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To date, many animal models for programmed cell death (PCD) have been extensively
characterized and classified while such efforts in plant types of PCD still remain poorly
understood. However, despite a wide range of functional differences between PCD
types in animals and plants, it is certain that all of them are regulated through the
recruitment of proteases. Most importantly, proteases are able to perform proteolysis
that results in a gain or loss of protein function. This principle relies on the presence
of proteolytic cascades where proteases are activated upon various upstream stimuli
and which lead to repetitive cell death. While protease activation, proteolytic cascades
and targeted substrates are described in detail mainly for nematode, human, and mice
models of apoptosis, for plants, only fragmentary knowledge of protease involvement
in PCD exists. However, recently, data on the regulation of general plant PCD and
protease involvement have emerged which deepens our understanding of the molecular
mechanisms responsible for PCD in plants. With this in mind, this article highlights
major aspects of protease involvement in the execution of PCD in both animals and
plants, addresses obstacles and advances in the field and proposes recommendations
for further research of plant PCD.
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INTRODUCTION

Programmed cell death (PCD) is an integral part of any organism’s life, and for animals PCD has
been classified into apoptosis, autophagy and necrosis (Galluzzi et al., 2018). However, when it
comes to classification of plant PCD, it is a rather complex matter. Morphologically, plant forms of
PCD were classified into autolytic and non-autolytic types (Van Doorn et al., 2011), and where
autolytic death implies a rupture of the tonoplast with the subsequent rapid clearance of the
cytoplasm that causes the death of the cell. Non-autolytic PCD is characterized by such events
happening after cells gave already died (Van Doorn, 2011). Functionally, PCD may occur during
the normal development of a plant (dPCD) (Van Durme and Nowack, 2016), or be triggered by
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pathogens (pPCD) (Huysmans et al., 2017), and
which may result in a plant-specific form of PCD, for
example, dying a hypersensitive response (HR) death
(Balakireva and Zamyatnin, 2018).

Moreover, both dPCD and pPCD may exhibit mixed traits
of autophagic, autolytic and non-autolytic forms simultaneously,
which makes it difficult to distinguish dPCD and pPCD
morphologically. Despite that obstacle, it is clear that the
regulation of any type of PCD is held by proteases (Zamyatnin,
2015), and evidenced in both animals and plants, with apoptosis
in animals being orchestrated mainly by the well-known caspases
(aspartate-specific cysteine proteases). However, due to the
presence of semirigid cell wall in plants, it is consequently
accepted, that apoptosis is morphologically absent in plants
(Locato and De Gara, 2018). Moreover, the caspases are
absent in plants (Uren et al., 2000). Nevertheless, during plant
PCD, caspase-like activity can be detected and is attributed
to the alternative families of proteases, which include the
metacaspases (Coll et al., 2014), vacuolar processing enzymes
(VPEs) (Hatsugai et al., 2004, 2015), and the papain-like
cysteine proteases (PLCP), etc., (Gilroy et al., 2007; Paireder
et al., 2016), summarized in Supplementary Table. However,
exactly how these proteases orchestrate PCD in plants is still
largely unknown. In this article, we compare major aspects of
protease function in PCD between animals and plants, address
obstacles and advances in the field, and explore niches for
research in the future.

PROTEASE INITIATION EVENTS: HOW
ARE PCD PROTEASES ACTIVATED IN
PLANTS?

The first step in the plant PCD by proteases is their
activation, since all known PCD-related proteases in both animals
and plants are synthetized as inactive zymogens and which
require proteolytic processing in order to become enzymatically
active. Most secreted zymogens have similar domain structures
and contain a signal peptide, N-terminal and/or C-terminal
autoinhibitory prodomains, and a catalytic domain. Hydrolysis
of the autoinhibitory domains may happen autocatalytically or
by other proteases, which triggers a conformational change that
is indispensable for protease activity (Figure 1A).

Mechanistic Similarities Between Animal
and Plant Protease Activation
It is widely accepted that inhibitors are essential for the
regulation of protease activity in animals (Armstrong, 2006)
and is evidenced for plants too. For example, during the
embryonic development of Nicotiana tabacum, the mechanism
triggering PCD of a structure involved solely in positioning
the embryo proper within the seed – suspensor – is based
on the antagonistic actions of two proteins, the protease
inhibitor (cystatin NtCYS), and its target (cathepsin H-like
protease NtCP14) (Zhao et al., 2013). Another example is
the protease “Responsive to Desiccation-21” (RD21) and the

activity of which is regulated through the irreversible inhibition
by AtSerpin1 during PCD (Lampl et al., 2013). Moreover,
recently it has been shown that there is cross-talk between the
pathways for irreversible inhibition of RD21 (by AtSerpin1) and
reversible inhibition, mediated by the water-soluble chlorophyll-
binding protein (WSCP), which broadly contributes to the
regulatory role of RD21 in innate immunity and development
(Rustgi et al., 2017).

