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Green leaf volatiles play vital roles in plant biotic stress; however, their functions in plant 
responses to abiotic stress have not been determined. The aim of this study was to 
investigate the possible role of (Z)-3-hexeny-1-yl acetate (Z-3-HAC), a kind of green leaf 
volatile, in alleviating the salinity stress of peanut (Arachis hypogaea L.) seedlings and the 
underlying physiological mechanisms governing this effect. One salt-sensitive and one 
salt-tolerant peanut genotype were primed with 200 μM Z-3-HAC at the 4-week-old stage 
before they were exposed to salinity stress. Physiological measurements showed that 
the primed seedlings possessed higher relative water content, net photosynthetic rate, 
maximal photochemical efficiency of photosystem II, activities of the antioxidant enzymes, 
and osmolyte accumulation under salinity conditions. Furthermore, the reactive oxygen 
species, electrolyte leakage, and malondialdehyde content in the third fully expanded 
leaves were significantly lower than in nonprimed plants. Additionally, we  found that 
application of Z-3-HAC increased the total length, surface area, and volume of the peanut 
roots under salinity stress. These results indicated that the green leaf volatile Z-3-HAC 
protects peanut seedlings against damage from salinity stress through priming for 
modifications of photosynthetic apparatus, antioxidant systems, osmoregulation, and 
root morphology.
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INTRODUCTION

As an important cash and oilseed crop, peanut (Arachis hypogaea L.) is widely cultivated in 
most tropical, subtropical, and temperate regions worldwide (Sharma et  al., 2016; Cui et  al., 
2018). Peanut is also a great source of many nutrients for humans, such as protein, fatty 
acids, and vitamins (King et  al., 2008; Aninbon et  al., 2016). Soil salinity is one of the key 
environmental factors that affects plant growth and reduces crop productivity worldwide 
(Tanji, 2002; Hasegawa, 2013). More than 800 million hectares of agricultural land have been 
impaired by salinity (Rengasamy, 2010). Among all types of salinity, the most soluble and 
widespread salt is sodium chloride (NaCl). Similar to many other leguminous crop species, 
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peanut is moderately sensitive to salinity, especially NaCl stress 
(Greenway and Munns, 1980). Salinity stress has a severe 
impact on the growth and morphogenesis of peanut, decreasing 
seed germination and dry matter accumulation, affecting the 
establishment of seedling morphology, and inducing damage 
to the photosynthetic apparatus (Mäser et  al., 2002; 
Deinlein et  al., 2014; Yi et  al., 2015; Meena et  al., 2016).

Plants employ ubiquitous mechanisms to cope with salinity 
and minimize salt toxicity. The plant responses to salinity stress 
include the induction of phytohormones and antioxidant systems, 
vacuole compartmentalization of toxic ions, and synthesis and 
accumulation of compatible compounds to osmotically balance 
the cytosol with vacuoles (Cheeseman, 1988; Zhu, 2002; Munns 
and Tester, 2008; Garma et  al., 2015; Ferchichi et  al., 2018; 
Abdel Latef et  al., 2019). In the past several decades, plant 
growth-regulating substances have been widely used to confer 
salinity stress in many crop species, including sodium selenate 
(Subramanyam et  al., 2019), melatonin (Li et  al., 2017; Chen 
et al., 2018), hydrogen peroxide (Li et al., 2011), brassinosteroid 
(Divi et  al., 2010; Zhu et  al., 2015), nitric oxide (Sun et  al., 
2014; Ahmad et  al., 2016), and glycine betaine (Nawaz and 
Ashraf, 2010; Nusrat et  al., 2014; Kreslavski et  al., 2017; 
Annunziata et  al., 2019). In addition, traditional breeding and 
genetic engineering have also been promising approaches for 
the acquisition of salinity stress tolerance of crops (Hanin 
et  al., 2016; Ismail and Horie, 2017). Although these strategies 
are well accepted by farmers, more eco-friendly plant growth-
regulating substances that confer crop salinity tolerance are 
required to achieve the goal of agricultural sustainability.

Biogenic volatile organic compounds (VOCs) mainly consist 
of terpenes, fatty acid-derived products, and products of the 
shikimic acid pathway, which are emitted by plants under stress 
(Dudareva et  al., 2006; Heil and Silva Bueno, 2007; Nguyen 
et  al., 2016). VOCs can act as an alarm signal when plants 
are under attack from insect herbivores. Green leaf volatiles 
(GLVs) are an important group of VOCs for priming plant 
defenses against insect herbivore attacks, which were first 
reported by Engelberth et al. (2004). Typically, GLVs are released 
by plants after mechanical wounding or herbivore attack and 
could induce defense-related genes to alert the undamaged 
tissues in plant biotic stress responses (Pare and Tumlinson, 
1997; Arimura et  al., 2002; Yan and Wang, 2006). However, 
the role that GLVs play in plant abiotic stress remains an 
open question. Previous studies, including our research, 
documented the importance of wounding- or herbivore-induced 
phytohormones, such as ethylene (ETH) and jasmonic acid 
(JA), and signaling molecules, such as hydrogen peroxide (H2O2) 
and nitric oxide (NO), in response to plant abiotic stress (León 
et  al., 2001; Schilmiller and Howe, 2005; Chauvin et  al., 2012; 
Ahmad et  al., 2016; Si et  al., 2017, 2018); thus, GLVs might 
also be  a crucial molecule in plant abiotic stress.

