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Transcription factor (TF) has a significant influence on the state of a cell by regulating

multiple down-stream genes. Thus, experimental and computational biologists have

made great efforts to construct TF gene networks for regulatory interactions between TFs

and their target genes. Now, an important research question is how to utilize TF networks

to investigate the response of a plant to stress at the transcription control level using

time-series transcriptome data. In this article, we present a new computational network,

PropaNet, to investigate dynamics of TF networks from time-series transcriptome data

using two state-of-the-art network analysis techniques, influence maximization and

network propagation. PropaNet uses the influence maximization technique to produce a

ranked list of TFs, in the order of TF that explains differentially expressed genes (DEGs)

better at each time point. Then, a network propagation technique is used to select a

group of TFs that explains DEGs best as a whole. For the analysis of Arabidopsis time

series datasets from AtGenExpress, we used PlantRegMap as a template TF network

and performed PropaNet analysis to investigate transcriptional dynamics of Arabidopsis

under cold and heat stress. The time varying TF networks showed that Arabidopsis

responded to cold and heat stress quite differently. For cold stress, bHLH and bZIP

type TFs were the first responding TFs and the cold signal influenced histone variants,

various genes involved in cell architecture, osmosis and restructuring of cells. However,

the consequences of plants under heat stress were up-regulation of genes related to

accelerating differentiation and starting re-differentiation. In terms of energy metabolism,

plants under heat stress show elevated metabolic process and resulting in an exhausted

status. We believe that PropaNet will be useful for the construction of condition-specific

time-varying TF network for time-series data analysis in response to stress. PropaNet is

available at http://biohealth.snu.ac.kr/software/PropaNet.

Keywords: transcription factor, gene regulatory network inference, time-varying, plant stress, influence
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1. INTRODUCTION

A transcription factor (TF) is a protein that regulates expression
levels of a target gene (TG) by binding to a specific DNA sequence
on the promoter regions of target genes (Latchman, 1997). TFs
activate or repress target genes, contributing to expression of
genes at the right time and in the right amount throughout the
life of the cell and the organism. Groups of TFs function in
a coordinated fashion to direct various biological mechanisms
such as development (Lobe, 1992), signal transduction (Pawson,
1993), response to environmental change (Chen et al., 2002), and
regulation of cell cycle (Meyyappan et al., 1996).

When a plant is exposed to stress, TFs that are activated
in response to stress rapidly propagate stress signals to other
genes in the cell by regulating multiple downstream genes (Zhu,
2016). In recent genetic engineering experiments of plants,
over-expression of specific transcription factors enhanced
resistance to stress. For example, over-expression of TFs
such as OsAP37 (Oh et al., 2009), OsNAC9 (Redillas et al.,
2012), OsNAC10 (Jeong et al., 2010), MYB96 (Seo et al.,
2011), OsbZIP12 (Joo et al., 2014), and OsbZIP23 (Karaba
et al., 2007) induced drought resistance phenotype in rice
and Arabidopsis. Thus, the TF gene regulatory network
(or TF network) should be considered as an essential
source of information when detecting stress response
signaling genes.

However, many computational methods for investigating the
stress response genes of plants do not utilize TF networks.
Algorithms such as EDISA (Supper et al., 2007), a two-step
3D clustering algorithm (Supper et al., 2007), OPTricluster
(Tchagang et al., 2012), and TimesVector (Jung et al., 2017)
perform 3D clustering which takes advantage of gene, time
and phenotype information, yet, they do not take account of
TF network. The primary goal of the methods is to detect
a group of genes that show same expression patterns in
all phenotypes (coherent response) or show same patterns
except in one phenotype (single response) or show different
patterns for different phenotypes (independent response). All
of these methods successfully detected important gene clusters,
but it was not sufficient to detect regulatory relationship
between clustered genes without prior knowledge of TF-
TG network.

Construction of transcriptional networks has been extensively
investigated in both computational biology and experimental
biology. In this paper, the TF gene regulatory network (or TF

network) refers to a graph-based representation that contains

regulatory relationships between TFs and their target genes.
Constructing a TF network is a very difficult task since the

number of possible TF-TG relationships to be considered for
the construction of a TF network is over 30 million (1,500 TF
× 20,000 TG); There are 20,418, 22,619 and 27,665 protein-
coding genes (i.e., TGs) in human, mouse, and Arabidopsis
species, respectively, according to the ENSEMBL (Zerbino et al.,
2017). However, a few number of TF network databases have
been produced, thanks to the large scale efforts of research
communities, e.g., PlantTFDB (Jin et al., 2016), HumanTFDB and
AnimalTFDB (Hu et al., 2018).

There are three different strategies for building TF networks.
First, the most fundamental approach would be to collect TF-
TG relationships from literatures. Biologists conducted various
types of biological experiments such as over-expression, knock-
down or knock-out of genes, in-depth expression level profiling,
for elucidating TF-TG relationships. The number of TF-TG
relations in the literature-based databases is relatively small, but
the information is reliable. TRRUST (Han et al., 2017) contains
8,444 and 6,552 TF-TG interactions for 800 and 828 TFs for
human and mouse species, respectively. In ATRM (Jin et al.,
2015), 1,431 TF-TG interactions for 324 TFs are curated for
Arabidopsis. HTRIdb (Bovolenta et al., 2012), PAZAR (Portales-
Casamar et al., 2007), TFactS (Essaghir et al., 2010), TRED (Zhao
et al., 2005) and TFe (Yusuf et al., 2012) are examples of the
literature-based TF network construction.

The second approach is based on computational predictions
from a large collection of gene expression datasets that
are measured using high-throughput technologies such as
microarray (Schena et al., 1995) and RNA sequencing (Mortazavi
et al., 2008). ARACNe (Margolin et al., 2006) uses an information
theoretic framework based on the data processing inequality
theorem. It was successfully used for the reconstruction of
context-specific transcriptional networks in multiple tissue types
(Lefebvre et al., 2010). Then, many methods were developed
for the construction of TF networks: GENIE3 (Huynh-Thu
et al., 2010), NARROMI (Zhang et al., 2012), Ennet (Sławek
and Arodź, 2013), and Wisdom of crowds (Marbach et al.,
2012). Following these successes, the DREAM (Dialogue for
Reverse Engineering Assessments and Methods) challenge
competition was initiated. Yip’s method (Yip et al., 2010)
(for DREAM3) and GENIE3 (Huynh-Thu et al., 2010) (for
DREAM4 and DREAM5) won the competitions. These
approaches were further developed to investigate dynamics
of TF networks. Various gene regulatory network (GRN)
inference methods using time-course data have been developed
with model-based and model-free approaches. Model-based
methods formulate the expression of a target gene as a function
of its regulators. The representative model-based methods,
such as ScanBMA (Young et al., 2014), Inferelator (Bonneau
et al., 2006), BGRMI (Iglesias-Martinez et al., 2016), Fused-
Lasso (Omranian et al., 2016). BGRMI (Iglesias-Martinez
et al., 2016), use ridge regression, LASSO and Bayesian Model
Averaging (BMA) techniques. Model-free methods compute
the degree of regulation based on model-free and time-lag
regression. TD-ARACNE (Zoppoli et al., 2010) used mutual
information to measure time-delayed dependency between
two genes. DyeGENIE3 (Huynh-Thu and Geurts, 2018)
and BTNET (Park et al., 2018b) used tree-based ensemble
regression methods.

