay the canopy senescence (Borrás et al., 2003; Huang et al.,
2017; Yang et al., 2019). The difference in plant density between
treatments was negligible in 2016 compared to 2017, supporting
this explanation.

In both years, δ seems more affected by drought stress than
MAbig (Figure 4) because the water stress started at the end of
leaf growth, allowing an almost optimal setup of the plant leaf
area (Çakir, 2004; Li et al., 2018). Thus, δ seems to be a promising
trait for exploring the impact of flowering or grain-filling drought
stress on GLAI dynamics. However, the small variation ofMAbig

between treatments should be opposed to the strong increase that
occurred in 2017 as compared to 2016 (Figure 4). This increase
might be explained by the lower density observed in 2017
(Supplementary Figure 4), with less competition for resources
resulting in bigger leaves. Therefore, MAbig could be a valuable
trait for studying impact of other stress on GLAI dynamics,
including early drought and high plant density.

GLAI response to water stress was further analyzed by
applying a hierarchical clustering to the genotypic relative
differences of GLAI dynamics betweenWW andWD treatments.
It revealed four different patterns of response to drought stress
in both years, representing between 13% (Cluster 1 in 2017)
and 39% (Cluster 2 in 2016) of the panel (Figure 5). In 2016,
all patterns showed earlier senescence under the WD condition.
The differences are on the timing of the senescence onset as
well as the impact of drought on the maximum GLAI value.
Surprisingly, the fourth cluster showed a larger amplitude of
GLAI dynamics under theWD condition. In 2017, the maximum
GLAI value was impacted by drought stress with a variable

magnitude amongst the four clusters (Figure 5), while senescence
was only slightly delayed.

The patterns of GLAI dynamics’ drought response
is significantly linked to the stability of grain yield
(Supplementary Figure 5). Interestingly, the effect of GLAI
dynamics response was not due to a drought escape allowed by
precocity which was considered in the linear model. In 2016, the
dynamics clusters explained 5.7, 5.2, 7.2, and 10% of the drought
tolerance of grain yield, kernel number, thousand kernel weight
and harvest grain moisture, respectively. A higher amplitude
of dynamics under the WD condition (Figure 5, cluster 4)
was associated with better stability of grain yield and kernel
number under drought stress (Supplementary Figure 5). Also,
a maximum stay-green led to a limited thousand kernel weight
loss and a higher harvest grain moisture (clusters 2, 3, and 4).
These results are consistent with the timing of the drought:
the flowering stress impacted the maximum GLAI value and
the establishment of the kernel number, while the grain filling
stress affected the thousand kernel weight and harvest grain
moisture through earlier senescence (Çakir, 2004; Li et al., 2018;
Mangani et al., 2018).

In 2017, the clusters explained a smaller part of the grain
yield (4%) and kernel number (6.4%) stability while the cluster
effect was not significant for the thousand kernel weight and
harvest grain moisture. Cluster 4 exhibited very similar GLAI
dynamics under both treatments, resulting in the smallest
impact of the drought on grain yield and kernel number
(Supplementary Figure 5). For the three other clusters, the
magnitude of the reduction of the maximum GLAI value led
to a corresponding decrease of grain yield and kernel number.
Although these results seem in good agreement with the timing
of the stress experienced in 2017, it is not possible to clearly
attribute either the grain yield variation or the response of the
GLAI dynamics to the flowering drought stress rather than to the
reduced plant density.

Here, MAbig , δ and AUC were used to decipher an average
response of GLAI dynamics to drought stress, while clustering
was used to identify groups of genotypes with typical pattern
of drought response. Both approaches bring valuable insights
to understand the GLAI dynamics adaptation to environmental
conditions. Despite the relatively simple clustering method used,
our study demonstrated that the timing and magnitude of GLAI
values were consistent with the timing and magnitude of the
water stress experienced with possible consequences on the
thousand kernel weight (2016) and kernel number (2016 and
2017) (Supplementary Figure 5). Such clustering approach was
applied to temporal series of observations over maize (Han et al.,
2018; Su et al., 2019) and rice (Campbell et al., 2015). However,
it is not yet widely used because of the still limited number of
studies based on high temporal phenotyping of many genotypes.

A better understanding of drought stress impact on GLAI
dynamics and its underlying traits is a first step toward the
design of new ideotypes for maize breeding. Comprehensive crop
models like APSIM, DSSAT, or STICS, have been used to study
how specific traits influence grain yield of a reference genotype
under a large range of current and future environments, and
predict the best combination of traits to maximize productivity

Frontiers in Plant Science | www.frontiersin.org 9 June 2019 | Volume 10 | Article 685

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Blancon et al. Phenotyping Maize GLAI Dynamics

FIGURE 4 | Impact of drought stress on the biggest leaf area (MAbig), leaf longevity (δ), density (d) and the Area Under the Curve (AUC) in 2016 and 2017. Boxplots

are built from adjusted means. The horizontal line in the boxplots corresponds to the median, while the diamond corresponds to the mean. The lower and upper

hinges show the first and third quartiles, and the whiskers correspond to 1.5 times the inter-quartile range or to the most extreme value, whichever is smallest. Dots

represent values outside this range. Asterisks indicate a significant difference of means between treatments based on a paired t-test: *** p ≤ 0.001; ** p ≤ 0.01.