GLVs are synthesized via the lipoxygenase pathway, where 
(Z)-3-hexen-1-al (Z-3-HAL), (Z)-3-hexen-1-ol (Z-3-HOL), and 
(Z)-3-hexeny-1-yl acetate (Z-3-HAC) are all major components. 
Extensive studies have demonstrated that Z-3-HAC plays a pivotal 
role in plant defenses against insect herbivore attack  
(Matsui et  al., 2012; Ameye et  al., 2015). However, the literature 

regarding priming by Z-3-HAC in response to plant abiotic stress 
remains scarce. More recently, Cofer et  al. (2018) reported that 
exogenous Z-3-HAC treatment determines increased growth and 
reduced damage under cold stress in maize (Zea mays) seedlings. 
This report was the first to describe the priming effects of 
Z-3-HAC in plant abiotic stress. Given these findings, we speculate 
that Z-3-HAC could also play a role in other plant abiotic 
stresses, such as salinity stress. To date, Z-3-HAC has been 
tested only on maize, but not on other species monocots or 
dicots. Therefore, a new study was designed in this paper to 
further our understanding of the role that Z-3-HAC plays in 
plant abiotic stress. It was hypothesized that exogenous application 
of Z-3-HAC could enhance salinity stress tolerance in peanut 
seedlings. This effort to improve salt tolerance in peanut will 
reduce the yield losses caused by salinity stress, and we  can 
obtain greater output from salinized agricultural land worldwide.

MATERIALS AND METHODS

Plant Materials
Two peanut cultivars, Huayu 20 (abbreviated here as “HY20”) 
and Huayu 22 (abbreviated here as “HY22”), which are classified 
as salt-sensitive and salt-tolerant genotypes, respectively, were 
used as the experimental materials in this study. The seeds 
were surface sterilized with 2% (v/v) sodium hypochlorite, 
rinsed two times with tap water, and soaked in tap water 
overnight. Then, the seeds of uniform sizes were germinated 
in vermiculite in the dark at 28°C for 2  days before transfer 
to pots (inner diameter of 9  cm and height of 8  cm with 
small holes at the bottom, one seedling/pot) filled with 200  g 
of garden soil each. The seedlings were then transferred to 
an artificial climate-controlled chamber with an air temperature 
of 25°C, a light/dark cycle of 16/8  h, a humidity of 60%,  
and a photosynthetic photon flux density (PPFD) of 
1,200 μmol m−2 s−1. Each pot was watered with 200-ml distilled 
water on every alternate day. Four-week-old seedlings with 
uniform sizes were selected for the subsequent experiments.

Experimental Design
The information of (Z)-3-hexeny-1-yl acetate (Z-3-HAC) (≥98%, 
Sigma-Aldrich, Inc. USA) were as follows: CAS number of 
3,681-71-8, linear formula of CH3CO2CH2CH2CH═CHC2H5, 
and molecular weight of 142.20. All selected seedlings were 
randomly divided into two batches. A half batch of the seedlings 
was first foliar applied with 200  μM Z-3-HAC (Z-3-HAC was 
dissolved in 95% (v/v) ethanol as stock solution) twice with 
a 3-day interval. At the same time, the other half batch was 
treated with distilled water with the equivalent amount of 
ethanol. A relatively moderate concentration of Z-3-HAC at 
200 μM was most effective according to our previous experiments 
(data not shown). Seven days after pretreatment, half of the 
seedlings treated with Z-3-HAC and distilled water were exposed 
to NaCl stress treatments. Each pot was watered with 200-ml 
NaCl solution at a concentration of 300  mM three times with 
a 2-day interval, while the rest of the seedlings were watered 
with distilled water at the same time. The final salt content 
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of the NaCl-treated soil was 0.35% (w/w), which could 
be  classified as severely saline soil. In total, four treatments 
were composed: control (water + water without NaCl), Z-3-HAC 
(Z-3-HAC  +  water without NaCl), NaCl (water + water with 
NaCl), and Z-3-HAC  +  NaCl (Z-3-HAC  +  water with NaCl). 
Physiological and biochemical parameters were determined at 
7  days after the onset of salinity stress treatment. One 
representative pot was selected from at least 10 similar-looking 
plants for each treatment, and pictures were taken. For all the 
measurements, the third fully expanded leaves from the plant 
tops were selected. Three independent biological replicates were 
performed for each treatment.

Measurement of Shoot Weight and  
Root Morphology
The seedlings were washed twice with distilled water, the topical 
moisture was removed, and then the fresh weights of the dissected 
shoots were measured immediately. To obtain the dry weights, 
the dissected shoots were oven-dried at 105°C for 15  min to 
deactivate enzymes and then heated in a stove at 85°C until 
constant weights were recorded. Meanwhile, the fresh roots 
were also dissected, carefully washed twice with distilled water, 
and then scanned using a dual lens scanning system (V700, 
SEIKO EPSON CORP., Japan) according to the method of Jiang 
et  al. (2017). The data obtained were analyzed using the 
WinRHIZO Pro software (Version 2012b, Regent Instruments 
Inc., Canada). There were three independent biological replicates 
for each treatment and one representative picture is shown.

Determination of Gas Exchange Parameters, 
Chlorophyll Fluorescence and Total 
Chlorophyll Content
Determination of gas exchange parameters was conducted between 
9:00 am and 11:00 am using the portable photosynthesis system 
(Li-COR 6800, Lincoln, NE, USA). The net photosynthetic rate 
(Pn), stomatal conductance (Gs), intercellular CO2 concentration 
(Ci), and transpiration rate (Tr) were measured based on the 
following conditions in the leaf chamber: air temperature of 
25°C, air relative humidity of 80%, CO2 concentration of 
400  μmol  mol−1, and PPFD of 1,000  μmol  m−2  s−1.

Chlorophyll fluorescence was measured after a 30-min 
dark adaptation period with an imaging pulse amplitude 
modulated (PAM) fluorimeter (IMAG-MAXI; Heinz Walz, 
Effeltrich, Germany), as described in detail by Ahammed 
et al. (2013). The minimum fluorescence emission signal (Fo), 
maximal fluorescence (Fm), steady-state fluorescence yield 
(Fs), and light-adapted maximum fluorescence (Fm′) were 
recorded as the area of interest in the compound leaves. 
Then, the maximal photochemical efficiency of photosystem 
II (PSII) (Fv/Fm), the quantum efficiency of PSII photochemistry 
(ΦPSII), the photochemical activity of PSII (Fv′/Fm′), and 
the non-photochemical quenching (NPQ) were calculated 
according to the formulas as described by Kramer et  al. 
(2004). The images of Fv/Fm were also exported, and the 
representative leaf for each treatment is shown.

