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Plant molecular pharming has emerged as a reliable platform for recombinant protein
expression providing a safe and low-cost alternative to bacterial and mammalian cells-
based systems. Simultaneously, plant viruses have evolved from pathogens to molecular
tools for recombinant protein expression, chimaeric viral vaccine production, and lately,
as nanoagents for drug delivery. This review summarizes the genesis of viral vectors and
agroinfection, the development of non-enveloped viruses for various biotechnological
applications, and the on-going research on enveloped plant viruses.
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INTRODUCTION, PLANT VIRUSES FROM PATHOGENS TO
BIOLOGICAL TOOLKIT

Virology began in 1892 with D. Ivanovsky’s paper describing the retention of virulence in leaf sap
extracted from Crimean tobacco with mosaic leaf disease (Lustig and Levine, 1992). Even though
the extracted sap had been passed through bacteria-retaining filters, the filtrate retrained the ability
to replicate within living plants (Beijerinck, 1898). Later, Vinson (1927) succeeded in precipitating
the pathogen of tobacco mosaic disease, and experiments in 1936 by Bawden and Pirie revealed
that this pathogen contained RNA and protein components (Bawden et al., 1936; Bawden and
Pirie, 1937). Further experiments in 1956 demonstrated that genetic information was stored in
RNA molecules (Fraenkel-Conrat et al., 1957) and later the concept of self-assembly of RNA and
coat protein (CP) into particles was established (Butler and Klug, 1971). This pathogen is known as
tobacco mosaic virus (TMV) and is one of the prominent viruses in plant molecular pharming.

Tobacco mosaic virus belongs to the Tobamovirus genus with a positive sense, single-stranded
genomic RNA (gRNA) with a 7-methylguanosine-5-triphosphate cap at the 5′ terminus (Dunigan
and Zaitlin, 1990) and a 3′ untranslated region (UTR) harboring a transfer RNA (tRNA)-like
structure (Takamatsu et al., 1990) as shown in Figure 1A. It encodes a total of four proteins two
of which are involved in RNA replication plus a movement protein (MP) and a CP (Goelet et al.,
1982). Inside the plant cell, the gRNA acts as a messenger RNA (mRNA) template for expressing a
126 kDa protein containing methyltransferase and helicase domains plus a 183 kDa (readthrough)
protein containing a polymerase domain (Osman and Buck, 1996; Lewandowski and Dawson,
2000). The 126 kDa and the 183 kDa replication proteins bind to the terminal tRNA-like structure
initiating transcription of complementary (negative-sense) template (Lewandowski and Dawson,
2000; Osman and Buck, 2003). This negative-sense RNA acts as a template for the synthesis of full-
length positive strands and subgenomic RNAs containing MP and CP open reading frames (ORFs)
(Ishikawa et al., 1991). The MP is an RNA binding protein involved in cell-to-cell spreading of the
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virus (Citovsky et al., 1990; Chen et al., 2000) while the CP
enhances the formation of replication complexes (Asurmendi
et al., 2004), long-distance movement (Saito et al., 1990; Hilf and
Dawson, 1993), and viral particle assembly (Bloomer et al., 1978;
Butler, 1999).

During the 1980s, the field of plant molecular pharming was
born (Franken et al., 1997) and various pharmaceuticals such as
human hormones (Barta et al., 1986), antibodies (Hiatt et al.,
1989), and vaccines (Thanavala et al., 1995), were produced
using transgenic plants. Currently, several proteins manufactured
in plants are commercialized such as bovine trypsin TrypZean
expressed in maize and commercialized by Sigma-Aldrich
(#T3568, Sigma-Aldrich Corporation, United States), the 2006
USDA approved Newcastle disease virus for poultry produced
in tobacco cell-suspension by Dow AgroSciences (Vermij and
Waltz, 2006), and the 2012 FDA approved taliglucerase alfa
(Elelyso

R©

) for the management of type 1 Gaucher’s disease
produced in carrot cells by Protalix Biotherapeutics Inc.
(Maxmen, 2012).