FIGURE 5 | GLAI dynamics response to drought representative of the panel diversity in 2016 and 2017. The hierarchical clustering applied to the normalized

difference of GLAI dynamics in Well-Watered and Water-Deficient treatments resulted in four distinct clusters in both years. The thick line represents the median of

GLAIest for the genotypes in the corresponding cluster, while the thin dashed lines show the first and third quartiles. N is the number of genotypes in each cluster.

Data are adjusted means.

(Hammer et al., 2005; Chenu et al., 2008; Harrison et al.,
2014; Parent et al., 2018). However, these models are sometimes
inaccurate, especially when dealing with stressing environments

(Rötter et al., 2015). Leaf Area Index assessed locally have
been used to constrain or update crop model predictions for
specific experiments and showed good results (Casa et al., 2012;
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Jégo et al., 2012). The rapid accumulation of field GLAI data
provided by high-throughput phenotyping, coupled with proper
envirotyping, will allow to accurately link average GLAI response
to environmental factors and improve crop models’ calibration.
This in turn will contribute to the design of more valuable
ideotypes. While high-throughput phenotyping platform under
controlled conditions are efficient to estimate leaf related traits
(Cabrera-Bosquet et al., 2016) and have already been used to
calibrate crop models (Parent et al., 2018), field phenotyping
would allow to explore a wider but also more realistic range of
environmental conditions (White et al., 2012).

GLAI Traits Are Promising Traits for Maize
Breeding Under Optimal and Water Limited
Conditions
To investigate the potential interest of GLAI traits (MAbig , δ,
AUC) in maize breeding, their heritability and their impact on
grain yield and its components were evaluated. High heritability
of MAbig , δ and AUC traits was found for all years and

conditions with H2 > 0.70 (Figure 6). This is consistent with
the high heritability of GLAITF throughout the growth cycle.
GLAITF heritability was slightly lower in 2017 than in 2016,
probably because of density heterogeneities. Moreover, the lower
heritability observed in 2017 for the first flight is explained by
the dominant impact of density at this early stage, which had
a medium heritability (0.53<H2<0.66). The senescence period
also seems to show decreased heritability, which can be linked
to the increasing residual effect of the soil reflectance, leading
to poorer performance of the transfer function during this
period (Girard and Girard, 2003). Moreover, the soil moisture
heterogeneity may also contribute to decrease the heritability
for the later stages, especially for the 2016 WD condition when
the water stress is culminating. Overall, both the dynamics and
the derived traits exhibit similar or higher heritability than grain
yield and female flowering.

Earliness is related to the duration of the growth cycle, with
early genotypes that tend to have fewer leaves, reduced stay-
green, and finally lower grain yield (Li et al., 2016; Parent et al.,
2018). In our study, the effect of GLAI traits on grain yield and
its components are distinct from the effect of the flowering date
which was considered in the linear model (Table 4). Further,
grain yield and its components are more related to GLAI traits
that to earliness. Among the four harvest traits (grain yield,
kernel number, thousand kernel weight, harvest grain moisture),
the grain yield is the best explained trait (Table 4). As it accounts
for both the magnitude and the duration of the dynamics, AUC
explains the largest part of the harvest traits variance, with up to
14.7 and 16.4%, for grain yield and kernel number, respectively.
Cairns et al. (2012) and Christopher et al. (2014, 2016) also
highlighted the link between grain yield and the AUC of NDVI
dynamics in maize and wheat, respectively. Cairns et al. (2012)
showed that AUC throughout the whole growth cycle explains
up to 14% of grain yield variability under optimal conditions and
9% under drought stress in tropical hybrids, which agrees with
our findings. However, a limited effect of AUC on grain yield
and kernel number was observed in the 2016 WD condition,

FIGURE 6 | Heritability estimates for GLAI dynamics (GLAITF ), biggest leaf

area (MAbig), leaf longevity (δ), Area Under the Curve (AUC), grain yield and

female flowering throughout the growth cycle in 2016 and 2017 for

Well-Watered (WW) and Water-Deficient (WD) treatments. The black dots

represent the heritability of GLAITF estimated at each flight date, year and

modality.

because of the greater impact of thousand kernel weight on
grain yield due to water stress during grain filling (Çakir, 2004;
Mangani et al., 2018).