For the assay of the total chlorophyll content, 0.1  g of 
fresh leaf was extracted in 25  ml of anhydrous ethanol and 

acetone (1:1, v/v) solution and incubated for 12  h in  
the dark at room temperature. Then, the total chlorophyll 
content (mg  g−1 FW) was determined colorimetrically at 647 
and 663  nm and calculated as originally described by 
Lichtenthaler and Wellburn (1983).

Measurement of Relative Water Content, 
Electrolyte Leakage, and Lipid Peroxidation
The leaf relative water content (RWC) was measured based on 
the method of Jensen et  al. (2000) with some modifications. In 
total, the leaves were excised and fresh weight (FW) was measured. 
Then, the leaves were soaked in tubes with 5  ml of deionized 
water for 4  h at room temperature before the turgid weight 
(TW) was recorded. Dry weight (DW) was further measured 
after the leaves were oven-dried for 24  h at 90°C. RWC was 
calculated by RWC (%)  =  [(FW  −  DW)/(TW  −  DW)]  ×  100.

The measurement of relative electrolyte conductivity (REC) 
was conducted using the method of Griffith and McIntyre 
(1993). The leaf samples were excised immediately and rinsed 
briefly with deionized water and soaked in 10  ml of deionized 
water at room temperature for 12  h. The conductivity (C1) 
was then measured with a conductivity bridge (DDS-307A, 
LEX Instruments Co., Ltd., China). Then the solution was boiled 
for 30  min, and the conductivity (C2) was further recorded 
after cooling. RWC was calculated by REC (%) = C1/C2 × 100.

The lipid peroxidation level was determined by quantifying 
the equivalents of malondialdehyde (MDA). The 2-thiobarbituric 
acid (TBA) reaction was used in this assay, and the absorbance 
values of the red adduct at 450, 532, and 600 nm were recorded 
to calculate the MDA equivalents as described previously 
(Hodges et  al., 1999). All spectrophotometric assessments in 
this paper were carried out using a UV–Vis spectrophotometer 
(UV3200, Mapada Instruments Co., Ltd., China).

Histochemical Staining and Quantitative 
Assay of H2O2 and O2

−

Hydrogen peroxide (H2O2) in leaves was visually detected by 
histochemical staining according to the method of Thordal-
Christensen et  al. (1997) with minor modifications. The leaves 
were excised from the plants and immediately submerged in 
3,3-diaminobenzidine (DAB) solution (1  mg  ml−1, pH 3.8). 
Then, the leaves were incubated for 12  h under light with a 
PPFD of 1,200  μmol  m−2  s−1 at room temperature, after which 
the leaves were bleached in 95% (v/v) boiling ethanol for 
approximately 15  min until the brown spots were clearly 
visualized. Then, the leaves were carefully transferred to fresh 
95% (v/v) ethanol, and pictures were taken after cooling. The 
H2O2 concentration was determined by measuring the absorbance 
of the titanium peroxide complex at 410  nm according to the 
method of Willekens et  al. (1997) with minor modifications.

Superoxide anion (O2
−) was also visually detected according 

to the method originally described by Jabs et  al. (1996). In 
brief, the leaves were excised from the seedlings and soaked 
in nitro blue tetrazolium (NBT) solution (1  mg  ml−1, pH 6.1). 
Then, the leaves were incubated at room temperature in the 
dark for 6 h before they were completely bleached in 95% (v/v) 
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boiling ethanol. After cooling, the leaves were transferred to 
fresh ethanol, and pictures were taken immediately. The O2

− 
production rate was also quantified according to the previous 
method of Elstner and Heupel (1976) by monitoring the nitrite 
formation from hydroxylamine in the presence of O2

− at an 
absorbance of 530  nm.

Extraction and Analysis of Activity of 
Antioxidant Enzymes
For the determination of antioxidant enzymes, the leaves  
were frozen immediately in liquid nitrogen and stored at  
−80°C prior to analysis. In brief, 0.5  g of frozen leaf  
samples was ground with 5  ml of ice-cold phosphate buffer 
(50  mM, pH 7.8) containing 20% (v/v) glycerol, 0.2  mM 
ethylenediaminetetraacetic acid (EDTA), 5  mM MgCl2, and 
1 mM dithiothreitol (DTT). The homogenates were centrifuged 
at 4°C for 20  min at 12,000  g, and the resulting supernatants 
were then collected for the determination of enzymatic activity. 
The total protein content was first analyzed using a Coomassie 
Brilliant Blue reaction at 595  nm following the method of 
Bradford (1976). Superoxide dismutase (SOD) activity was 
assessed by determining its ability to inhibit the photochemical 
reduction of NBT at 560  nm (Stewart and Bewley, 1980). 
Guaiacol peroxidase (G-POD) activity was assayed using guaiacol 
as a substrate at 470  nm as originally described by Cakmak 
and Marschner (1992). Catalase (CAT) activity was assayed 
based on the oxidation of H2O2 and measured as a decline 
at 240 nm following the method of Patra et al. (1978). Ascorbate 
peroxidase (APX) activity was determined based on the oxidation 
of ascorbate and measured as a decline at 290  nm according 
to the method of Nakano and Asada (1981).