However, the generation and selection of stably transformed
plants for heterologous protein expression is quite elaborate
and time-consuming which lead scientists to research exploiting
viruses for this purpose. Plant viruses such as TMV (Takamatsu
et al., 1987) and cowpea mosaic virus (CPMV) (Gopinath
et al., 2000) were first adapted as full-virus vector then as a
deconstructed-virus vector for recombinant protein expression.
Later on, as we understood more of viral structure and capsid
assembly, non-enveloped plant viruses were also manipulated
for the generation of chimeric viral particles, nanoagents for
carriage of various compounds and nanostructures building
blocks. Furthermore, recently enveloped plant viruses, such as
rhabdoviruses, have been recovered from agroinfiltrated cDNA,
adding a viral particle with an amendable lipid envelope to the
arsenal of available systems.

PLANT VIRUSES IN RECOMBINANT
EXPRESSION TECHNOLOGY,
FIRST-GENERATION VECTORS

Adopting plant viruses as vectors for transient expression offered
many advantages over the transgenic system such as ability
for application in various plant species (Hamamoto et al.,
1993), reduced gene-to-product time (Hendy et al., 1999), and
increased yields (Maclean et al., 2007). At first, the host cells
were infected with a full copy of plant virus (either DNA
or in vitro transcribed RNA) into which the heterogenous
sequence or gene of interest (GOI) was cloned. The first
published virus-based vector was a gene-replacement model
in which the GOI replaced the CP of brome mosaic virus
(BMV) (French et al., 1986). However, lacking the CP, the
recombinant virus was unable to spread, and infection was
limited to inoculated cells. Further attempts followed using TMV-
based vectors in which the GOI was inserted upstream the
inherent CP gene and controlled by an additional subgenomic
RNA promoter (the inherent CP subgenomic promoter was
duplicated) (Dawson et al., 1988). Still this design was unstable

and homologous recombination resulted in the loss of inserted
sequence and reversion to the wild-type virus (Dawson et al.,
1989). A third approach was to create a hybrid virus-vector
containing different subgenomic promoter sequences from
two tobamoviruses [TMV and odontoglossum ringspot virus
(ORSV)]. This hybrid design resulted in a more stable vector
that succeeded in the systemic expression of the recombinant
protein (Donson et al., 1991). Other designs included fusing the
recombinant protein to the TMV CP either at the C-terminal
(Roder et al., 2017) or at the N-terminal downstream a leaky
stop codon (Sugiyama et al., 1995). Figures 1B–F, show the above
described modification approaches applied to TMV. Table 1 lists
a number of plant-made pharmaceutical proteins expressed using
full-viral vectors.

PLANT VIRUSES IN RECOMBINANT
EXPRESSION TECHNOLOGY,
SECOND-GENERATION VECTORS

Although viral vectors based on a full-genome demonstrated
success in producing recombinant proteins, constructs with large
inserts showed instability and low systemic spread (Shivprasad
et al., 1999; Avesani et al., 2007). Together with biosafety concerns
(Scholthof et al., 1996), these limitations lead to the development
of second-generation vectors in which the virus genome was
deconstructed into a replicon containing the essential viral
genomic components for replication and gene expression while
plant-infection was initiated exogenously. In this system, viral
MP and/or CP genes were replaced by the recombinant GOI and
the vector was introduced into plants as part of Agrobacterium
delivered T-DNA (Gleba et al., 2004), biolistic bombardment
(Komarova et al., 2006) or as chromosome-inserted replicon
(Cañizares et al., 2006). Lacking the CP, the deconstructed-virus
based vectors lacked the ability to encapsidate into viral particles,
however, they retained the ability to replicate, transcribe, and
translate as shown in Figure 2.