MAbig and δ showed smaller effects, except for thousand
kernel weight and harvest grain moisture in the 2016 WD
condition. MAbig impact on grain yield and thousand kernel
weight is consistent with results reported by Allison et al. (1998),
Subedi and Ma (2005), and Li et al. (2018), showing the strong
dependency of grain yield to the area of the biggest leaves
around the ear. However, δ had a larger effect than MAbig , due
to the timing of the drought stress that impacted mostly the
thousand kernel weight and harvest grain moisture through an
earlier senescence and a shorter grain filling period (Çakir, 2004;
Li et al., 2018; Mangani et al., 2018). Previous works (Cairns
et al., 2012; Kante et al., 2016; Yang et al., 2017b) have also
pointed out that stay-green is one of the major determinant
of grain yield, and can explain from 7 to 12% of its variation,
which is very similar to the magnitude of δ effect in this
study (Table 4). Finally, it is noteworthy that MAbig and δ are
strongly negatively correlated in both stressed and well-watered
environments (Supplementary Figure 4). This relationship, also
observed by Kamara et al. (2003), might be the consequence
of an increase illumination homogeneity within canopy strata
for maize genotypes with smaller leaves, thus exhibiting a
delayed senescence.

Leaf greenness traits have been shown to increase breeding
efficiency when used as secondary traits in the past (Bänziger
and Lafitte, 1997; Rutkoski et al., 2016; Sun et al., 2017).
There are several requirements for a secondary trait to be
useful in a breeding program: it must be correlated with yield,

Frontiers in Plant Science | www.frontiersin.org 11 June 2019 | Volume 10 | Article 685

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Blancon et al. Phenotyping Maize GLAI Dynamics

TABLE 4 | Impact of GLAI traits on grain yield and its components in each year and water treatment.

Trial Trait r2

adjusted

Flowering date AUC δ MAbig

p-value var. expl. p-value var. expl. p-value var. expl. p-value var. expl.

2016 WW GY 0.40 *** 0.111 *** 0.147 *** 0.025 n.s. X

KN 0.37 *** 0.087 *** 0.164 * 0.014 n.s. X

TKW 0.02 n.s. X n.s. X n.s. X *** 0.031

HGM 0.25 *** 0.037 *** 0.126 *** 0.053 n.s. X

WD GY 0.11 n.s. X *** 0.030 ** 0.020 ** 0.025

KN 0.05 n.s. X *** 0.033 ** 0.020 n.s. X

TKW 0.15 n.s. X n.s. X *** 0.117 *** 0.074

HGM 0.32 *** 0.048 *** 0.065 *** 0.130 * 0.009

2017 WW GY 0.21 * 0.010 *** 0.127 n.s. X – –

KN 0.17 n.s. X *** 0.127 n.s. X – –

TKW 0.03 * 0.018 n.s. X n.s. X – –

HGM 0.04 n.s. X *** 0.021 * 0.017 – –

WD GY 0.12 n.s. X *** 0.119 n.s. X – –

KN 0.15 n.s. X *** 0.143 n.s. X – –

TKW 0 n.s. X n.s. X n.s. X – –

HGM 0.08 *** 0.045 ** 0.021 ** 0.022 – –

The effect of the flowering date, the Area Under the Curve (AUC), the leaf longevity (δ) and the area of the biggest leaf (MAbig ) on grain yield (GY) and its components (KN, kernel

number; TKW, thousand kernel weight; HGM, harvest grain moisture) were tested and the effects size estimated. To prevent issues due to multicollinearity between predictors, MAbig

was removed from the 2017 model based on the variance inflation factor. The significance of each effect is given by the “p-value” column with *** p ≤ 0.001; ** p ≤ 0.01; * p ≤ 0.05;

n.s. p > 0.05. The magnitude of the effects is reported in the column “var. expl.” The adjusted r2 shows the total variance explained. The model was fitted on adjusted means.

have a higher heritability than yield, be fast, easy and cheap
to measure by non-destructive means (Araus et al., 2012).
The use of the GLAI phenotyping method proposed in this
study fulfill all these requirements. Importantly, it provides
GLAI traits that exhibit similar or higher heritability than
their ground based counterparts. The heritability of MAbig

is comparable with that of maize ear leaf width and length
measured manually (Tian et al., 2011; Wang et al., 2017, 2018;
Zhao et al., 2019), while stay-green traits, related to δ, are
generally associated with lower heritability, whether assessed
manually (Yang et al., 2017b), by visual scoring (Messmer et al.,
2011; Ziyomo and Bernardo, 2013; Almeida et al., 2014; Trachsel
et al., 2016) or proximal sensing (Christopher et al., 2014;
Yang et al., 2017b). Similarly, lower heritability is generally
reported for traits similar to AUC, such as the NDVI AUC
before flowering (Trachsel et al., 2016 for maize) and after
flowering (Christopher et al., 2014 for wheat) estimated by
proximal sensing. These results demonstrate the benefit of data
aggregation at the canopy level throughout the whole growth
cycle, by combining a model-based approach with UAV remote
sensing to characterize traits describing the green leaf area
dynamics. These spatial and temporal aggregation decreases
estimation uncertainties compared to measurements realized
on few plants and/or a single time point, and provides more
accurate genotypic parameters (Araus et al., 2012; Tuberosa,
2012). These conclusions are in good agreement with a recent
study that demonstrated in durum wheat the higher heritability
of NDVI estimated from UAV compared to ground-based NDVI
(Condorelli et al., 2018).