Inhibitors and activators of certain proteases are usually
co-located within the same subcellular compartments (Van
der Hoorn, 2004), which can differ in pH values. This
can significantly affect protease activation status. One good
example illustrating this point are lysosomal proteases, known
as the human cathepsins, which are activated in the low
pH, acidic environments within the lysosome. Interestingly,
this is evidenced for plant vacuolar proteases as well, such
as the Arabidopsis RD21 protease (Yamada et al., 2001),
or its wheat homolog triticain-α (Savvateeva et al., 2015).
The cysteine C13 protease legumain, which displays low-pH-
dependent dimerization and activation is also another good
example (Zauner et al., 2018).

Conversely, the activity of some proteases with a neutral pH
optimum does depend greatly on their calcium-binding ability as
in the case of mammalian membrane-bound proteases (Mellgren,
1987), which has been evidenced for plant proteases as well.
Here, phytocalpain DEK1 is a calcium-dependent membrane-
bound protease, the activity of which enhances significantly
after binding to calcium (van der Hoorn, 2008) and serves as
a good paradigm, as do the type II metacaspases (Bozhkov
et al., 2005) and the MCA2 protein from Arabidopsis thaliana
(Watanabe and Lam, 2011).

Other activators of caspase-3 in animals are reactive oxygen
species (ROS) (Higuchi et al., 1998). Similarly, ROS are able
to activate proteases in plants too. For example, caspase-like
proteases (C1LP and C3LP) had increased activity resulting
from reactive carbonyl species (RCS) which are downstream
products of ROS and which consequently triggered PCD in
N. tabacum (Biswas and Mano, 2016). Vacuolar cell death can
also be regulated by ROS as oxygen radical directly cause vacuole
membrane permeabilization and the release of RD21 and its
consequent binding to AtSerpin1 in A. thaliana cells leading to
PCD (Koh et al., 2016).

Taken together, we can conclude that the activation of
proteases in animals and plants can happen through very similar
mechanisms, as seen in animals and based on this proposition,
does raise questions about how protease initiation may be
triggered in plants mechanistically.

Does Plant Protease Activation Occur in
a Similar Manner to Animals, During Cell
Death?
During apoptosis, the extrinsic pathway of caspase activation
requires the engagement of cell membrane receptors by a ligand,
leading to the formation of the death-inducing signaling complex
(DISC). The DISC activates caspase-8, which subsequently
activates caspase-3 and caspase-7 (Crawford and Wells, 2011).
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FIGURE 1 | A protease implementation in PCD. (A) Factors that affect activation of proteases (initiation); (B) protease cooperation after initiation (proteolytic cascade);
and (C) effects on signal transduction by activated proteases (execution). Groups of caspase substrates were adapted from Fischer et al. (2003). Protease names,
pathways that correspond to animals are indicated in red, and for plants – in green. Arising questions of interest are indicated by question marks and text in blue.

However, it is still unknown whether such death receptors can
transduce such signals directly to the proteases in plants and
therefore does require further investigation.

Alternatively, the intrinsic pathway of caspase activation
requires the release of mitochondrial cytochrome c which induces
the formation of a multiprotein complex called the apoptosome –
a scaffold consisting of cytochrome c bound to dATP and the
cytochrome c apoptotic protease activating factor 1 (Apaf1).
The apoptosome activates caspase-9 through its N-terminal
caspase recruitment domain (CARD) and caspase-9 subsequently
activates caspase-3 and caspase-7 (Crawford and Wells, 2011).
To date, there is no evidence that such multiprotein pro-death
complexes capable of activating PCD-related proteases exist in
plants. However, the presence of a similar mechanism has been
indirectly observed for plants. Whereas in animals, recombinant
Bax protein is responsible for the release of cytochrome c from
mitochondria, it also induces a response similar to a HR and
a cell death response in tobacco (Lacomme and Santa Cruz,
1999). Additionally, when expressed in tobacco, the antiapoptotic
protein Bcl-xL can confer resistance to death induced by UV-
B irradiation and by paraquat (Mitsuhara et al., 1999), or
by Tobacco mosaic virus protein p50 (Solovieva et al., 2013).