Among the monopartite RNA viruses, potato virus X (PVX)
(Komarova et al., 2006) and TMV (Lindbo, 2007) were first
to be adopted as a deconstructed-virus vectors. Deconstructed-
TMV based vectors were further commercially pursued by
Icon Genetics as magnifection technology (trademarked as
magnICON

R©

) (Gleba et al., 2005). The modifications included
using a hybrid RdRP [from turnip vein-clearing virus (TVCV)]
and Arabidopsis actin 2 (ACT2) as a promoter together with
removal of cryptic thymine-rich intron sites plus selective
introduction of introns (Marillonnet et al., 2004, 2005).
Magnifection of hybrid TMV-based vectors yielded 4 g/kg of
fresh weight tissue (FWT) of recombinant protein and 4.8 g/kg
FWT of full immunoglobulin G (IgG) in less than 2 weeks
(Bendandi et al., 2010).

Similarly, a deconstructed virus strategy was developed
for the bipartite RNA1/RNA2 CPMV. Early research was
based on maintaining an unmodified RNA-1 while introducing
the recombinant gene to the RNA-2 construct. Recombinant
expression was achieved using this methodology with both
full-length and defective versions of RNA-2 coding plasmids
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FIGURE 1 | Genomic organization and expression strategy of TMV and different strategies adapted to express recombinant protein or heterologous epitope using
the full virus genome. (A) The positive single-stranded RNA genome has four separate ORF(s) with a 5′ terminus methylated nucleotide cap (m7G5’pppG) and
3′-terminus tRNA-like structure. The first two 5′ proximal ORF(s) encode 126 and 183 kDa readthrough proteins containing methyltransferase (MET), helicase (HEL),
and polymerase (POL) domains which are involved in replication and transcription of the genome. ORF 3 and 4 are translated from separate subgenomic promoters
and encode the 30 kDa movement protein (MP) and 17 kDa coat protein (CP) respectively. (B) Recombinant protein (RP) fused to the CP N-terminus using fusion
peptide (FP) (Roder et al., 2017). (C) Recombinant epitope (RE) fused to the CP C-terminus using leaky UAG stop codon (Sugiyama et al., 1995). (D) Coding region
of RP cloned in place of the virus CP gene (Takamatsu et al., 1987). (E) Coding region of RP downstream a subgenomic RNA promoter and placed between the MP
and the CP genes (Dawson et al., 1989). (F) Coding region of RP cloned downstream TMV subgenomic RNA promoter and placed between TMV MP gene and a
heterogeneous CP (H-CP) gene. The latter was cloned into the TMV vector together with its heterogeneous subgenomic promoter from odontoglossum ringspot
virus (ORSV) (Donson et al., 1991).

TABLE 1 | Plant-made proteins expressed using full viral vectors.

Full virus strategy

Recombinant protein Viral vector Delivery method References

Amyloid β protein (Aβ) fragments Cucumber mosaic virus (CMV) Mechanical inoculation of in vitro transcribed RNA Vitti et al., 2010

Cholera toxin b subunit Tobacco mosaic virus (TMV) Mechanical inoculation of in vitro transcribed RNA Moore et al., 2016

Dihydrofolate reductase (DHFR) Cauliflower mosaic virus (CaMV) Mechanical inoculation of naked DNA Brisson et al., 1984

Human anti-non- Hodgkin’s lymphoma
single-chain Fv (scFv) immunoglobulins

Hybrid tobacco mosaic virus (TMV) and
odontoglossum ringspot virus (ORSV)

Mechanical inoculation of in vitro transcribed RNA McCormick et al., 2003

Rice α-amylase Hybrid tobacco mosaic virus (TMV) and
tomato mosaic virus (ToMV)

Mechanical inoculation of in vitro transcribed RNA Kumagai et al., 2000

Capsid protein VP1 of foot-and-mouth
disease virus (FMDV)