Contents of Total Soluble Sugars,  
Sucrose, and Free Amino Acids
Oven-dried (15  min at 105°C and then 85°C for 3  days) leaf 
samples were powdered with a high-speed ball mill (MM400, 
Retsch GmbH, Haan, Germany) and mixed thoroughly. A total 
of 0.1  g of the powder was extracted with 8  ml of 80% (v/v) 
ethanol in a 10-ml plastic tube at 80°C and centrifuged at 
3,000  g for 30  min. The supernatant was then collected in a 
25-ml glass tube. The extraction was then repeated twice, and 
the same ethanol was added to the glass tube to a final volume 
of 25  ml. After mixing thoroughly, the extract was used to 
determine the contents of total soluble sugars, sucrose, and 
free amino acids. The anthrone method was adopted, and the 
absorbance at 620  nm was recorded to calculate the total 
soluble sugar content according to the method of Buysse 
and Merckx (1993). For the sucrose content, the resorcinol 
method was used, which was modified by the method of Buysse 
and Merckx (1993), and the sucrose content was determined 
colorimetrically at 480  nm. The content of free amino acids 
was assessed by the ninhydrin reaction at 570  nm according 
to the method of Moore and Stein (1954).

Statistical Analysis
All data collected were statistically analyzed using one-way 
ANOVA with the SPSS statistical software package (Version 
22.0, SPSS Inc., Chicago, IL, USA). Duncan’s test (p  <  0.05) 
was performed to evaluate the difference of each treatment. 
Principal component analysis (PCA) was carried out according 
to the method of Sun et  al. (2018). Each treatment value is 
the average of three independent biological replicates unless 
otherwise stated.

A

B

C

FIGURE 1 | Exogenous Z-3-HAC application conferred salinity stress resistance of peanut seedlings. (A) Shoot dry weight, (B) shoot fresh weight, and (C) growth 
of peanut seedlings under salinity stress with or without Z-3-HAC priming. The seedlings were primed with distilled water or 200 μM Z-3-HAC twice. After priming, 
the seedlings were exposed to NaCl stress. At 7 days after the onset of salinity stress treatment, the shoot dry weight and fresh weight were determined, and 
pictures were taken. Bars are the standard deviations (SD) of three independent replicates (n = 3). Error bars labels with different letters indicate significant 
differences at p < 0.05 between treatments according to Duncan’s test.
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RESULTS

Effects of Exogenous Z-3-HAC on Plant 
Growth, Relative Electrolyte Conductivity, 
and Relative Water Content under  
Salinity Stress
The first objective was to test the effects of exogenous Z-3-HAC 
on plant growth. The peanut seedlings were primed with distilled 
water or 200  μM Z-3-HAC. Then the seedlings were exposed 
to NaCl stress (NaCl shock did not happen). At 7  days after 
the onset of salinity stress treatment, the Z-3-HAC-treated 
seedlings showed a clear apical dominance compared to water-
treated seedlings under normal growth conditions in both 
HY20 and HY22 (Figure 1C). However, no significant difference 
in the shoot dry weight and fresh weight was observed between 
these treatments (Figures 1A,B). Exposure of plants to salinity 
conditions stunted the growth of peanut plants as indicated 
by the significant decreases in shoot dry weight and fresh 

weight by 63.39 and 56.94% of HY20 and 19.18 and 32.34% 
of HY22, respectively. Strikingly, priming with Z-3-HAC resulted 
in improved plant growth under salinity conditions of HY20, 
as indicated by the significant increases in shoot dry weight 
and fresh weight by 55.23and 64.78%, respectively, compared 
with salinity control. In HY22, Z-3-HAC pretreatment also 
showed increases in the shoot dry weight and fresh weight 
by 18.28and 25.48%, respectively, under salinity conditions 
compared with the salinity control, although the difference 
was not significant (Figures 1A,B).

Consistent with the phenotypic changes of the peanut 
seedlings, exogenous application of Z-3-HAC had no effect 
on the relative electrolyte conductivity (REC) and relative water 
content (RWC) of both HY20 and HY22 under normal growth 
conditions. As expected, salinity stress significantly increased 
REC by 247.90 and 128.83% in HY20 and HY22, respectively, 
while decreasing RWC by 15.14and 18.28% in HY20 and HY22, 
respectively, compared with the control (Figure 2). Notably, 
priming with Z-3-HAC decreased REC by 36.15 and 34.52% 
while increasing RWC by 5.5 and 4.3% under salinity stress 
in severe saline soil compared with their salinity control in 
HY20 and HY22, respectively.

Effects of Exogenous Z-3-HAC on Gas 
Exchange and Chlorophyll Fluorescence 
Parameters Under Salinity Stress
Plants treated with only salinity stress displayed significant 
decreases of 50.00and 47.64% in the net photosynthetic rate 
(Pn), significant decreases of 37.14and 50.13in the stomatal 
conductance (Gs), and significant decreases of 52.17and 45.16in 
the transpiration rate (Tr) in HY20 and HY22, respectively 
(Figures 3A,C,D), while exhibiting significant increases in the 
intercellular CO2 concentration (Ci) by 144.03and 61.61%, 
respectively, in HY20 and HY22 compared with the control 
(Figure 3B). In contrast, exogenous Z-3-HAC significantly 
reversed the deleterious effects of salinity stress, as indicated 
by an increase of Pn by 72.52% in HY20 and a significant 
increase of Pn by 28.83% in HY22, an increase of Gs by 
31.03% in HY20 and a significant increase of Gs by 61.77% 
in HY22, and a significant increase of Tr by 109.09and 35.29%, 
respectively, in HY20 and HY22, while a significant reduction 
of Ci by 71.39 and 14.38%, respectively, in HY20 and HY22. 
The application of exogenous Z-3-HAC alone did not affect 
Pn, Gs, or Tr in either genotype, whereas Ci was significantly 
increased by 16.98and 20.71% in HY20 and HY22, respectively.