The third approach uses experimental data that measure
affinity of TFs. The discovery that formaldehyde can crosslink
histones to DNA (Brutlag et al., 1969) initiated Chromatin
Immunoprecipitation (ChIP) assay that utilized crosslinked
complexes and analysis of the associated DNA (Solomon and
Varshavsky, 1985). Formaldehyde produces both protein-nucleic
acid and protein-protein crosslinks in vivo by a reaction with
amino and imino groups of amino acids and of DNA (Orlando,
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2000). ChIP assays performed with crosslinking have made
it possible to identify interactions that would not withstand
the isolation procedure without crosslinking (Hoffman et al.,
2015). ChIP assay has been ubiquitous in a multiple variations,
one of which is ChIP-on-chip that combines ChIP with DNA
microarray (Ren et al., 2000). Several studies identified binding
sites for TFs by ChIP-on-chip in plants including Arabidopsis
(Thibaud-Nissen et al., 2006). ChIP sequencing (ChIP-seq)
technology was developed independently by three research
groups in 2007 (Barski et al., 2007; Johnson et al., 2007;Mikkelsen
et al., 2007) and it has been used to identify genomic regions
that TF binds to, also known as, transcription factor binding
sites (TFBSs). It crosslinks DNA and associated TFs, shears
DNA-TF complexes into 500 bp DNA fragments by sonication
or nuclease digestion, immunoprecipitates the targeted TF
complexes using an appropriate protein-specific antibody, and
then determines the sequence of the DNA fragments. With
ChIP-seq and several other variants of immunoprecipitation
assay such as ChIP-chip (Ren et al., 2000), ChIP-exo (Rhee
and Pugh, 2011), ChIA-PET (Fullwood and Ruan, 2009), a
number of ChIP-seq-like datasets for different species, tissues
and cell lines have been generated and are freely available in
databases such as Gene Expression Omnibus (GEO) (Barrett
et al., 2013), Sequence Read Archive (SRA) (Kodama et al.,
2011) and ENCODE (Landt et al., 2012). We can locate
a binding motif sequence of a TF by processing ChIP-
seq dataset and predict the target genes by searching the
binding motif sequence on the promoter region of target
genes. Now, some of the databases are providing TF-TG
relationships by predicting binding sites for the collective TFs:
TRANSFAC (Matys et al., 2006) a well-known commercial
database; ENCODE (Landt et al., 2012), JASPAR (Khan et al.,
2017) and ChIP-Atlas (Oki et al., 2018) for model organisms;
GTRD (Yevshin et al., 2016), ChIPBase (Yang et al., 2012),
Cistrome (Zheng et al., 2018b) and Factorbook (Wang et al.,
2012) for human and mouse species; PlantRegMap (Jin et al.,
2016) for plant species.

2. MOTIVATION

Investigating time-varying dynamics of TF network upon abiotic
stress is the main research question. We can use a template
network from existing TF networks that are surveyed in the
previous section. A biological experiment can be designed to
investigate how a plant responds to stress over time by measuring
transcriptome data at different time points under stress. Then,
cell’s response at the transcriptome level can be easily detected
by measuring differentially expressed genes (DEGs), control vs.
under stress, at each time point. By constructing TF networks
that include DEGs and TFs, we can gain insight into how
the responses of the TFs differ in gene expression levels
under each stress, i.e., DEGs. There are two major issues with
this approach.

1. Contributions of TF to DEGs differ for different TFs. It is not
enough to consider only TFs that show significant expression
changes during stress. It is known that TFs that show little

change in expression levels function in response to stress as
much as those that show large change in expression levels. In
other words, the amount of change in expression level of a TF
is not necessarily proportional to the significance of its role
in the response to the stress (Ehlting et al., 2008; Larkindale
and Vierling, 2008). In addition, determining major regulators
is not trivial since a TF can target other TFs, forming multi-
layered relationships to reach DEGs. How do we know which
TFs are the major regulators?

2. Since there are many TFs and DEGs at each time point, TF
networks are huge in size, which are too big to be interpreted.
How can we construct small but informative TF networks
at each time point so that we can interpret dynamics of TF
networks?

Unfortunately, there is few computational methods to achieve
this goal of investigating the dynamics of TF networks from time-
series gene expression data. There are some interesting prior
works, but they are not designed for answering this research
question. DREM (Schulz et al., 2012) is a pioneering method
for the identification of regulatory TFs from the time-series
gene expression data analysis. It first partitions genes into gene
clusters, then defines branch time points where gene expression
patterns are diverging, and then investigates the effect of TFs to
the downstream genes utilizing known TF-TG relationships to
detect regulatory TFs for gene clusters. However, DREM uses
only direct TF-TG information. Therefore, it cannot consider
the effects of interactions between TFs that might cause indirect
influence on differential expression of genes. TimeTP (Jo et al.,
2016) is another method for detecting major TFs using Influence
Maximization (IM), one of the widely used analysis techniques
for social network analysis. TimeTP produces a list of TFs having
influence on pathway genes, but it is not designed to investigate
time-varying dynamics of TF networks. There are network
constructionmethods that utilized the literature information. For
example, Wanke et al. (2010b) constructed a network of MAPK
(mitogen-activated protein kinase) signaling pathway including
receptors, second messengers and TFs from known interactions
in literature. In general, literature based network construction
requires quite efforts involving manual curation. Thus, these
methods are not suitable for large scale network construction
involving multiple pathways.

In this article, we propose PropaNet to investigate dynamics
of TF networks from time-series transcriptome data through
network simulation analysis that mimics the regulatory
mechanism of TF. PropaNet uses state-of-the-art network
analysis technologies, influence maximization and network
propagation techniques, to perform a two-stage simulation
analysis as below.

1. An influence maximization technique is used to produce a
ranked list of TFs at each time point, in the order of TFs that
have influence on a larger number of DEGs.

2. A network propagation technique is used to select a group of
TFs that explains DEGs best as a whole. The process is done by
iterating a network propagation simulation by adding a TF at
a time, going down the list of TFs determined by the influence
maximization technique.
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Weused PropaNet to interpret time-series analysis transcriptome
data under cold and heat stress in Arabidopsis. From the
analysis, we successfully identified major TFs and constructed
TF networks at each time point. “A major TF” indicates
a TF that has large direct or indirect influence on DEGs
(estimated by influence maximization) and propagates more
influence on more significant DEGs (estimated by network
propagation). Performance of PropaNet was compared with
simple correlation-based methods and other methods for
time series analysis using clustering and network information.
PropaNet showed better performance in finding cold- and
heat-specific transcription factors and their target genes by
incorporating network information and its novel strategy for
selecting major regulatory TFs.