Bamboo mosaic virus (BaMV) Mechanical inoculation of naked DNA Yang et al., 2007

(Liu et al., 2005). Surprisingly, vector systems based on deleted
regions of RNA-2 (delRNA-2) achieved higher expression yields
than those obtained with full-length RNA-2 vectors (Sainsbury
et al., 2008). Further experiments revealed that replication of
delRNA-2 based molecules was not essential and high yields of
recombinant protein expression was still achieved in the absence

of RNA-1 (Sainsbury et al., 2008). The modified delRNA-2-based
mRNA was “hyper-translated” providing approximately 0.3 g/kg
FWT of fully assembled monoclonal antibody within 6 days after
agroinfection (Sainsbury and Lomonossoff, 2008). Table 2 lists a
number of plant-made pharmaceutical proteins expressed using
deconstructed-viral vectors.
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FIGURE 2 | Diagrams showing different replicon-based expression systems. (A) Deconstructed monopartite RNA virus, TMV-based system, where the viral CP was
substituted with the GOI under the control of a subgenomic promoter (Lindbo, 2007). (B) Deconstructed monopartite RNA virus, PVX-based system, where the viral
CP and MP were substituted with the GOI under the control of a subgenomic promoter (Komarova et al., 2006). (C) Deconstructed bipartite RNA plant virus,
CPMV-based system, where the RNA-1 component supplies the viral RdRp, virus genome-linked protein, helicase, and protease, while the modified RNA-2 contains
the GOI, replacing those of the viral MP and CP (Cañizares et al., 2006). (A) Described replicon design is capable of replication, cell-to-cell movement, transcription,
and replication, while designs (B,C) are capable of all, but deficient in cell-to-cell movement. LB, left border; RB, right border of the T-DNA region.

TABLE 2 | Plant-made proteins expressed using deconstructed viral vectors.

Deconstructed virus strategy

Recombinant protein Viral vector Delivery method References

Assembled full-size monoclonal
antibody

Cowpea mosaic virus (CPMV) Agroinfiltration of plasmids encoding viral vectors Sainsbury and
Lomonossoff, 2008

Assembled full-size monoclonal
antibody

Combination of non-competing viral vectors tobacco
mosaic virus (TMV) and potato virus X (PVX)

Agroinfiltration of pro-vector modules for in planta
assembly

Giritch et al., 2006

Green fluorescent protein (GFP) Cucumber mosaic virus (CMV) Agroinfiltration of plasmids encoding viral vectors Fujiki et al., 2008

Hepatitis B core Norwalk virus
capsid protein (NVCP)

Bean yellow dwarf virus (BeYDV) Agroinfiltration of BeYDV-derived vector with viral
replication-protein supplying vector

Huang et al., 2009

Human growth hormone Hybrid crucifer-infecting tobacco mosaic virus
(cr-TMV) and turnip vein-clearing virus (TVCV)

Agroinfiltration of pro-vector modules for in planta
assembly

Gils et al., 2005

The CPMV RNA2-based expression system allowed an
elegant extension in which the genome-integrated cDNA of
RNA-2 was amplified using agroinfiltrated RNA-1 constructs
or by crossing with RNA-1 transgenic plants (Cañizares
et al., 2006). This method of an inducible-replicon system,

or dormant viral cassette, was also applied with a tomato
mosaic virus (ToMV) system in suspension-cultured plant cells
(Dohi et al., 2006). Other applications included development
of dormant viral cassettes which can be activated at a
custom-chosen stage using chemical inducers, such as ethanol
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FIGURE 3 | Representative plant viruses. (A) Image of tobacco mosaic virus (Namba and Stubbs, 1986) rendered on MS PowerPoint. (B) Image of cowpea chlorotic
mottle virus (Speir et al., 1995) as obtained from VIPER (Carrillo-Tripp et al., 2009).

(Zhang and Mason, 2006), or via a Cre-LoxP recombination
system (Tremblay et al., 2007).

PLANT VIRUSES AS BIOLOGICAL
PARTICLES, THE CASE OF
NON-ENVELOPED VIRUSES

The plant viruses first exploited in biotechnology were non-
enveloped and consist of CP subunits that have the ability to
self-assemble into filamentous structures such as TMV (Alonso
et al., 2013) or hollow symmetric icosahedral structures such as
CCMV (Zandi et al., 2004) as shown in Figures 3A,B.