Exogenous Z-3-HAC had no significant effects on the maximal 
photochemical efficiency of photosystem II (PSII) (Fv/Fm) in 
both genotypes. Salinity stress significantly decreased Fv/Fm 
by 86.57and 14.46% in HY20 and HY22, respectively. Again, 
Fv/Fm was significantly increased by 59.72% in HY20 and 
7.85% in HY22 when the seedlings were primed with Z-3-HAC 
under salinity stress (Figure 4A). Fv/Fm status in different 
treatments was indicated by pseudo color images of the leaves. 
Similarly, the other chlorophyll fluorescence parameters, such 
as the photochemical activity of PSII (Fv′/Fm′), the 
non-photochemical quenching (NPQ), and the quantum efficiency 

A

B

FIGURE 2 | Effects of Z-3-HAC on (A) relative electrolyte conductivity (REC) 
and (B) relative water content (RWC) of the third fully expanded leaves in 
peanut seedlings under salinity stress. The seedlings were primed with 
distilled water or 200 μM Z-3-HAC twice. After priming, the seedlings were 
exposed to NaCl stress. At 7 days after the onset of salinity stress treatment, 
the leaves were excised and the REC and RWC were determined. Bars are 
the standard deviations (SD) of three independent replicates (n = 3). Error 
bars labels with different letters indicate significant differences at p < 0.05 
between treatments according to Duncan’s test.
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of PSII photochemistry (ΦPSII), displayed similar changes 
compared with Fv/Fm with a few exceptions where Z-3-HAC 
failed to increase NPQ and ΦPSII under salinity stress in 
HY20 (Figures 4B,C,E). The leaf chlorophyll content was 
significantly decreased by 44.84% in HY20 and 39.00% in HY22 
under salinity conditions. In contrast, the application of Z-3-HAC 
showed an insignificant increase in the chlorophyll content by 
35.85% in HY20 and 16.78% in HY22 following exposure to 
salt treatment (Figure 4D).

Effects of Exogenous Z-3-HAC on ROS 
Accumulation and Lipid Peroxidation 
Under Salinity Stress
The accumulations of two representative reactive oxygen species 
(ROS), H2O2 and O2

−, were detected using histochemical allocation 
methods. H2O2 and O2

− accumulated slightly following the 
application of Z-3-HAC under normal conditions. The 
accumulation of H2O2 and O2

− was induced to higher levels 
under salinity stress but was largely reduced by the exogenous 
Z-3-HAC in HY20 and HY22 (Figures 5A,B). In keeping with 
this result, the quantitative data further demonstrated that both 
H2O2 and O2

− were significantly induced by Z-3-HAC and 
salinity stress in HY20 and HY22. The exogenous application 
of Z-3-HAC significantly reduced H2O2 by 11.18% in HY20 
and 27.65% in HY22 and significantly reduced O2

− by 31.20% 
in HY20 and 13.10% in HY22 under salinity conditions (Figures 
5C,E). It is worth noting that the accumulations of H2O2 and 
O2

− were more pronounced in the salt-sensitive genotype HY20 
than in the salt-tolerant genotype HY22.

The lipid peroxidation of peanut seedlings was examined 
according to the accumulation of MDA. Salinity stress significantly 
induced MDA content by 73.18% in HY20 and 70.32% in 
HY22. In line with the effect of Z-3-HAC on ROS accumulation, 
exogenous Z-3-HAC significantly reduced MDA content by 
30.39% in HY20 and insignificantly reduced MDA content by 
17.51% in HY22 under salinity conditions (Figure 5D). In 
contrast, priming with Z-3-HAC alone did not affect the MDA 
content in HY20 but significantly increased the MDA content 
in HY22 by 16.78% compared with the control.

Effects of Exogenous Z-3-HAC on 
Antioxidant Metabolism and Osmolytes 
Accumulation Under Salinity Stress
Exogenous application of Z-3-HAC significantly increased 
the activity of superoxide dismutase (SOD) by 18.86% in 
HY20, the activity of guaiacol peroxidase (G-POD) by 25.99% 
in HY20 and 36.45% in HY22 (Figures 6A,B). However, 
the activities of catalase (CAT) and ascorbate peroxidase 
(APX) were only slightly affected by sole application of 
Z-3-HAC in both genotypes (Figures 6C,D). As outlined 
above, application of Z-3-HAC significantly inhibited the 
accumulation of MDA during salinity stress. In keeping with 
these results, exogenous Z-3-HAC resulted in a significant 
increase in SOD activity by 10.95% in HY20 and 23.65% 
in HY22, G-POD activity by 35.20% in HY20 and 57.82% 
in HY22, CAT activity by 26.64% in HY22, and APX activity 
by 18.99% in HY20 and 16.12% in HY22 under salinity 
stress compared to the salt treatment control (Figure 6), 

A B

C D

FIGURE 3 | Effects of Z-3-HAC on gas exchange of the third fully expanded leaves in peanut seedlings under salinity stress. (A) Net photosynthetic rate (Pn),  
(B) intercellular CO2 concentration (Ci), (C) stomatal conductance (Gs), and (D) transpiration rate (Tr). The seedlings were primed with distilled water or 200 μM Z-3-
HAC twice. After priming, the seedlings were exposed to NaCl stress. At 7 days after the onset of salinity stress treatment, the gas exchange parameters were 
determined. Bars are the standard deviations (SD) of three independent replicates (n = 3). Error bars labels with different letters indicate significant differences at 
p < 0.05 between treatments according to Duncan’s test.
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suggesting that Z-3-HAC treated seedlings had stronger 
oxidation resistance under salinity conditions.