Our results demonstrate thatAUC,MAbig and δ are promising
traits for further investigation in maize breeding programs.

However, the compensation between leaf area (MAbig) and leaf
longevity (δ), constitutes a significant limit for the improvement
of maize through increased light interception during the whole
cycle and particularly the grain filling period. A solution to
circumvent this correlation could be to modify maize leaf area
vertical profile and leaf orientation to allow a better light
penetration in the canopy, but this question can’t be addressed
with the simple GLAI dynamics model presented here.

Applicability and Limitations of the Method
In this study, we proposed a high-throughput method to
phenotype maize GLAI in the field by combining repeated
UAV observations, a simple GLAI dynamics model and a
few field measurements. The main limitation of the proposed
method is that two parameters, the phyllochron (φGDD) and the
final number of leaves (itop), must be characterized beforehand
for all the genotypes. These two parameters were assumed
constant under contrasted environmental conditions to reduce
the field work. The leaf number is marginally sensitive to
growing conditions, with maximum variation of about one leaf
(Allen et al., 1973; Bonaparte and Brawn, 1976). Although the
constancy of the phyllochron across environments for a given
genotype is a common assumption in crop modeling (Tardieu,
2013), it is still debated. For example, Birch et al. (1998)
for maize and Clerget et al. (2008) for sorghum found that
phyllochron may vary between environment due to temperature,
day length and irradiance variation. Conversely, Lafarge and
Tardieu (2002) measured maize phyllochron in strongly diverse
environments located in France (Mediterranean conditions) and
inMali (Sahelian conditions) and showed that maize phyllochron
was perfectly stable between environments and years except
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under extreme conditions of temperature (40◦C) and high
vapor pressure deficit (6 kPa). Chenu et al. (2008) showed the
same constancy for sorghum phyllochron across environments.
Therefore, the phyllochron and leaf number constancy for a
given genotype seems to be a reasonable assumption for most
of agricultural environments in which our method is likely to
be used.

The phyllochron and the leaf number can be assessed rapidly
either in the field or in a high-throughput greenhouse platform
during the early stages before silking (Tardieu et al., 2017).
This first step provides an opportunity to gather information
on the vegetative development of a population of interest and is
necessary to accelerate the characterization of its GLAI dynamics
under a subsequently infinite number of scenarios. The third
prior variable used, the density, is often routinely measured
in a breeding trial. If the density is unknown, it could be
readily estimated through image analysis based on early UAV
flight as proposed by Gnädinger and Schmidhalter (2017) and
Jin et al. (2017).

The preliminary characterization of the phyllochron and the
leaf number should be done once but for all new genotypes, and
thus could not be feasible for some material, like segregating
breeding populations. However, in case one or all the prior
variables are unknown, it is still possible to assess GLAI dynamics
with acceptable precision. Indeed, we showed that using only the
multispectral measurements lead to reasonable GLAI estimation
performance throughout the cycle. Indeed, spectral predictors
limit the RRMSEP inflation during the senescence which is the
period exhibiting the higher uncertainties. Moreover, a highly
precise GLAI dynamics is only required to estimate MAbig and
δ when inverting the GDMM. Indeed, we demonstrated that
GLAIest was accurately retrieved irrespectively to the use of the
prior variables, and thus emerging properties such as AUC can
still be derived accurately. This alternative approach is thus
particularly well suited for the first steps of breeding programs,
when the need is on high-throughput more than high precision
phenotyping tools.

CONCLUSION

This study demonstrated that with a limited number of field
measurements and UAV multispectral observations covering
the growth cycle, it is possible to finely characterize the
GLAI dynamics of a large maize panel under contrasted

environmental conditions. Our high-throughput method
reduces the phenotyping time by a factor of about 20 compared
to fully ground-based phenotyping observations. Moreover,
the use of a simple GLAI dynamics model provides continuous
description from emergence to maturity and allows the
estimation of three GLAI traits: the Area Under the Curve, the
area of the biggest leaf and leaf longevity. Both the dynamics and
the GLAI traits exhibit high heritability and could be used as
secondary traits in maize breeding programs. Indeed, the GLAI
traits can be used to predict grain yield while the pattern of
GLAI dynamics drought response is informative about the grain
yield stability under water stress. Finally, the high-throughput
nature of the method proposed in this study also paves the way
to new genetic studies on large populations, like Genome Wide
Association Studies, to dissect the genetic determinants of GLAI
and its interaction with the environment throughout the crop
growth cycle.
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Kang, Y., Özdoğan, M., Zipper, S., Román, M., Walker, J., Hong, S., et al.