3. METHODS

3.1. Problem Definition of PropaNet
The PropaNet analysis takes three types of input data: time-
series gene expression data EX that are measured at multiple
time-points, a template TF network G and a set of target genes
TGset. PropaNet detects major TFs that particularly target TGset
defined by users. TGset can range from a small set of pathway
genes to whole DEGs of the gene expression data. The goal of the
PropaNet analysis is to elucidate time-varying networks of major
TFs and their target genes at each time point by the network-
based analysis on the template TF network. Terminologies used
in this paper are defined as follows:

Definition 3.1. Let EX, G and TGset be time-series gene
expression data, TF network and a set of targeted genes,
respectively. EX is a set of gene expression values ei,j,k of gene i
measured at time point j = 0, . . . ,T from replicate k = 1, . . . ,K.
A set of differentially expressed genes for time point j = 1, . . . ,T
compared to the initial time point j = 0 is defined as DEGsetj.
From the template network G, a time-specific network Gj is
generated using a gene set Vj = (TGset ∩ DEGsetj) ∪ TFset.
A time-specific network Gj is defined as Gj = (Vj,Ej) with nodes
Vj (TFs and TGs) and edges Ej (TF-TF and TF-TG pairs). For
each node and edge, a weight of a node p :V 7→ ℜ (a map of
node to weight) and a weight of an edge w :E 7→ ℜ (a map
of edge to weight) exist. Differential expression levels di,j and
correlation coefficient ci,i′ that are defined below is assigned to
p and w, respectively.

• Dj is a set of differential expression levels at time j, the element
of which di,j is the differential expression level of a gene i at
the time point j = 1, . . . ,T with respect to the initial time
point j = 0. That is, di,j is calculated from comparing two
sets of expression values {ei,j,1, . . . , ei,j,k} and {ei,0,1, . . . , ei,0,k}
by an existing DEG detection algorithm such as limma (Ritchie
et al., 2015) or DESeq2 (Anders and Huber, 2010). di,j can be
Z-scores from limma or log2 fold change from DESeq2.
• ci,i′ is a Pearson’s correlation coefficient (PCC) between gene i

and i′ computed using two sets of expression values {ei,j,k} and
{ei′ ,j,k} where j = 1, . . . ,T, k = 1, . . . ,K.

• DEGsetj is a set of differentially expressed genes (DEGs) at time
point j where a DEG is defined as a gene with p-value(di,j) <

0.05.
• MTFsetj is a minimal set of major TFs that explains the change

of expression levels of DEGsetj at time point j.
• MTFnetj is a time-varying TF network at time point j that

shows the regulatory system explaining howMTFsetj controls
DEGsetj.

PropaNet outputs a set of major regulatory TFsMTFsetj and their
time-varying network including target genes MTFnetj for each
time point j = 1, . . . ,T. PropaNet operates in three steps as below
and the process is visualized in Figure 1.

• Step 1. Instantiation of time-specific TF networks from a
template network. A time-specific network consists of DEG
and TFs at each time point.
• Step 2. Time-specific measurement of the influence of each

TF by influence maximization. TFs in the network are ranked
along with their influence on DEGs via the network topology
(including non-direct targets).
• Step 3. Identification of time-specific major regulatory TFs by

network propagation. The TF set is constructed by adding a TF
at a time, following down the ranked list of TFs.

3.2. Step 1. Instantiation of Time-Specific
TF Networks
The first step of PropaNet is to construct a time-specific networks
Gj for each time point j = 1, . . . ,T by mapping TFs and a
intersected gene set of user-defined target genes and DEGs to a
template network (i.e., a gene set Vj = (TGset∩DEGsetj)∪TFset
for time j) (Figure 1). DEGs are determined by comparing gene
expressions at each time point j = 1, . . . ,T with time j = 0 (i.e.,
0 h after stress). The inputs of PropaNet (a template TF network
and DEG profiles) are designed to be user-determined.

3.3. Step 2. Time-Specific Measurement of
the Influence of Each TFs by Influence
Maximization
The goal of this step is to rank TFs in the order of
influence to TGset ∩ DEGsetj at each time point j. Influence
maximization (IM) is an algorithmic technique used in network
influence analysis to select a set of seed nodes to maximize
the spread of influence (the expected number of influenced
nodes) from a given network (Li et al., 2018). Labeled influence
maximization (Li et al., 2011) is a modified version of IM, applied
only to a set of pre-selected nodes. TimeTP (Jo et al., 2016) used
the labeled influence maximization algorithm to determine TFs
that regulates the perturbed sub-pathways. We used a modified
version of the labeled influence maximization algorithm to rank
TFs in terms of their influence to TGset∩DEGsetj at time point j.

We provide more detailed explanation of the labeled influence
maximization algorithm of PropaNet (Algorithm 1). Input of the
algorithm for time j is (Gj = (Vj,Ej),TFset,Dj) to measure the
influence of each TF (∈ TFset) to the targeted genes (∈ Vj\TFset)
on the time-specific TF network Gj. IM algorithm first initializes
the weights of node, DE(s), as the absolute differential expression
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FIGURE 1 | Workflow of PropaNet. The PropaNet analysis takes three types of input data: time-series gene expression data that are measured at multiple

time-points, a template TF network and a set of targeted genes. The goal of the PropaNet analysis is to elucidate time-varying networks at each time point. It uses the

influence maximization technique to produce a ranked list of TFs at each time point, in the order of TF that explains DEGs better. Then, a network propagation

technique is used to select a group of TFs that explains DEGs best as a whole. The process is done by iterating a network propagation simulation by adding a TF at a

time, going down the list of TFs determined by the influence maximization technique.
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Algorithm 1: Influence Maximization on TF-TG network (G,TFset,D)

1: Let

G = (V ,E) : a TF network defined on the nodes V
TFset : a set of TFs
D = di,j : values of differential expression of gene i at time point j

2: Initialize

DE(s) = abs(ds,j), for all s ∈ V : an absolute differential expression of a genes
IL(t) = 0, for all t ∈ TFset : an influence level of TFt
Round = 1000 : the number of iteration

3: for i← 1, . . . ,Round do

4: Derive G′ by removing each edge from G according to the probability 1 − p where p is the weight of the edge in the original
graph G.

5: for each node t ∈ TFset do

6: IL(t)← IL(t)+
∑

s∈AllReachableNodesG′ (t)\TFset

DE(s)
|AllReachableNodesG′ (t)|

7: end for

8: end for

9: Normalize IL(t) = IL(t)/Round, for all t ∈ TFset.
10: return IL

level ds,j for all s ∈ V and the influence of TF, IL(t), as 0 for
t ∈ TFset. Then, it generates sub-graph G′ from G by selecting
edges with a probability of 1− p for each edge (line 4), where p is
the weight of the edge in the original graphG. Then, the influence
IL(t) increases by the

∑
DE(s′)/|AllReachableNodesG′ (t)| for s

′ ∈

AllReachableNodesG′ (t) \ TFset where AllReachableNodesG′ (t) is
nodes that the TF can reach in the generated sub-graph G′. After
repeating the above procedure for Round times, the algorithm
produces the final output IL of all TFs at the time point j.