Low-molecular weight organic compounds, such as total 
soluble sugars (TSS), sucrose, and free amino acids (FAA), 
are major components of plant osmolytes. Both salinity stress 
and exogenous application of Z-3-HAC significantly increased 
the concentrations of total soluble sugars, sucrose, and free 
amino acids in both genotypes. Two exceptions came from 
the data where salinity stress insignificantly increased the TSS 
content in HY20, and application of Z-3-HAC failed to increase 
FAA content in HY22 (Figure 7). In particular, the treatment 

of “Z-3-HAC  +  NaCl” had significantly higher concentrations 
of these osmolytes compared to the salt treatment control, 
where the total soluble sugar content was increased by 33.41 
and 27.17%, sucrose content was increased by 35.36 and 27.63%, 
and free amino acid content was increased by 24.85 and 32.74% 
in HY20 and HY22, respectively.

Effects of Exogenous Z-3-HAC on Root 
Morphology Under Salinity Stress
To further our understanding of the effects of Z-3-HAC on 
the underground part of peanut seedlings, the root morphology 

A

B C

D E

FIGURE 4 | Effects of Z-3-HAC on chlorophyll fluorescence and chlorophyll content of the third fully expanded leaves in peanut seedlings under salinity stress.  
(A) The maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm). The false color code depicted at the bottom of the image ranges from 0 (black) to 1 
(purple). The Fv/Fm values are depicted at the bottom of each image. Vertical bar = 1 cm. (B) The photochemical activity of PSII (Fv′/Fm′), (C) the non-
photochemical quenching (NPQ), (D) the total chlorophyll content expressed in mg g−1 FW (fresh weight), and (E) the quantum yield of PSII (ΦPSII). The seedlings 
were primed with distilled water or 200 μM Z-3-HAC twice. After priming, the seedlings were exposed to NaCl stress. At 7 days after the onset of salinity stress 
treatment, the chlorophyll fluorescence was determined as the area of interest, while the chlorophyll content was also analyzed. Bars are the standard deviations 
(SD) of three independent replicates (n = 3). Images and error bars labels with different letters indicate significant differences at p < 0.05 between treatments 
according to Duncan’s test.
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parameters were determined. Using a dual lens scanning 
system, we  were able to examine the root morphological 
characteristics of various treatments. From the morphological 
point of view, salinity stress reduced the total root volume 
and total root length compared with non-salinity stressed 
treatments (Figure 8A). The quantitative data further 
demonstrated that exogenous application of Z-3-HAC did 
not affect the total root volume, total root length, root average 
diameter, or the total root surface area in both genotypes 
compared with the non-salinity stressed control, with only 
one exception where the total root length was significantly 
decreased by 10.03% in HY22 (Figure 8C). For the salt-
sensitive genotype HY20, the total root volume, total root 
length, and total root surface area were significantly decreased 
by 53.9766.90, and 57.44%, respectively, under salinity stress, 
whereas the magnitude of the reduction was less for the 
salt-tolerant genotype HY22 than for HY20 (Figures 8B,C,E). 
The application of Z-3-HAC before salinity stress significantly 
increased the total root volume by 78.37 and 51.11%, 
significantly increased the total root length by 116.43 and 
56.11%, and increased the total root surface area by  
53.23 and 81.39% in HY20 and HY22, respectively,  
compared to the salt treatment control. However, no significant 
difference was observed between treatments in root average 
diameter (Figure 8D).

Principal Component Analysis
A principal component analysis (PCA) integrating all the 
information of four treatments (including two cultivars, HY20 
and HY22) was performed. The two components of PCA 
collectively explained 84.81% of data variability. The first PC 
(PC1) accounted for 69.12% of the total qualitative variation 
and had REC, SOD, FAA, and APX with high positive loadings. 
The second PC (PC2) accounted for 15.69% of the total 
qualitative variation and had TSS, G-POD, CAT, and Fv/Fm 
with high positive loadings (Figure 9). TSS, G-POD, CAT, 
Fv/Fm, FAA, SOD, APX, and REC were located toward the 
positive end of the PC1 axis in the first quadrant. In conclusion, 
Fv/Fm and the antioxidant system, including the activities of 
G-POD, SOD, CAT, and APX, were the most important factors 
in response to Z-3-HAC under salinity stress according to the 
plot of PC1, PC2, and the treatments in Figure 9A.

DISCUSSION

It is well accepted that salinity stress markedly inhibits plant 
growth and adversely affects crop production (Cheeseman, 
1988; Munns and Tester, 2008; Deinlein et  al., 2014; Niu et  al., 
2018). In the past decade, plant growth-regulating substances 
have been widely adapted by research groups to minimize the 
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E

FIGURE 5 | Effects of Z-3-HAC on the accumulation of H2O2, O2
−, and content of malondialdehyde (MDA) of the third fully expanded leaves in peanut seedlings 

under salinity stress. The seedlings were primed with distilled water or 200 μM Z-3-HAC twice. After priming, the seedlings were exposed to NaCl stress. At 7 days 
after the onset of salinity stress treatment, the leaves were excised, and histochemical staining of (A) H2O2 (DAB staining) and (B) O2

− (NBT staining) were performed. 
Horizontal bar = 1 cm. Meanwhile, the leaves were collected for the determination of (C) H2O2 content, (D) MDA content, and (E) O2

− content. Bars are the standard 
deviations (SD) of three independent replicates (n = 3). Error bars labels with different letters indicate significant differences at p < 0.05 between treatments 
according to Duncan’s test.
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pernicious effects of salinity stress on crop species, such as 
silicon (Zhu et  al., 2016), melatonin (Arora and Bhatla, 2017; 
Chen et  al., 2018), and epibrassinolide (Wani et  al., 2019). 
Nevertheless, identifying more effective and eco-friendly plant 
growth-regulating substances is warranted.