However, Bcl-2 family orthologs are absent in plants, and this
process which is similar to apoptotic cell death is achieved
through other unidentified proteins.

TRANSDUCTION OF A SIGNAL: WHICH
PROTEOLYTIC CASCADES EXIST IN
PLANTS?

Once a protease becomes active, it can change conformation
and interact with other proteases (Figure 1B). As mentioned,
the main executioners of apoptosis in animals are the caspases
that act through the proteolytic cascades. Caspases can manage
the two-step activation of PCD through the recruitment of
initiator (caspases-2, -8, -9, -10) and effector (caspases-3, -6, -7)
caspases (Crawford and Wells, 2011). How the initiator caspases
cause the activation of effector caspases is through cleavages
of a number of other proteases or proapoptotic substrates
leading to death of the cell (Galluzzi et al., 2018). Apoptosis
is characterized by YVADase, DEVDase, VEIDase and other
activities (Kidd, 1998), which correspond to activities of caspases-
1, -3, and -6, respectively.
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Despite close homologs of caspases being absent in plants,
proteases that belong to the same family of C14 cysteine
proteases are present, called the metacaspases. Of interest is
that metacaspases are lysine- and arginine-specific, unlike the
aspartate-specific caspases, suggesting that metacaspases may not
be directly responsible for similar caspase activities found in
plants (Fagundes et al., 2015). However, type I metacaspases
(AtMC1, AtMC2) are strongly associated with an autolytic type
of PCD and plant immunity (Coll et al., 2010), whereas type II
metacaspases from Populus tremula × tremuloides PttMC13 and
PttMC14 are able to cleave PLCP, RD21 during xylem elements
cell death (Bollhoner et al., 2018).

There are also many studies supporting the involvement of
proteases other than metacaspases in plant PCD. Not only do
cysteine proteases, such as VPEs, exhibit caspase-like activity
(Hatsugai et al., 2004, 2009; Zhang et al., 2010), but proteasome
subunit PBA1 (Hatsugai et al., 2009) and subtilases (Coffeen and
Wolpert, 2004; Chichkova et al., 2010) were also shown to display
same activity. Moreover, there are also proteases that do not
exhibit caspase-like activity at all, but are closely associated with
different types of PCD. For example, PLCPs are associated with
pPCD [cathepsin B, RD21 (Gilroy et al., 2007; McLellan et al.,
2009; Shindo et al., 2012)] and dPCD [CEP1, NtCP14, XCP1,
XCP2 (Avci et al., 2008; Ruckh et al., 2012; Bollhoner et al., 2013;
Salvesen et al., 2016)]. In addition, serine protease P69B is cleaved
by apoplastic metalloproteases Sl2- and Sl3-MMPs (Li et al., 2015;
Zimmermann et al., 2016) and regulates cell death in the tomato
plant in response to Botrytis cinerea infection and PstDC3000.
Known examples of proteases that are involved in plant PCD are
summarized in the Supplementary Table.

Based on the animal apoptotic pathway, the initiator-effector
model was also proposed for the metacaspases (Rocha et al.,
2017). Type I metacaspases undergo autocatalytic processing
and can activate type II metacaspases. Due to the limited data,
it is still difficult to assign the role of an initiator or effector
protease for the “non-metacaspase” proteases that are involved
in PCD. Moreover, there is a consensus, that cysteine proteases
may not be universal regulators of PCD in plants as they are in
animals (Sueldo and van der Hoorn, 2017) and may be they are
unessential for plant PCD.

Recently, the question of whether proteolytic cascades exist
in plants was addressed, and a specific requirement for two
proteases to form a protease-substrate link was suggested (Paulus
and van der Hoorn, 2019). It is certain, that although caspases
are absent in plants, and caspase-like activity is not the only
activity that characterizes plant PCD, it does lead to similar to
animal apoptotic traits such as cytoplasm shrinkage, chromatin
condensation, and nucleus fragmentation (Van Doorn et al.,
2011). Based on this data, we believe that death-inducing cascades
do exist in plants and their participants are different in origin, but
similar in function. Recently, it was used for the identification
of sites of hydrolysis by endogenous proteases during biotic
stress (Balakireva et al., 2018). It was shown that during the
early response of wheat to different pathogens, caspase-like
and metacaspase-like activities are not required, while immune
response is still triggered and, apparently, is held by some other
proteases, which confirms our assumptions in a way.

EXECUTION OF A SIGNAL: IS PCD
DERIVED FROM THE SAME SIGNALING
PATHWAYS IN BOTH ANIMALS AND
PLANTS?