With better understanding of particle architecture, biophysical
properties, and ability to manipulate their genomic material,
these viruses also became exploited as virus-like particles
(VLP), self-assembled structures devoid of any genomic material
(Huang et al., 2009) and further developed as virus-based
nanoparticles (VNP) (Steinmetz et al., 2009). For instance, the
detailed molecular structure knowledge of filamentous viruses
such as TMV (Namba et al., 1989), PVX (Parker et al.,
2002), TVCV (Lartey et al., 1994), and PapMV (Yang et al.,
2012) permitted their use for various applications such as
vaccines (Smolenska et al., 1998; Petukhova et al., 2013; Therien
et al., 2017), fluorescent markers (Yi et al., 2005), biocatalysts

(Carette et al., 2007), nanoparticles for biologics purification
(Werner et al., 2006), nanoparticles for in vivo imaging (Niehl
et al., 2015), and assembly units for memory devices (Tseng et al.,
2006), as shown in Figure 4.

Non-enveloped plant viruses have been engineered in three
different ways: modification of the outer capsid (whether through
genetic manipulation, chemical modification of capsid’s amino
acids moieties, or through a combination of both), incorporation
of heterologous cargo in the inner cavity, or particle integration
into multivalent structures. Table 3 provides examples of some
current VNP that are being developed as agents used in gene
delivery (Azizgolshani et al., 2013), chemotherapy (Sánchez-
Sánchez et al., 2014), immunotherapy (Venuti et al., 2015),
vaccines (Phelps et al., 2007), and plant virus-assisted sensors
(reviewed in Eiben et al., 2018).

Production of plant virus based VLPs as vaccines received
the attention since the early 1990 (Usha et al., 1993). Plant
RNA viruses such as TMV (Koo et al., 1999), CPMV
(Mclain et al., 1995), CMV (Nuzzaci et al., 2007), plum pox
potyvirus (PPV) (Fernández-Fernández et al., 1998), potato
virus X (PVX) (Lico et al., 2009), and tomato bushy stunt
virus (TBSV) (Joelson et al., 1997) have been adapted for
the production of vaccines and tested in various animal
models. Studies conducted on the biodistribution and clearance
of TMV (Bruckman et al., 2014), PVX and tomato bushy
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FIGURE 4 | Various filamentous plant viruses engineered for different biological applications.

TABLE 3 | List of some of the non-enveloped plant viruses that have been produced for VLP or VNP applications.

Utilizing the exterior surface of viral particles (VLPs as scaffolds for peptide/epitope presentation)

Virus Viral structure Type of modification References

Alfalfa mosaic virus (AMV) Icosahedral Plant-produced chimaeric VLP as vaccine for rabies virus and human
immunodeficiency virus.

Yusibov et al., 1997

Cowpea chlorotic mottle virus Icosahedral Genetic manipulation and chemical modification for multivalent
presentation of ligands

Gillitzer et al., 2002

Cowpea mosaic virus Icosahedral Plant-produced chimaeric virus vaccine for human rhinovirus 14 and
human immunodeficiency virus

Porta et al., 1994

Papaya mosaic virus Rod-Shaped E. coli produced VLP as chimaeric viral vaccine for influenza virus. Rioux et al., 2012

Potato virus X Rod-Shaped Plant-produced chimaeric virus vaccine for hepatitis C virus. Uhde-Holzem et al., 2010

Red clover necrotic mosaic virus Icosahedral Plant-produced VLP developed for targeted drug delivery. Lockney et al., 2010

Tobacco mosaic virus Rod-Shaped Plant-produced chimaeric virus vaccine for influenza virus. Petukhova et al., 2013

Turnip yellow mosaic virus Icosahedral Plant-produced VLP developed as a biological probe. Barnhill et al., 2007

Utilizing the inner cavity of the virus

Virus Viral structure Note References

Brome mosaic virus Icosahedral Plant-produced VLP developed for encapsulation of organic chromophore. Jung et al., 2011

Cowpea chlorotic mottle virus Icosahedral E. coli produced VLP developed for encapsulation of polymers. Douglas and Young, 1998