(2016). How universal is the relationship between remotely sensed vegetation
indices and crop leaf area index? a global assessment. Remote Sens. 8:597.
doi: 10.3390/rs8070597

Kante, M., Revilla, P., De La Fuente, M., Caicedo, M., and Ordás, B.
(2016). Stay-green QTLs in temperate elite maize. Euphytica 207, 463–473.
doi: 10.1007/s10681-015-1575-0

Keating, B., Carberry, P. S., Hammer, G., Probert, M. E., Robertson, M.
J., Holzworth, D., et al. (2003). An overview of APSIM, a model
designed for farming systems simulation. Eur. J. Agron. 18, 267–288.
doi: 10.1016/S1161-0301(02)00108-9

Kira, O., Nguy-Robertson, A. J., Arkebauer, T., Linker, R., and Gitelson, A. (2017).
Toward generic models for green LAI estimation inmaize and soybean: satellite
observations. Remote Sens. 2017, 1–16. doi: 10.3390/rs9040318

Koetz, B., Baret, F., Poilvé, H., and Hill, J. (2005). Use of coupled
canopy structure dynamic and radiative transfer models to estimate
biophysical canopy characteristics. Remote Sens. Environ. 95, 115–124.
doi: 10.1016/j.rse.2004.11.017

Kötz, B. (2001). Use of coupled evolution and radiative transfer models to derive

biophysical canopy characteristics from multispectral/temporal remote sensing

data. Trier: Universität Trier, 79p.
Lafarge, T., and Tardieu, F. (2002). A model co-ordinating the elongation of all

leaves of a sorghum cultivar was applied to both Mediterranean and Sahelian
conditions. J. Exp. Bot. 53, 715–725. doi: 10.1093/jexbot/53.369.715

Lelong, C. C. D., Burger, P., Jubelin, G., Roux, B., Labbé, S., and Baret, F. (2008).
Assessment of unmanned aerial vehicles imagery for quantitative monitoring
of wheat crop in small plots. Sensors 8, 3557–3585. doi: 10.3390/s8053557

Li, D., Wang, X., Zhang, X., Chen, Q., Xu, G., Xu, D., et al. (2016). The genetic
architecture of leaf number and its genetic relationship to flowering time in
maize. N. Phytol. 210, 256–268. doi: 10.1111/nph.13765

Li, Y., Tao, H., Zhang, B., Huang, S., and Wang, P. (2018). Timing of water deficit
limits maize kernel setting in association with changes in the source-flow-sink
relationship. Front. Plant Sci. 9:01326. doi: 10.3389/fpls.2018.01326

Liu, H., Yang, J., He, P., BAI, Y., JIN, J., Drury, C., et al. (2014). Optimizing
parameters of CSM-CERES-maize model to improve simulation performance
of maize growth and nitrogen uptake in Northeast China. J. Integr. Agric.
doi: 10.1016/S2095-3119(12)60196-8

Liu, K., Zhou, Q., Wu, W., Xia, T., and Tang, H. (2016). Estimating the crop leaf
area index using hyperspectral remote sensing. J. Integr. Agric. 15, 475–491.
doi: 10.1016/S2095-3119(15)61073-5

Lizaso, J., Batchelor, W., and Westgate, M. (2003). A leaf area model to simulate
cultivar-specific expansion and senescence of maize leaves. Field Crops Res. 80,
1–17. doi: 10.1016/S0378-4290(02)00151-X

López-Lozano, R., Baret, F., Chelle, M., Rochdi, N., and España, M.
(2007). Sensitivity of gap fraction to maize architectural characteristics
based on 4D model simulations. Agric. For. Meteorol. 143, 217–229.
doi: 10.1016/j.agrformet.2006.12.005

Madec, S., Baret, F., de Solan, B., Thomas, S., Dutartre, D., Jezequel, S., et al.
(2017). High-throughput phenotyping of plant height: comparing unmanned
aerial vehicles and ground LiDAR estimates. Front. Plant Sci. 8:02002.
doi: 10.3389/fpls.2017.02002

Mangani, R., Tesfamariam, E. H., Bellocchi, G., and Hassen, A. (2018). Growth,
development, leaf gaseous exchange, and grain yield response of maize cultivars
to drought and flooding stress. Sustainability 10:3492. doi: 10.3390/su10103492

Messmer, R., Fracheboud, Y., Bänziger, M., Stamp, P., and Ribaut, J.-
M. (2011). Drought stress and tropical maize: QTLs for leaf greenness,
plant senescence, and root capacitance. Field Crops Res. 124, 93–103.
doi: 10.1016/j.fcr.2011.06.010

Millet, E. (2016). Variabilité Génétique du Rendement de Maïs Soumis au Déficit

Hydrique et Aux Températures Elevées : Analyse d’un Réseau D’expérimentation

Multi-Site. Ph.D. thesis, Montpellier SupAgro, Montpellier, France, 197p.
Nguy-Robertson, A. L., Peng, Y., Gitelson, A. A., Arkebauer, T. J., Pimstein,

A., Herrmann, I., et al. (2014). Estimating green LAI in four crops:
Potential of determining optimal spectral bands for a universal algorithm.
Agric. For. Meteorol. 192–193, 140–148. doi: 10.1016/j.agrformet.2014.
03.004