It is true that plants and animals differ in a number of ways,
firstly, due to photoautotrophic growth, absence of mobility and
the presence of a semirigid cell wall. Independent evolution of
animals and plants resulted in the development of analogous, but
non-conserved protein structure and signaling pathways. One
striking example is the animal Toll-like receptors. In plants, the
equivalent is the receptor-like kinase (Ausubel, 2005). Both of
them have a C-terminal leucine-rich repeat domain, and the
cytoplasmic domains from the proteins are not conserved but are
able to perform analogous functions. However, the downstream
signaling events are very conserved among eukaryotic organisms
such as the activation of mitogen-activated protease kinase
(MAPK) cascades (Dong et al., 2002; Pitzschke et al., 2009).

Apoptosis itself is very conserved among metazoans and fungi
(Crawford and Wells, 2011). Cleavage of a substrate by proteases
at a specific site can result in two outcomes, the loss or gain
of protein function (Figure 1C). In this manner, one effect of
cleavage by caspases for a large number of their substrates was
analyzed (Fischer et al., 2003) and made clear that the majority
of substrates lose their function after hydrolytic cleavage which
leads to a shutdown of almost all pathways essential for vital
activity. However, some of the substrates become active after
hydrolysis such as cytokines, protein kinases, and regulatory
proteins essential for signal transduction.

It is very important to note that the analysis of caspase sites,
their substrates and appropriate pathways in mice, Drosophila
and Caenorhabditis elegans, which represent 600 million years
of evolution, highlight that such sites are conserved over a
relatively short evolutionary timeframe, in comparison to the
lengthy timeframes of signaling pathways (Crawford et al.,
2012). For example, the Tudor Staphylococcal Nuclease (TSN)
protein is essential for the activation of transcription, mRNA
splicing and RNA silencing, a pathway highly conserved among
eukaryotes (Ausubel, 2005) in which TSN can be cleaved
by both human caspase-3 and metacaspase mcII-Pa from
Norway spruce (Sundstrom et al., 2009). Similarly, poly (ADP-
ribose) polymerase (PARP) which is involved in the conserved
pathway for DNA repair, is a substrate of human caspases
and two metacaspases (MCA1 and MCA2) from the fungi
Podospora anserine (Strobel and Osiewacz, 2013). Collectively,
these findings indeed support the idea that eukaryotes share
conserved signaling pathways that can be targeted by PCD
proteases which are functionally similar but structurally unique
(e.g., caspase-3 vs. metacaspase mcII-Pa, and others).

Additionally, another excellent example is a membrane
receptor protein which can be cleaved by the tomato P69C
protease and includes a leucine-rich repeat (Tornero et al., 1996).
This protein can also be categorized into a group of membrane
receptors that can also be targeted by caspases (Figure 1C).
Finally, phosphoenolpyruvate carboxykinase 1 (PEPCK1) can be
cleaved and activated by AtMC9 (Tsiatsiani et al., 2013). Other
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examples of known substrates of plant proteases are summarized
in the Supplementary Table.

CONCLUSION

Considering all the findings supporting the involvement of
proteases in plant PCD, it is clear that this research area is
relatively unexplored. To date, not a single proteolytic cascade in
any plant has been linked to the PCD-related process. And the
question posed is “why is the area of plan PCD so fragmentary?”
Firstly, great emphasis has been placed on the study of human
forms of PCD because of its immense therapeutic value and
which serves as a good paradigm. Secondly, extrapolating such
findings to the plant system has been slow due to a lack of
methodology needed to yield findings in a timely manner.
Thirdly, plant genomes contain many duplicated genes, especially
in such organisms as hexaploid Triticum aestivum, which makes
it difficult to perform knock-out studies.

To help matters, there has been some promising advances
that have been recently introduced into plant science. “Big
data” analytics are increasingly being used to discover hidden
patterns, correlations and other insights from fragmented studies
(Gharajeh, 2018). Additionally, genome-wide gene expression
profiling and other “omics” technologies are indeed needed,
started with proteomics approaches which are now becoming
widely used for studying various aspects of plant death.

Plants do have their own features, their signaling networks do
have a high level of functional redundancy. With similar parts
of related pathways functionally compensating and substitutional
for each other (Sewelam et al., 2016). Nevertheless, we believe
that across eukaryotes its these pathways that are the most
conserved rather than the regulatory proteins which constitute
them. We assume that although proteases themselves (caspase vs.

metacaspase) and their specificities (D-specific vs. R-, K-specific)
are functionally giving rise to different morphologically diverse
forms of PCD between animals and plants, such distinctions
cannot be clearly made at this juncture in time.
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