3.4. Step 3. Time-Specific Identification of
Major Regulatory TFs by Network
Propagation
Network propagation is a graph-based analytic paradigm that
propagates information of a node to nearby nodes through the
edges at each iteration step. This process is repeated for a fixed
number of steps or until convergence. Since the value of a node
influences not only the values of its direct network neighbors
but also those of its distant neighbors, network propagation is
known to perform better than direct neighbor search methods
and shortest path search methods for a problem of prioritizing
genes that are associated with seed genes (Cowen et al., 2017).

Network propagation is mathematically equivalent to random
walks on a graph. We can think of p0(v) as an amount of
information of a node v at the beginning of iteration 0. At
each iteration k, the amount of information at each node v is
influenced by the sum of the information at the neighboring
(adjacent) nodes N(v) at iteration k − 1, in proportion to
the weights on the corresponding edges, according to the
following equation:

pk(v) =
∑

u∈N(v)

pk−1(u)w(u, v), (1)

where w(u, v) is the weight of the edges (u, v) in the input
network. The propagation process described in Equation 1 can
be written in matrix notation as follows:

pk =Wpk−1, (2)

where W is a normalized version of the adjacency matrix of the
input network. Another version of the propagation process is the
random walk with restart (RWR). RWR performs the random
walk and restarts at a rate of α:

pk = αp0 + (1− α)Wpk−1, (3)

where the parameter α is thought of the trade-off between prior
information (restart) and network smoothing (random walk).
After k iterations, the values in the resulting vector pk(v) give us
a ranking of each node v that diffused from the initial value of
seed nodes.

PropaNet simulates the TF-centered regulation process based
on the network propagation. Each step of network propagation
outputs ranked list of nodes in the network. The objective
function, or the stopping criteria, is to find a ranked list of
genes that are most similar to the ranked list of DEGs in terms
of their p-values. This can be easily determined by computing
Spearman’s rank correlation coefficient (SCC) between the two
ranked lists. More formally, the simulation is evaluated by the
comparison of the ranking between the differential expression
of observation DE(v) and the inferred expression of network
propagation IP(v). This simulation is independently processed
for each time point j. It first initializes the information of nodes,
IP(v) as 0 for v ∈ V . At the time point j, we now have a
list of TFs and their influence score, IL(t), that are measured
in the previous step. It, then, initialize the most influencing TF
(i.e., argmaxt IL(t)) as a set of seed S and conducts network
propagation on the TF network G to update IP(v). Then, it
measures the similarity of ranking, SCC, between IP(v) and
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DE(v). It adds the next most influencing TF into the set of seed
S, performs network propagation, computes SCC, and decides
whether accepting the TF or not accepts; the TF is accepted if
SCC increases or declined otherwise. It continues this process for
the list of TFs until the coverage of target genes exceeds the half
number of DEG at the time point. Finally, it produces S as a set
of major regulatory TFs.

3.5. Data Description
The experiments for the evaluation of PropaNet were conducted
using two time-series gene expression datasets measured
under thermal stress, AtGenExpress (Kilian et al., 2007) and
E-MTAB-375 (Caldana et al., 2011), and a TF network,
PlantRegMap (Jin et al., 2016).

• AtGenExpress dataset. AtGenExpress (Kilian et al.,
2007) dataset was a well curated dataset that measured
time-series gene expression data for multiple treatments
from multiple tissues of Arabidopsis, making it four-
dimensional dataset (gene, time, condition, and tissue). In
this analysis, the AtGenExpress data of thermal (cold and
heat) stress from shoot tissues were used. The raw data,
derived by AtGenExpress experiments, were downloaded
from GEO (Barrett et al., 2013) for cold (GSE5621) and
heat (GSE5628) stresses. Also, zero time point data were
downloaded from control time-series samples (GSE5620).
Among the dataset of heat stress in AtGenExpress, recovery
phase data were excluded to focus on the response of stress.
Then, the data were processed using justRMA function
of affy R library (Wagner, 2016) with default options
(background and RMA normalization). To handle multiple
probes in a single gene, custom CDF (Dai et al., 2005) was also
used as input of justRMA to summarize expression levels
for gene IDs. DEGs of each time point were determined by
limma (Ritchie et al., 2015) package using replicates. In this
way, the gene expression dataset of 14 samples (7 time points
including 0 time point × 2 replicates) for cold stress and 10
samples (5 time points including 0 time point × 2 replicates)
for heat stress and the corresponding DEG profiles were
generated. The detailed information of the AtGenExpress
samples was summarized in Supplementary Table 1.
• E-MTAB-375 dataset. A dataset E-MTAB-375 (Caldana et al.,

2011) of light condition with 22 time points under cold
and heat stress was used. Since E-MTAB-375 provided no
replicates at each time point, we used the first and the second
time point data (i.e., T = 0 and 5 min) of non-stress
time-series for the replicate data at zero time point (i.e.,
T = 0 min). Accordingly, the 5-min time point data of
stress (cold/heat) time-series were discarded for consistency of
time point. The raw data of E-MTAB-375 were downloaded
from ArrayExpress (Kolesnikov et al., 2014) and processed
in the same way as the AtGenExpress data were processed.
The detailed information of the E-MTAB-375 samples was
summarized in Supplementary Table 2.
• PlantRegMap TF network. PlantRegMap (Jin et al., 2016)

(http://plantregmap.cbi.pku.edu.cn) was used as a template
network in our analysis. PlantRegMap was a TF network

that was constructed mainly from TF ChIP-seq data. Other
existing TF networks, such as ATTED-II (Obayashi et al.,
2017), AraNet (Lee et al., 2014), and ATRM (Jin et al., 2015),
were constructed by integrating multiple information such as
TF ChIP-seq data, literature, and co-expression information.
Since we were not able to evaluate how accurate each of
the networks is, we decided to use PlantRegMap since we
thought that PlantRegMap was the most unbiased network
mainly form TF ChIP-seq data. After the PlantRegMap
network including 688 TFs and 192,385 regulatory relations
was downloaded, we computed PCC between the TF-TG pairs
from the experimental gene expression data and assigned PCC
values to the weights of edges of the template network.

3.6. Experiment Procedures for Evaluation
of PropaNet
To evaluate PropaNet, we performed four types of experiments
as below.

• Investigation on biological implications of time varying

networks in response to thermal stress in Arabidopsis. We
demonstrated PropaNet by applying it to the AtGenExpress
microarray dataset to investigate the response mechanism
of thermal (cold and heat) stress in Arabidopsis. The
temperature-related stress has been investigated extensively
in scientific, agricultural, and industrial fields because of
recent climate and weather extremes, derived by global
warming. Moreover, climate and weather extremes would
be worse as global warming continues; a special report of
Intergovernmental Panel on Climate Change (IPCC) in 2018
predicts with high confidence that global warming is likely to
reach 1.5◦C between 2,030 and 2,052 if it continues to increase
at the current rate (IPCC, 2018).