A growing body of literature indicates that GLVs are 
rapidly emitted by plants after wounding to cope with plant 
biotic stress (Yan and Wang, 2006; Heil, 2014; Tanaka et  al., 
2018). For a long time, however, scant information was 
available on the role that GLVs play in the plant abiotic 
stress response. Recently, Cofer et  al. (2018) reported that 
priming with physiological concentrations of GLV, Z-3-HAC 
alleviated cold stress in maize seedlings. In the present study, 
the ameliorative effect of Z-3-HAC in combination with 
salinity stress in severe saline soil was further investigated 
using two peanut genotypes. To the best of our knowledge, 
this is the first time the pivotal role for Z-3-HAC in the 
plant salinity stress response has been proposed. This 
mechanism could be  of paramount importance to enhance 
plant salinity stress tolerance and thereby achieve higher 
crop productivity.

In previous work, Cofer et  al. (2018) reported that priming 
with Z-3-HAC exhibits a positive effect on maize seedlings 
growth under cold stress. Similarly, the inhibition of growth 
was clearly relieved by Z-3-HAC application as indicated by 
plant dry weight and fresh weight when the peanut seedlings 
were exposed to salinity stress in this study (Figure 1). Notably, 
the application of Z-3-HAC alone failed to increase or decrease 
the growth of the peanut seedlings without salinity conditions, 

suggesting that a moderate concentration of Z-3-HAC could 
help rescue the seedlings from adverse environmental conditions.

Leaf REC and RWC are vital indicators of plant damage 
under abiotic stress. The REC increased, while RWC decreased, 
when plants were suffering from salinity stress (Yi et  al., 2015; 
Zarza et  al., 2016; Niu et  al., 2018). In keeping with these 
findings, our results indicated that salinity stress led to an 
increased level of REC and a decline of RWC in both genotypes. 
Furthermore, exogenous application of Z-3-HAC could help 
to maintain the integrity of the plant cell plasma membrane, 
as evidenced by the decreased REC and increased RWC 
(Figure 2). In support of the RWC data, the accumulation of 
osmolytes, such as soluble sugars and free amino acids, was 
also observed in the “Z-3-HAC  +  NaCl” treatment (Figure 7). 
The existence of these substances might also contribute to the 
higher water content in plant leaves, as previously reported 
(Koffler et  al., 2014; Chen et  al., 2018; Wang et  al., 2018). 
The findings to date signified the essentiality of Z-3-HAC in 
the plant salt response.

Next, we  aimed to explore the physiological mechanism of 
Z-3-HAC in greater detail. The gas exchange parameters indicated 
that Z-3-HAC effectively attenuated the damage to the 
photosystem caused by salinity stress in peanut seedlings. An 
increase in Pn was observed in Z-3-HAC-treated leaves when 
the seedlings were exposed to salinity stress (Figure 3A). 
Nevertheless, a considerably steeper reduction of Ci was detected 
in the “Z-3-HAC  +  NaCl” treatment compared with salinity 
stress alone. Thus, the reverse tendency of change in Ci compared 
to Gs indicated that stomatal limitations were not the 

A B

C D

FIGURE 6 | Effects of Z-3-HAC on the activities of the antioxidant enzymes of the third fully expanded leaves in peanut seedlings under salinity stress. The 
seedlings were primed with distilled water or 200 μM Z-3-HAC twice. After priming, the seedlings were exposed to NaCl stress. At 7 days after the onset of salinity 
stress treatment, the leaves were collected, and the activities of (A) superoxide dismutase (SOD), (B) guaiacol peroxidase (G-POD), (C) catalase (CAT), and  
(D) ascorbate peroxidase (APX) were analyzed. Bars are the standard deviations (SD) of three independent replicates (n = 3). Error bars labels with different letters 
indicate significant differences at p < 0.05 between treatments according to Duncan’s test.
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rate-limiting factors of Pn when peanut seedlings were exposed 
to salinity stress (Figures 3B,C). Generally, diffusive (reduction 
of mesophyll conductance) and metabolic (limitations of 
photochemistry and related enzymes) processes are involved 
in nonstomatal limitations (Galmés et  al., 2007; Varone et  al., 
2012). In this paper, the contents of leaf total soluble sugars 
and sucrose were significantly increased under salinity stress 

combined with Z-3-HAC treatment (Figures 7A,B), making 
it likely that the enhanced photosynthesis by Z-3-HAC could 
be  attributed to the acceleration of carbon metabolites (Paul 
and Pellny, 2003). In addition, soluble sugars and sucrose 
together with free amino acids are major components of the 
osmoregulation system, which are interdependently associated 
with plant salt tolerance (Rai, 2002; Wang et al., 2013; Puniran-
Hartley et  al., 2014; Gao et  al., 2019). The accumulation of 
these osmolytes was observed in Z-3-HAC-treated seedlings 
which, in principle, could help to decrease the membrane 
permeability under salinity conditions (Figure 7). Consequently, 
the improvement of photosynthetic performance and osmotic 
accumulation by Z-3-HAC could further increase the plant 
dry weight, fresh weight, and plant growth (Figure 1), thereby 
ultimately enhancing salt tolerance in peanut seedlings.

Leaf chlorophyll fluoresce has been principally considered 
as an important criterion to evaluate the potential injury to 
photosynthetic apparatus (Xia et al., 2009; Ivanov and Bernards, 
2015). The levels of Fv/Fm and Fv′/Fm′ were significantly 
improved in the “Z-3-HAC + NaCl” treatment, suggesting that 
Z-3-HAC could reduce the damage to the photosystem under 
salinity stress in both genotypes (Figures 4A,B). Notably, the 
induction of Fv/Fm led to an increase in ΦPSII and NPQ 
only in HY22 but not in HY20. The change in ΦPSII could 
be  mainly attributed to the increase in Fv′/Fm′, suggesting 
that Z-3-HAC could help to accommodate both the lower 
demand for NADPH and the excessive accumulation of ROS 
(Figure 4E). The higher level of NPQ in the “Z-3-HAC + NaCl” 
treatment indicated that Z-3-HAC plays an indispensable role 
in the dissipation of light energy (Figure 4C). The same trend 
of change in chlorophyll content has been observed in both 
genotypes, indicating that application of Z-3-HAC helps to 
minimize the effects of salinity stress on peanut photosynthetic 
pigments (Figure 4D). These results help to elucidate the 
profound role of Z-3-HAC in protecting photosynthetic apparatus 
to combat salinity stress.