Parent, B., Leclere, M., Lacube, S., Semenov, M. A., Welcker, C., Martre, P.,
and Tardieu F. (2018). Maize yields over Europe may increase in spite of
climate change, with an appropriate use of the genetic variability of flowering
time. Proc. Natl. Acad. Sci. U.S.A. 115, 10642–10647. doi: 10.1073/pnas.17207
16115

Potgieter, A. B., George-Jaeggli, B., Chapman, S. C., Laws, K., Suárez Cadavid,
L. A., Wixted, J., et al. (2017). Multi-spectral imaging from an unmanned
aerial vehicle enables the assessment of seasonal leaf area dynamics
of sorghum breeding lines. Front. Plant Sci. 8:1532. doi: 10.3389/fpls.
2017.01532

R Core Team (2017). R: A Language and Environment for Statistical Computing.

Vienna: R Foundation for Statistical Computing.
Rabatel, G., and Labbé, S. (2016). Registration of visible and near infrared

unmanned aerial vehicle images based on Fourier-Mellin transform. Precis.
Agric. 17, 564–587. doi: 10.1007/s11119-016-9437-x

Reynolds, D., Baret, F., Welcker, C., Bostrom, A., Ball, J., Cellini, F., et al. (2018).
What is cost-efficient phenotyping? Optimizing costs for different scenarios.
Plant Sci. Press. 282, 14–22. doi: 10.1016/j.plantsci.2018.06.015

Rötter, R. P., Tao, F., Höhn, J. G., and Palosuo, T. (2015). Use of crop simulation
modelling to aid ideotype design of future cereal cultivars. J. Exp. Bot. 66,
3463–3476. doi: 10.1093/jxb/erv098

Rutkoski, J., Poland, J., Mondal, S., Autrique, E., Pérez, L. G., Crossa, J.,
et al. (2016). Canopy temperature and vegetation indices from high-
throughput phenotyping improve accuracy of pedigree and genomic selection
for grain yield in wheat. G3amp58 GenesGenomesGenetics 6, 2799–2808.
doi: 10.1534/g3.116.032888

Sánchez, B., Rasmussen, A., and Porter, J. R. (2014). Temperatures and the growth
and development of maize and rice: a review. Glob. Change Biol. 20, 408–417.
doi: 10.1111/gcb.12389

Su, Y., Wu, F., Ao, Z., Jin, S., Qin, F., Liu, B., et al. (2019). Evaluating maize
phenotype dynamics under drought stress using terrestrial lidar. Plant Methods

15:11. doi: 10.1186/s13007-019-0396-x

Frontiers in Plant Science | www.frontiersin.org 15 June 2019 | Volume 10 | Article 685

https://doi.org/10.3389/fpls.2018.01638
https://doi.org/10.1111/gcb.12381
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1016/j.cj.2016.06.018
https://doi.org/10.1016/j.rse.2018.09.011
https://doi.org/10.1016/j.fcr.2012.02.012
https://doi.org/10.1016/j.rse.2017.06.007
https://doi.org/10.1016/j.agrformet.2003.08.027
https://doi.org/10.1016/S1161-0301(02)00107-7
https://doi.org/10.1093/jxb/erv573
https://doi.org/10.3390/rs8070597
https://doi.org/10.1007/s10681-015-1575-0
https://doi.org/10.1016/S1161-0301(02)00108-9
https://doi.org/10.3390/rs9040318
https://doi.org/10.1016/j.rse.2004.11.017
https://doi.org/10.1093/jexbot/53.369.715
https://doi.org/10.3390/s8053557
https://doi.org/10.1111/nph.13765
https://doi.org/10.3389/fpls.2018.01326
https://doi.org/10.1016/S2095-3119(12)60196-8
https://doi.org/10.1016/S2095-3119(15)61073-5
https://doi.org/10.1016/S0378-4290(02)00151-X
https://doi.org/10.1016/j.agrformet.2006.12.005
https://doi.org/10.3389/fpls.2017.02002
https://doi.org/10.3390/su10103492
https://doi.org/10.1016/j.fcr.2011.06.010
https://doi.org/10.1016/j.agrformet.2014.03.004
https://doi.org/10.1073/pnas.1720716115
https://doi.org/10.3389/fpls.2017.01532
https://doi.org/10.1007/s11119-016-9437-x
https://doi.org/10.1016/j.plantsci.2018.06.015
https://doi.org/10.1093/jxb/erv098
https://doi.org/10.1534/g3.116.032888
https://doi.org/10.1111/gcb.12389
https://doi.org/10.1186/s13007-019-0396-x
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Blancon et al. Phenotyping Maize GLAI Dynamics

Subedi, K. D., and Ma, B. L. (2005). Ear position, leaf area, and contribution of
individual leaves to grain yield in conventional and leafy maize hybrids. Crop
Sci. 45:2246. doi: 10.2135/cropsci2004.0653