Using the AtGenExpress dataset and the PlantRegMap (Jin
et al., 2016) template network, PropaNet generated time
varying networks in response to thermal stress. Then,
enrichment analysis was conducted for the Gene Ontology
(GO) (Consortium, 2018) terms and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000)
pathways to investigate the biological function of the time
varying networks by performing Fisher’s exact test with
Benjamini-Hochberg correction (Benjamini and Hochberg,
1995) using statsmodels (Seabold and Perktold, 2010)
Python library. In addition, PropaNet TF networks were
compared to a literature-based network, ATRM (Jin et al.,
2016), a literature-based network including 1,432 TF-TG
edges, to investigate how many TF-TG relationships in the
predicted network were reported in the literature.
• Performance comparison with existing tools. This

experiment quantitatively compared PropaNet with existing
methods at TF and gene levels. For the TF level comparison,
the PCC, SCC, entropy and DREM (Schulz et al., 2012)
methods predicted the stress-related TFs by analyzing the
AtGenExpress dataset, and the accuracy of prediction of
each tool was measured in terms of F1 score by comparing
the predicted TFs to ground truth TFs. For the gene level
comparison, existing methods to determine stress-responsive
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genes from time-series data, EDISA (Supper et al., 2007),
OPTricluster (Tchagang et al., 2012), and DREM (Schulz
et al., 2012), were compared with PropaNet by running them
on the AtGenExpress dataset and comparing the resulting
genes to the ground truth genes in the same way as TF level
comparison analysis did.

To define the ground truth genes, a list of genes that
were annotated with cold/heat response-related GO terms,
such as “response to cold,” “cold acclimation,” and “cellular
response to cold” for cold stress, and “response to heat,”
“heat acclimation,” “cellular response to heat,” and “cellular
heat acclimation” for heat stress was collected from the TAIR
database (Lamesch et al., 2012). Then, 33 and 20 TFs and 330
and 158 genes were collected as ground truth genes for cold
and heat stress, respectively.

The precision, recall, and F1 scores were used as accuracy
measures to investigate how many ground truth genes in the
predicted networks, which were defined as follows:

precision = TP/(TP + FP)

recall = TP/(TP + FN)

F1 = (
precision−1 + recall−1

2
)

= 2 ·
precision · recall

precision+ recall
,

where TP, FP, and FN were the number of correctly positive-
predicted genes, falsely positive-predicted genes, and falsely
negative-predicted genes, respectively.
• The effect of utilizing non-stress time-series sample as

control. Many biological experiments were designed to
compare treated vs. control samples. Use of control samples
can be used to eliminate the effects of background biological
mechanisms (e.g., circadian rhythm) and help focus on
mechanisms related to treated samples. To investigate the
effect of utilizing control sample data, we developed a
modified version of PropaNet, “PropaNetC,” to utilize non-
stress time-series control sample data for generating time-
varying networks.

After processing stress and non-stress time-series data,
PropaNetC identified DEGs at each time point compared to
the initial time point (0 h) for each of control and treated
samples separately. PropaNetC then selected seed DEGs at
each time point, t, by subtracting the DEGs of control samples
from DEGs of stress samples (i.e., DEGsetstresst − DEGsetcontrolt ,
where “−” was set difference operation). Using the seed DEGs,
PropaNetC conducted further steps, influence maximization
and network propagation, in the same way as PropaNet
did. We performed analysis with and without using control
samples, i.e., PropaNet and PropaNetC, on the AtGenExpress
dataset and compared the resulting TF networks.
• Analysis of the effect of the number of time points. In

this experiment, we investigated how PropaNet handled the
dataset with many time points. The goal of the experiment was
to compare two datasets with different time points as below:

– Cold stress data
- AtGenExpress, 7 time points between 0 and 24 h from
shoots
- E-MTAB-375, 22 time points between 0 and 21 h 20 min
under low-light condition

– Heat stress data
- AtGenExpress, 5 time points between 0 and 3 h from
shoots
- E-MTAB-375, 22 time points between 0 and 21 h 20 min
under normal-light condition

To investigate the effects of the number of time points and the
length of time intervals, we compared how many genes were
overlapped between two adjacent time points. The reason for
this criterion was to investigate on the effect of the densely
measured transcriptome data in the time domain for the
construction of time varying TF networks. The overlap of two
adjacent networks was defined as the number of gene sets
common between two adjacent time points. Quantitatively, the
overlap was defined as A∩B

A∪B , where A and B gene sets at two
adjacent time points.

4. RESULTS

4.1. Investigation on Biological
Implications of Time Varying Networks in
Response to Thermal Stress in Arabidopsis
PropaNet investigated time-varying TF networks using time-
series gene expression data measured at seven (j = 0, . . . , 6)
and five (j = 0, . . . , 4) time points for cold and heat stresses,
respectively. DEGs were detected at each of the six time points
(j = 1, . . . , 6) and four time points (j = 1, . . . , 4) for cold and
heat stresses, DEGs were detected at each time point with respect
to zero time point (j = 0). The number of DEGs were 41, 23,
524, 2,262, 6,129, 7,656 for cold stress, and 1,177, 522, 1,915 and
7,424 for heat stress. Then, PropaNet produced six-time-point-
networks (j = 1, . . . , 6) for cold stress (Supplementary Table 3)
and four-time-point-networks (j = 1, . . . , 4) for heat stress
(Supplementary Table 4). Figures 2, 3 show (1) the visualization
of time varying TF networks for each time point, (2) interesting
TFs that have relatively many downstream genes in the network,
and (3) the enriched GO terms and pathways of the target genes,
for the analyses of cold and heat stress data networks.

The time-varying networks had a modular structure of genes,
i.e., clusters of genes were spread out throughout the network. In
addition, neighboring modules had causal relationship where a
module activated at the previous time point cause the activation
of neighboring modules. This trend showed propagation of
TFs to other genes over time under cold and heat stress. An
interesting observation is that the cold stress network showed
more delayed response than other types of stress in terms of the
number of DEGs on the time domain, which was also reported in
an earlier study on AtGenExpress dataset (Wanke et al., 2010a).
Most genes in cold stress network show little response in the
early time point (T1 and T2), but stress response starts from T3
time point in cold stress network while the heat stress network
showed response at the very first time point, T1. In addition,
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major regulatory TFs that have many target genes in the network
were well-known TFs related to each stress. For example, CBF3
was found in the T3 cold stress network, which is the most well-
known TF for the response to cold stress that initiates global
gene expression change to the cold stress (Medina et al., 2011).
In addition, cold stress is known to be closely related to drought
and heat stresses. Cold, and osmotic stresses are known to induce
expression of many of the same genes and downstream genes in
Arabidopsis (Xiong et al., 2002). In our result, the drought stress-
responsive TFs such as DREB2A and DREB2B appeared in the
early response stage (T3) cold stress network. Heat shock factors
such as HSFA2 and HSFC1 appeared in T3 and T4 cold stress
networks, and they are documented to be induced in cold stress to
regulate downstream heat-shock-related proteins (Swindell et al.,
2007). In heat stress network, HSFA2 (Schramm et al., 2006), ERF
family TFs (Mizoi et al., 2012) that are known to regulate the
expression level of downstream genes in heat stress appeared in
the heat stress network.