The accumulation of ROS has been proven to be a double-
edged sword. An accumulating body of evidence documented 
that the excessive accumulation of ROS could harm the 
photosystem and plasma membrane, whereas moderate 
induction of ROS by biotic stress or abiotic stress might 
be  a crucial signal to alert the plants for further response 
(Neill et  al., 2002; Mittler et  al., 2004; Miller et  al., 2008; 
Baxter et  al., 2014; Qi et  al., 2017; Waszczak et  al., 2018). 
We  therefore determined the accumulations of two 
representative ROS, H2O2 and O2

− using both histochemical 
allocation and chemical quantitative analysis methods. The 
accumulations of H2O2 and O2

− were detected in both genotypes 
under salinity conditions, whereas application of Z-3-HAC 
largely reduced the ROS level. In addition, the reduction of 
ROS level was accompanied by the lowered MDA content, 
indicating that Z-3-HAC enhanced the ROS scavenging capacity 
in peanut leaves (Figure 5). Interestingly, H2O2 and O2

− were 
also observed after the application of Z-3-HAC under normal 
growth conditions. The MDA content was barely affected in 
HY20 but was slightly increased in HY22; however, the 
increase was not sufficient to cause any damage to the seedlings 
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FIGURE 7 | Effects of Z-3-HAC on concentrations of total soluble sugars, 
sucrose, and free amino acids of the third fully expanded leaves in peanut 
seedlings under salinity stress. The seedlings were primed with distilled water 
or 200 μM Z-3-HAC twice. After priming, the seedlings were exposed to NaCl 
stress. At 7 days after the onset of salinity stress treatment, the leaves were 
collected, and the concentrations of (A) total soluble sugars, (B) sucrose, and 
(C) free amino acids were determined. Bars are the standard deviations (SD) 
of three independent replicates (n = 3). Error bars labels with different letters 
indicate significant differences at p < 0.05 between treatments according to 
Duncan’s test.
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according to the data in this paper. Thus, we  deduce that 
the ROS induced by Z-3-HAC is more likely to be  a signal, 
rather than a harmful substance, in response to salinity stress. 
In fact, H2O2 induced by plant growth-regulating substances 
has been frequently reported to be  involved in plant abiotic 
signaling responses (Zhou et  al., 2014; Xia et  al., 2015; Dietz 
et  al., 2016; Choudhury et  al., 2017). Therefore, further 
research is required to elucidate the detailed mechanisms of 
Z-3-HAC signal transduction.

It is well accepted that SOD catalyzes the disproportionation 
of singlet oxygen and produces H2O2 (Li et  al., 2015). 
We  observed that salt-sensitive peanut genotype HY20 had 
higher levels of SOD activity than salt-tolerant peanut genotype 
after application of Z-3-HAC under normal growth conditions 
(Figure 6A). In this respect, the greater accumulation of H2O2 
in HY20 might be  the result of activated SOD. The alleviating 
effect of exogenous Z-3-HAC on leaf oxidative stress was further 
confirmed by the enhanced activities of G-POD, CAT, and 

A
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FIGURE 8 | Effects of Z-3-HAC on root morphology of the peanut seedlings under salinity stress. The seedlings were primed with distilled water or 200 μM Z-3-
HAC twice. After priming, the seedlings were exposed to NaCl stress. At 7 days after the onset of salinity stress treatment, the roots were washed thoroughly and 
scanned. (A) One representative picture is shown for each treatment. (B) Root volume, (C) root length, (D) root average diameter, and (E) root surface area were 
analyzed using the software. Bars are the standard deviations (SD) of three independent replicates (n = 3). Error bars labels with different letters indicate significant 
differences at p < 0.05 between treatments according to Duncan’s test.
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APX, where “Z-3-HAC  +  NaCl” treatment processed higher 
activities of these antioxidant enzymes compared with other 
treatments in both genotypes (Figures 6B–D). These results 
are consistent with the ROS data and support the idea that 
Z-3-HAC could alleviate leaf oxidative stress by modifying the 
antioxidant system.

To explore the mechanisms underlying the ameliorating 
effect of Z-3-HAC on salinity stress-induced root growth 
inhibition, the root morphology was further characterized. As 
expected, salinity stress suppressed root growth and reduced 
the total root volume, total root length, and root surface area. 
However, the root average diameter was barely affected by 
salinity stress (Figure 8). Exogenous application of Z-3-HAC 
significantly induced the total root volume, total root length, 
and root surface area in both genotypes compared with salinity 
stress alone treatment, providing unequivocal evidence that 
the green leaf volatile Z-3-HAC could protect both the 
aboveground and the underground portion of the seedlings 
against damage from salinity stress.

In conclusion, our results showed that priming with the 
green leaf volatile Z-3-HAC attenuated salinity stress-induced 
photoinhibition and growth inhibition in both salt-sensitive 
and salt-tolerant peanut seedlings. Exogenous application of 
Z-3-HAC alleviated the oxidative stress under salinity conditions 
by enhancing the antioxidant systems, resulting in lower ROS 
levels compared to the nonprimed seedlings. Additionally, 
modulation of osmolytes, such as total soluble sugars, sucrose, 
and free amino acid contents, and modification of root 
morphology were found to be  closely related to the above 
physiological responses. This study promotes a more 

comprehensive understanding of the ameliorating functions of 
green leaf volatiles under salinity stress. Future studies using 
molecular and proteomic approaches are still required to fully 
elucidate the role of Z-3-HAC in the plant salinity stress 
response, as well as the signaling events involved.
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