Sun, J., Rutkoski, J. E., Poland, J. A., Crossa, J., Jannink, J.-L., and Sorrells, M. E.
(2017). Multitrait, random regression, or simple repeatability model in high-
throughput phenotyping data improve genomic prediction for wheat grain
yield. Plant Genome 10:0111. doi: 10.3835/plantgenome2016.11.0111

Tardieu, F. (2012). Any trait or trait-related allele can confer drought tolerance: just
design the right drought scenario. J. Exp. Bot. 63, 25–31. doi: 10.1093/jxb/err269

Tardieu, F. (2013). Plant response to environmental conditions: assessing potential
production, water demand, and negative effects of water deficit. Front. Physiol.
4:17. doi: 10.3389/fphys.2013.00017

Tardieu, F., Cabrera-Bosquet, L., Pridmore, T., and Bennett, M. (2017).
Plant phenomics, from sensors to knowledge. Curr. Biol. 27, R770–R783.
doi: 10.1016/j.cub.2017.05.055

Tattaris, M., Reynolds, M. C., and Chapman, S. (2016). A direct comparison of
remote sensing approaches for high-throughput phenotyping in plant
breeding. Front. Plant Sci. 7:01131. doi: 10.3389/fpls.2016.01131

Tian, F., Bradbury, P. J., Brown, P. J., Hung, H., Sun, Q., Flint-Garcia, S., et al.
(2011). Genome-wide association study of leaf architecture in the maize nested
association mapping population. Nat. Genet. 43, 159–162. doi: 10.1038/ng.746

Trachsel, S., Sun, D., SanVicente, F. M., Zheng, H., Atlin, G. N., Suarez,
E. A., et al. (2016). Identification of QTL for early vigor and stay-green
conferring tolerance to drought in two connected advanced backcross
populations in tropical maize (Zea mays L.). PLOS ONE 11:e0149636.
doi: 10.1371/journal.pone.0149636

Tuberosa, R. (2012). Phenotyping for drought tolerance of crops in the genomics
era. Front. Physiol. 3:347. doi: 10.3389/fphys.2012.00347

Verger, A., Vigneau, N., Chéron, C., Gilliot, J.-M., Comar, A., and Baret, F. (2014).
Green area index from an unmanned aerial system over wheat and rapeseed
crops. Remote Sens. Environ. 152, 654–664. doi: 10.1016/j.rse.2014.06.006

Verrelst, J., Rivera, J. P., Veroustraete, F., Muñoz-Marí, J., Clevers, J.
G. P. W., Camps-Valls, G., et al. (2015). Experimental Sentinel-2 LAI
estimation using parametric, non-parametric and physical retrieval methods
– a comparison. ISPRS J. Photogramm. Remote Sens. 108, 260–272.
doi: 10.1016/j.isprsjprs.2015.04.013

Viña, A., Gitelson, A., Nguy-Robertson, A., and Peng, Y. (2011). Comparison of
different vegetation indices for the remote assessment of green leaf area index
of crops. Remote Sens. Environ. 115, 3468–3478. doi: 10.1016/j.rse.2011.08.010

Walthall, C., Dulaney, W., Anderson, M., Norman, J., Fang, H., and Liang,
S. (2004). A comparison of empirical and neural network approaches for
estimating corn and soybean leaf area index from Landsat ETM+ imagery.
Remote Sens. Environ. 92, 465–474. doi: 10.1016/j.rse.2004.06.003

Walthall, C. L., Pachepsky, Y., Dulaney, W. P., Timlin, D. J., and Daughtry, C. S. T.
(2007). Exploitation of spatial information in high resolution digital imagery to
map leaf area index. Precis. Agric. 8, 311–321. doi: 10.1007/s11119-007-9048-7

Wang, B., Zhu, Y., Zhu, J., Liu, Z., Liu, H., Dong, X., et al. (2018).
Identification and fine-mapping of a major maize leaf width qtl in a

re-sequenced large recombinant inbred lines population. Front. Plant Sci.

9:00101. doi: 10.3389/fpls.2018.00101
Wang, H., Liang, Q., Li, K., Hu, X., Wu, Y., Wang, H., et al. (2017). QTL analysis

of ear leaf traits in maize (Zea mays L.) under different planting densities. Crop
J. 5, 387–395. doi: 10.1016/j.cj.2017.05.001

Wang, Y., Tian, Y., Zhang, Y., Saleous, N., Knyazikhin, Y., Vermote, E., et al.
(2001). Investigation of product accuracy as a function of input and model
uncertainties: Case study with SeaWiFS and MODIS LAI/FPAR algorithm.
Remote Sens. Environ. 78, 299–313. doi: 10.1016/S0034-4257(01)00225-5

White, J. W., Andrade-Sanchez, P., Gore, M. A., Bronson, K. F., Coffelt, T. A.,
Conley, M. M., et al. (2012). Field-based phenomics for plant genetics research.
Field Crops Res. 133, 101–112. doi: 10.1016/j.fcr.2012.04.003

Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., et al. (2017a). Unmanned
aerial vehicle remote sensing for field-based crop phenotyping: current status
and perspectives. Front. Plant Sci. 8:1111. doi: 10.3389/fpls.2017.01111

Yang, Y., Xu,W., Hou, P., Liu, G., Liu,W.,Wang, Y., et al. (2019). Improvingmaize
grain yield by matching maize growth and solar radiation. Sci. Rep. 9:3635.
doi: 10.1038/s41598-019-40081-z

Yang, Z., Li, X., Zhang, N., Wang, X., Zhang, Y., Ding, Y., et al. (2017b). Mapping
and validation of the quantitative trait loci for leaf stay-green-associated
parameters in maize. Plant Breed. 136, 188–196. doi: 10.1111/pbr.12451

Yao, X., Wang, N., Liu, Y., Cheng, T., Tian, Y., Chen, Q., et al. (2017). Estimation of
wheat LAI at middle to high levels using unmanned aerial vehicle narrowband
multispectral imagery. Remote Sens. 9:1304. doi: 10.3390/rs9121304

Young, T. E., Meeley, R. B., and Gallie, D. R. (2004). ACC synthase expression
regulates leaf performance and drought tolerance inmaize. Plant J. 40, 813–825.
doi: 10.1111/j.1365-313X.2004.02255.x

Zhang, Y., Tian, Y., Knyazikhin, Y. V., Martonchik, J. J., Diner, D. J., Leroy, M. M.,
et al. (2000). Prototyping of MISR LAI and FPAR algorithm with POLDER data
over Africa. Geosci. Remote Sens. 38, 2402–2418. doi: 10.1109/36.868895

Zhao, Y., Wang, H., Bo, C., Dai, W., Zhang, X., Cai, R., et al. (2019). Genome-wide
association study of maize plant architecture using F1 populations. Plant Mol.

Biol. 99, 1–15. doi: 10.1007/s11103-018-0797-7
Ziyomo, C., and Bernardo, R. (2013). Drought tolerance in maize: indirect

selection through secondary traits versus genomewide selection. Crop Sci. 53,
1269–1275. doi: 10.2135/cropsci2012.11.0651

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Blancon, Dutartre, Tixier, Weiss, Comar, Praud and Baret. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 16 June 2019 | Volume 10 | Article 685

https://doi.org/10.2135/cropsci2004.0653
https://doi.org/10.3835/plantgenome2016.11.0111
https://doi.org/10.1093/jxb/err269
https://doi.org/10.3389/fphys.2013.00017
https://doi.org/10.1016/j.cub.2017.05.055
https://doi.org/10.3389/fpls.2016.01131
https://doi.org/10.1038/ng.746
https://doi.org/10.1371/journal.pone.0149636
https://doi.org/10.3389/fphys.2012.00347
https://doi.org/10.1016/j.rse.2014.06.006
https://doi.org/10.1016/j.isprsjprs.2015.04.013
https://doi.org/10.1016/j.rse.2011.08.010
https://doi.org/10.1016/j.rse.2004.06.003
https://doi.org/10.1007/s11119-007-9048-7
https://doi.org/10.3389/fpls.2018.00101
https://doi.org/10.1016/j.cj.2017.05.001
https://doi.org/10.1016/S0034-4257(01)00225-5
https://doi.org/10.1016/j.fcr.2012.04.003
https://doi.org/10.3389/fpls.2017.01111
https://doi.org/10.1038/s41598-019-40081-z
https://doi.org/10.1111/pbr.12451
https://doi.org/10.3390/rs9121304
https://doi.org/10.1111/j.1365-313X.2004.02255.x
https://doi.org/10.1109/36.868895
https://doi.org/10.1007/s11103-018-0797-7
https://doi.org/10.2135/cropsci2012.11.0651
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

	A High-Throughput Model-Assisted Method for Phenotyping Maize Green Leaf Area Index Dynamics Using Unmanned Aerial Vehicle Imagery
	Introduction
	Materials and Methods
	Plant Material, Experimental Design and Environmental Conditions
	GLAI Dynamics Maize Model (GDMM)
	Ground Measurements
	Measurements Performed Over the Whole Experiment
	GLAI Ground Measurements Over a Reference Sample of Microplots (GLAIfield)

	Multispectral Image Acquisition From the UAV and Data Processing
	Estimation of GLAI of Each Microplot (GLAITF) Using Transfer Functions Calibrated Over the Reference Microplots
	Estimation of MAbig and δ Over the Whole Experiment
	Statistical Analysis
	Adjusted Means and Broad-Sense Heritability
	Impact of GLAI on Grain Yield and Drought Stress Tolerance


	Results and Discussion
	Environmental Conditions and Field Measurements
	Combining UAV Observations and GDMM Enables Accurate and High-Throughput Phenotyping of GLAI Dynamics and Underlying Traits
	Unraveling GLAI Dynamics Response to Contrasted Environmental Conditions
	GLAI Traits Are Promising Traits for Maize Breeding Under Optimal and Water Limited Conditions
	Applicability and Limitations of the Method

	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