The GO and KEGG enrichment analysis of cold stress
networks showed the “response to cold” and “response to water”
GO terms and the “plant hormone signal transduction” KEGG
pathway were enriched, which are known to be related to cold
stress in the literature (Eremina et al., 2016). For heat stress
analysis, the “response to chitin” GO term and the “hormone
signal transduction” KEGG pathway were enriched, and these
terms are known to be related to heat stress in the literature
(Eremina et al., 2016).

To investigate how many TF-TG relationships in the
PropaNet network were reported through the previous
experiments, the PropaNet network was compared to a
literature-based network, ATRM (Jin et al., 2016). Among
580 and 687 edges of the PropaNet networks for cold and
heat stress, 80 and 64 edges were literature-supported. The
overlap between the edges of PropaNet network and the edges
of ATRM network was statistically significant (p < 10−7 and
p < 0.0098 by Fisher’s exact test for cold and heat stress
networks). Among the literature-supported edges, 7 edges were
supported by the literatures of cold-specific experiments, such as
DREB2A→LTI78 (Xiong et al., 2001), DREB2A→LTI30 (Chung
and Parish, 2008), CBF3→ERD10 (Seki et al., 2002),
HOS10→LTI78, HOS10→COR15A, HOS10→NATA1, and
HOS10→ADH1 (Zhu et al., 2005). Also, 10 edges of the
PropaNet heat stress network were supported by the literatures
of heat-specific, such as HSFA9→HSP101 (Kotak et al., 2007),
WRKY39→MBF1C (Li et al., 2010), DREB2A→HSP70 (Sakuma
et al., 2006), HSFA2→APX2 (Charng et al., 2007),
HSF1→HSP17.6A (Nishizawa et al., 2006), HSF1→GolS1,
HSF1→GolS2, HSF1→MIPS2, HSFA2→GolS1, and
HSFA2→GolS2 (Busch et al., 2005).

4.2. Performance Comparison With
Existing Tools
The performance comparison was done at TF and gene level
using ground truth genes. For the TF level comparison, PropaNet
was compared with the PCC, SCC, entropy and DREM (Schulz
et al., 2012) methods, and PropaNet performed best for both

cold and heat AtGenExpress datasets (Figure 4A). The precision,
recall, and F1 scores of the TF level comparison were summarized
in Supplementary Table 5.

For the gene level comparison, existing methods to determine
stress-responsive genes from time-series data, EDISA (Supper
et al., 2007), OPTricluster (Tchagang et al., 2012), and
DREM (Schulz et al., 2012), were compared with PropaNet.
PropaNet showed the best performances for both cold and
heat stress datasets (Figure 4B). The precision, recall, and
F1 scores of the gene level comparison were summarized in
Supplementary Table 6.

4.3. Effects of Utilizing Non-stress
Time-Series Sample as Control
PropaNetC is a modified version of PropaNet to utilize non-stress
time-series control sample data. We performed analysis using
PropaNet and PropaNetC on the AtGenExpress datasets and
investigated how much the resulting networks were overlapped.
About 60% of analysis results in cold stress and over 98% in
heat stress were overlapped (Figures 5A,B). The GO enrichment
analysis for cold stress showed that the cold stress-related GO
term, “response to cold,” was enriched in analysis results from
PropaNet and PropaNetC overlapping genes(p < 10−8). The GO
term, “circadian rhythm,” was enriched only in the results from
PropaNet-specific genes (p < 0.0012) (Figure 5C). In detail,
circadian rhythm-related genes, such as LNK3, ERD7, WNK1,
CCR2, and GI, were not enriched in the analysis result from
PropaNetC. This observation suggests that the use of non-stress
time-series control sample data could eliminate the effects of
background biological mechanisms, e.g., circadian rhythm from
the network analysis result.

4.4. Effects of the Number of Time-Points
We performed PropaNet analysis on two datasets with different
time points, AtGenExpress (7 and 5 time points for cold and heat
stress) and E-MTAB-375 (22 time points). We then investigated
the overlap between the resulting networks of adjacent time
points. Genes in the networks of many (densely sampled) time
points (E-MTAB-375 dataset) were overlapped more, 69% and
38% in average, between adjacent time points than the resulting
genes of small (loosely sampled) time points (AtGenExpress
dataset), 25% and 20% in average, for cold and heat stress,
respectively (Figure 6). This result is reasonable and shows the
possibility of estimating gene expression values at unobserved
time points as shown in our previous work (Kang et al., 2019).

5. DISCUSSIONS

5.1. PropaNet Results and Stress
Response Genes
The effects of temperature on plants are broad. The
characteristics of effects of temperature on plant growth
could be classified by imposed severity, duration, the ramp
rates of changes, recovering condition and the developmental
stages of the plant. Usually, the ambient temperature is not a
stressful treatment. However, it may depend on the duration
of exposure. The physiological consequences of sudden

Frontiers in Plant Science | www.frontiersin.org 9 June 2019 | Volume 10 | Article 698

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Ahn et al. PropaNet

FIGURE 2 | Time-varying network of six time points (T1 ∼ T6) for cold stress experiment data in Arabidopsis. Red and blue nodes represent up/down DEGs, and

green border rhombuses represent the identified regulatory TFs. Tables show top-2 enriched terms for each of KEGG pathways [K] and GO terms [G] with adjusted

p-values by Benjamini-Hochberg correction. Some interesting TFs are named in the figure.
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FIGURE 3 | Time-varying network of four time points (T1 ∼ T4) for heat stress experiment data in Arabidopsis. Red and blue nodes represent up/down DEGs, and

green border rhombuses represent the identified regulatory TFs. Tables show top-2 enriched terms for each of KEGG pathways [K] and GO terms [G] with adjusted

p-values by Benjamini-Hochberg correction. Some interesting TFs are named in the figure.
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FIGURE 4 | Performance comparison of stress response gene detection tools. (A) For major TF selection, PropaNet was compared with PCC, SCC, entropy, and

DREM in terms of detecting how many ground truth TFs, TFs that were annotated by cold/heat stress GO terms. (B) For regulatory network construction, PropaNet

was compared with EDISA, OPTricluster, DREM in terms of detecting how many ground truth stress response genes that were annotated by cold/heat stress GO

terms. F1 score was used to measure the accuracy of tools.

temperature treatment have been extensively studied. However,
most of the experimental designs focused on experimentally
available conditions and tissues such as leaves, roots, and fruits.
Scrutinizing overall relationship of genes provides many of the
unrevealed contexts of signal transfers and hierarchies among
transcription factors.

In samples curated in AtGenExpress dataset (Kilian et al.,
2007), the growth conditions of the pre-treated are different in
terms of the treated periods. The plants grew under long-day
conditions such as 16 h light and 8 h dark at a light intensity
of 150 umol photons flux per square meter per second during
the pre-treated stage. However, the photon flux was changed in
the cold room to 60 umol in the same unit at steady state up to
24 h. It is our understanding that the circadian rhythm which
maintained during the pre-treated stage might be interfered
when the cold treatment started, and plants were exposed to the
lower intensity light along with the cold temperature. Therefore,
it is reasonable to accept that genes were affected by changes
in light condition and circadian rhythm as well as cold stress.

To remove the effect of diurnal cycling, light signaling and light
dependent development, we compared the results of PropaNet
with and without using non-stressed control samples. The major
TFs described in the following sections are TFs that were detected
even after removing the effect of diurnal cycle and light signaling.

5.1.1. Biological Implications of Major TFs Detected

From Cold Stress Data
A first glance at the results of cold stress at T1 stage, the
appearance of AMS (ABORTED MICROSPORES) gene is
matching with the previous reviews of temperature sensing
mechanism of plants (Ma et al., 2012). AMS like TF has edges to
genes like CYP81D11, UGT78D2, and AT4G00040. CYP81D11
might function as a monooxygenase, and its expression
pattern suggests that it is involved in plant detoxification
processes (Köster et al., 2012). UGT78D2 glycosylates the
hydroxyl group at C3 to form cyanidin3-O-glucosides and plays a
role in quercetin and kaempferol glycosylation in Arabidopsis (Li
et al., 2017). AT4G00040 encodes chalcone and stilbene synthase
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FIGURE 5 | Effects of using non-stress time-series control samples. PropaNetC was a modified version that utilized non-stress time-series control data. The Venn

diagram showed that PropaNet and PropaNetC produced about 60% overlapped results in cold stress (A) over 98% overlapped results in heat stress (B).

(C) Enriched GO terms in target genes for cold stress showed that a list of circadian rhythm genes were excluded in the analysis result by PropaNetC (p < 10−8).

family protein and interacts with AMS that binds to the promoter
region of the putative CHS gene (Xu et al., 2010). It is noteworthy
that bZIP proteins such as bZIP60, AHBP-1B and an HDZip
(homeodomain-leucine zipper) protein HB5, are detected in
early stages of cold stress T1 and T2. These bZIPs are known
to be related to the response to stress as follows. The expression
of bZIP60 is upregulated by ER stress inducers (Zhang et al.,
2017), and AHBP-1B is responsible to a pathogen (Sun et al.,
2018). A HDzip protein HB5 is a positive regulator of ABA
pathway (Perotti et al., 2017). In addition, RGA1 that is a GRAS
family TF regulates one of the histone deacetylase complex
subunits. It may be involved in the nucleosome stability and
possibly has a function as a transcription regulator (Zheng
et al., 2018a). Those genes are relatively short-lived but have
functioned as the early regulators although we could not identify
the successive link to the signal cascade.

At T3 stage, major TFs of the networks are bHLH proteins
(PIF4, MYC2), AP2/ERF proteins (RAP2.12, DREB1A, DREB2A,
DREB2B, ERF9), heat shock protein (HSFA2), HOS10 and
ZFHD1. It is remarkable that PIF4 which is known as a
thermosensing TF is detected in our analysis. The expression
of PIF4 is known to be gradually decreased at night under the
light/dark transition (Nusinow et al., 2011). However, PIF4 gene
expression seems to maintain stable status without fluctuation
up until 6h after cold stress started under the low light intensity
and then tend to decrease slowly in AtGenExpress data. PIFs are
known to interact with other bHLH proteins including MYC2

and light and thermosensing genes such as Cry1 and PhyB
(Park et al., 2018a; Xu et al., 2018). Our analysis, however,
detected other potential targets genes such as RLP31, CYCD1,
TPPH and AT1G19000 and these relationships remained even
after the varying diurnal expression trajectories of the light
signaling components were subtracted. This result suggests other
unknown functions of PIF4 and their target genes in stress
responses besides light and thermosensing. APETALA2/Ethylene
Responsive Factor (AP2/ERF) family TFs are related to biotic and
abiotic stress regulation in plants (Zhang et al., 2018). Among
the AP2/ERF proteins found by PropaNet, DREB1A was also
detected as a cold stress-specific marker gene in terms of the
transcript abundance and fold change (Wanke et al., 2010a).
DREB2A is known as a key transcriptional activator that induces
many heat- and drought-responsive genes in Arabidopsis (Mizoi
et al., 2019). HSFA2 is a well-studied thermo-responsive gene. In
our analysis, HSFA2 interacted with heat shock factors like GolS1,
GolS2, HSP101, MBF1C, and ELIP1. When the control samples
are considered, however, the network of HSFA2 and their target
genes was detected only at the last time point, which suggests that
these genes may react to light changes in control samples during
the middle stages of cold stress, but the effect may be removed
from the last time point network. HOS10 negatively regulates
COR gene that acts downstream of the CBF proteins and might
control ABA-mediated cold acclimation (Janmohammadi and
Mahfoozi, 2013). ZFHD1 belongs to a family that binds to
the promoter region of the early responsive to dehydration
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FIGURE 6 | Effect of the number of time-points. PropaNet performed network construction analysis using AtGenExpress (nTimePoints = 7 and 5, for cold and heat

stress) and E-MTAB-375 datasets (nTimePoints = 22, for both cold and heat stress). Then overlap between the results of adjacent time points were measured. The

results of many time points (E-MTAB-375) showed more overlap between adjacent time points, 69% and 38% in average, than the results of small time points

(AtGenExpress), 25% and 20% in average, for cold and heat stress, respectively.

stress 1 (ERD1) gene and upregulates several stress-inducible
genes (Elfving et al., 2011).

In the late stage of cold stress, MYB genes (MYB52, MYB70,
MYB98, MYB59) act as central TFs of signaling cascades.
MYB52 is known to be involved in ABA, drought, salt, and
cold responses (Yu et al., 2016). MYB59 is shown to be
involved in cell cycle regulation and presumed to control
K-specific negative regulation of primary root elongation in
Arabidopsis (Nishida et al., 2017). MYB59 targets several
kinases and phosphatases, therefore it is reasonable to
guess it could regulate such activities. MYB70 is reported
that it negatively regulates genes related to developmental,
hormonal and stress signaling pathways (Barah et al., 2015).
In our analysis, MYB70 targets many of histone-related
genes including histone H2A that takes the position of the
variant H2A.Z. MYB98 is a specific transcription factor in
synergid and regulates the expression of the female attractant
LURE1 (Li et al., 2015). MYB98 targets TCX2 (Tesmin/

TSO1 like CXC 2) which is a metal binding protein. TCX2
is a member of seven homologs of TSO1 and shows highly
similar expression patterns compared to TSO1 (Sijacic
et al., 2011) which forms a TSO1-MYB3R1 module that
regulates cell proliferation with differentiation and is involved
in floral organ differentiation, meristem regulation, and
gametophyte development. TSO1/LIN54 to MYB3R1/ B-
MYB regulatory module in plants and animals, which plays
a critical role in coordinating the cell cycle with the cell fate
commitment (Sijacic et al., 2011; Wang et al., 2018).

As shown in the list of major TFs, a number of TFs belong
to a few protein families such as bZIP, AP2/ERF, heat shock
proteins and MYB families. The major TFs of the same family
can be detected together because they have common target genes
or they are interaction partners for each other composing a
dimmers or multimers. The interactions between TFs in the latter
case have also been detected in an existing network analysis of
AtGenExpress dataset (Wanke et al., 2010b).
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5.1.2. Biological Implications of Major TFs Detected

From Heat Stress Data
In the first stage, our analysis revealed that many of AP2/ERF and
hormone-related genes such as ERF2, ERF3, ERF38, RAP2.10,
GATA1 are responsible to heat stress. ERFs form a representative
TF family, AP2/ERF, that plays a role in development and
stress response process of plants (Vogel et al., 2014). GATA
is a transcription regulator, subdivided into four classes, and
they are known to be involved in the control of greening,
plant development, GA metabolism, and a lot of biological
processes (Behringer and Schwechheimer, 2015). Contrast with
cold stress, during the high-temperature treatment, WRKY57
is the TF at the initial response even though AMS like TF
also is detected in our analysis at the first stage of temperature
response. Unlike with cold stress, most plants grow well under
higher ambient temperature. Higher ambient temperature is
accelerating growth and differentiation. In some case, some
organs in G0 stage of cell cycle turn on cell division process,
resulting in the additional growth and re-differentiation.

In the following stages, HSFA2, MYB28 and ZAT6 are
detected as major TFs. HSFA2 is detected as a major TF in both
cold and heat stress data analysis. However, the target genes
of HSFA2 are different under cold and heat stress. During the
heat treatment, HSFA2 shows a relationship with partly common
(HSP101, MBF1C, ELIP1, GolS1, and GolS2) and different sets
(SIP2 and APX2) of gene comparing with cold treatment. SIP2
is presumed to be involved in phloem unloading of raffinose
in sink leaves. Raffinose and other members of the raffinose
family oligosaccharides are involved in stress tolerance and act
as antioxidants (Clauw et al., 2016). APX2 encodes cytosolic
ROS scavenging enzyme and is shown to be activated in response
to heat stress in an HSFA3-dependent manner (Katano et al.,
2018). In addition, an early study of AtGenExpress dataset found
HSFA2 as a heat stress-specific marker gene by its transcript
abundance and fold change (Wanke et al., 2010a). MYB28 is a
remarkable major TF which interacts with CYP83A1, CYP83B1,
MTO1, and SUR1. The CYP family is made up of a wide variety
of monooxygenases containing a prosthetic heme group, and
CYP83A1 is required for aliphatic glucosinolate biosynthesis
(Nagano et al., 2014). CYP83B1 catalyzes the first committed
step in the indole glucosinolate sub-pathway, converting indole-
3-acetaldoxime to an S-alkyl-thiohydroximate adduct (Maharjan
et al., 2014). MTO1 and CGS1 construct the carbon/amino
skeleton derived from Asp with the sulfur moiety donated by Cys
(Hacham et al., 2017). SUR1 encodes the C-S lyase that functions
in indole glucosinolates biosynthesis. SUR1 is important to
IAOx-dependent IAA synthesis (Kong et al., 2014). ZAT6, zinc
finger of Arabidopsis thaliana 6, was also found as one of the
plant core environmental stress response genes of Arabidopsis
responsive to diverse stress conditions, by its dynamic gene
expression trajectory (Hahn et al., 2013).

5.1.3. Dynamic Changes of Major TFs and Their

Functions in Cold and Heat Stress
We observed dynamic changes of TF-TG grouping and their
biological functions in the time course analysis of cold and heat
stress data as shown in Figures 2, 3, respectively. Under the cold
condition, we can see only a few TF genes that had a signal at the

initial T1 and T2 stages.Major grouping occurs in T3 stage, which
suggests the defense system related stress may be turned on at this
stage, showing AP2/ERF proteins (RAP2.12, DREB2A, DREB2B,
ERF9) as major TFs in our analysis. The TF-TG group of T3
stage propagates to the outside of the network in the following
T4, T5 and T6 stages to regulate cell and organ restructuring
against hazardous effects of cold temperature. About 5–6 TF-TG
groups in the later time points have such major TFs like MYB52,
59, 70, 98, and TCX2. It seems that TF-TG network changes
in order to prepare for whole-plant-wide harmful cold stress.
These changes are focusing on osmotic defense mechanism and
structural reforming. However, under the higher temperature
condition, the initial responses of the plant are merged into
hormone metabolism.We could not observe that critical changes
during T1 and T2 stages. In our analysis, as strong growth control
compounds, such as gibberellin, ethylene and auxin-related TFs
like AP2/ERF and GATA, were detected in early stages. This
growth and reforming stages turn to defensive stages in T3 and
T4. Many of the stress-related TFs like MYB, TCX2, and ZAT6
were observed as major TFs in T3 and T4 stages under heat stress.

5.2. Advantages and Limitations of
PropaNet
Comparative analysis results showed that PropaNet detected
known stress-responsive genes more accurately than other
time series analysis methods (see section 4.2). The advanced
performance of PropaNet can be explained with its three
characteristics distinguished from other methods. First,
PropaNet considers indirect regulatory power of a TF though
consideration of multiple steps of transcription regulation
(by influence maximization) while existing tools consider
direct targets only. Second, PropaNet takes into account of the
regulatory power of multiple TFs simultaneously (by network
propagation). Third, PropaNet uses “differential expression”
values (such as z-scores or log2 fold changes) to prioritize TFs
that target more significant DEGs.

We conjecture that the consideration of multiple steps of
regulation of a TF and simultaneous regulations of multiple
TFs is the main reason why PropaNet performed better than
existing tools in terms of F1 scores. Additionally, the use
of PropaNetC that considers non-treated control samples in
PropaNet analysis showed to reduce the effect of background
biological mechanisms (e.g., circadian rhythm) on time-varying
networks (see section 4.3). Therefore, it is recommended to
use PropaNetC to eliminate the effects of background biological
mechanisms when both treated case and non-treated control
samples are available.

On the other hand, there are a few limitations of PropaNet
that have to be considered before analysis. PropaNet assumes the
reliability of a template TF network that is given by the user as
input. In our experiment, we used PlantRegMap as a template
network, which was generated by identifying TF binding sites
using TF ChIP-seq and searching the DNA sequence motif on
the promoter regions of the target genes. Then, it appended
TF-target interactions that were found in the literature. Thus,
it has the possibility to include false TF-target interactions;
(1) The antibodies that are used in TF ChIP experiments are
known to have the range of affinity to bind the un-targeted but

Frontiers in Plant Science | www.frontiersin.org 15 June 2019 | Volume 10 | Article 698

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Ahn et al. PropaNet

similar-structured TFs. (2) The quality of ChIP-seq data can vary
depending on the experimenters and the year of data generation.
(3) TF ChIP-seq experiments are conducted in a particular
condition, so it is possible that the TF interactions change in a
different condition. Use of extended versions of PlantRegMap or
protein-protein interaction networks may provide more detailed
information on the plant response to cold and heat stress, which
has to be studied in the future. In addition, PropaNet detects TFs
of which differential expressions are positively correlated with
DEGs, which cannot capture inhibitory relationship between TF
and target genes. This is due to the limitation of random walk
process that might not converge with negative weights. Thus,
incorporating negative weights to detect inhibitory TFs can be
a future work for PropaNet as well.
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