Cowpea mosaic virus Icosahedral Plant-produced VLP developed for encapsulation of metals. Aljabali et al., 2010

Hibiscus chlorotic ringspot virus Icosahedral Plant-produced VLP developed for drug delivery. Ren et al., 2007

Tobacco mosaic virus Rod-Shaped Plant-produced VLP developed for drug delivery. Czapar et al., 2016

stunt virus (TBSV) (Blandino et al., 2015) in animal models
showed no VLP induced pathological damage. Plant viruses
are not pathogenic to mammals but are recognized by the
pathogen associated molecular pattern (PAMP) receptors of
the innate immune system (Acosta-Ramírez et al., 2008). They
were shown to elicit a humoral response when administered
by parenteral (Brennan et al., 1999b) or mucosal routes
(Brennan et al., 1999a) and a cell mediated response (Yusibov
et al., 2005; Kemnade et al., 2014). For instance, PapMV-
CP-M2e VLP can induced murine anti-M2e antibodies that
recognized influenza-infected cells and provided 100% protection

(Denis et al., 2008) without any PapMV VLP induced cellular
toxicity (Rioux et al., 2014).

The production of plant virus based VLP(s) were not limited
to plants, and a variety of heterologous systems such as insect
cells (Lamb et al., 1996), yeast (Brumfield et al., 2004) or
Escherichia coli (Denis et al., 2008) have been employed to
produce recombinant potato leafroll virus (PLRV), CCMV, and
PapMV CP that assemble into viral particles indistinguishable
from their plant produced counterparts. Nevertheless, plant-
produced VLPs remain the most economical choice, as plant
production is scalable and cost-effective with production costs
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lower than those in E. coli or eukaryotic-based systems (Kusnadi
et al., 1997; Tusé et al., 2014), and has substantial safety
advantage compared to mammalian-cells produced alternatives
(Ma et al., 2003).

TOWARD ENVELOPED VIRUS
LIKE PARTICLES

In the last decade, VLPs have been extensively developed as
recombinant vaccines in different systems whether in plants
or mammalian (Soulie et al., 1991), insects (Le Tallec et al.,
2009), yeast (Agnandji et al., 2011), and E. coli (Fiers et al.,
2009). They have proven to be immunogenic and few are
currently available on the market such as Engerix

R©

[for hepatitis
B virus (HBV)] (Keating and Noble, 2003), and Cervarix

R©

[for
human papillomavirus (HPV)] (Szarewski, 2010), produced by
GlaxoSmithKline, or their respective equivalents Recombivax
HB

R©

(Venters et al., 2004), and Gardasil
R©

(Tomljenovic and
Shaw, 2012) produced by Merck.

Nevertheless, producing VLPs whether through genetic
fusion or chemical conjugation remains challenging, especially
for complex multimeric antigens (Jagu et al., 2013; Benen
et al., 2014), full length glycoproteins that adopt different
conformations (Kwong et al., 2002; Cullen et al., 2017), large
epitopes (Werner et al., 2006), or have termini that are involved in
protein folding (Pejawar-Gaddy et al., 2010) and might interrupt
the capsid synchronized assembly (Zlotnick, 1994; Roldão et al.,
2012), while post-expression chemical conjugation has the
drawback of further increasing downstream processing costs
(Buonaguro and Butler-Ransohoff, 2010; Wilken and Nikolov,
2012; Sabalza et al., 2014; Buyel et al., 2015). Furthermore,
chimeric VLPs expressing recombinant peptides were found to
induce reduced neutralizing antibodies titre when compared to
the full domain vaccines (Gedvilaite et al., 2015). Even among
plant-virus based VLP(s), for instance, alfalfa mosaic virus-based
Plasmodium falciparum Pfs25 VLP, although it was shown to
induce P. falciparum blocking antibodies in mice (Jones et al.,
2013), in Phase I clinical trial it was shown to provide a low
protection level (Chichester et al., 2018).

In line with those difficulties and limitations, and considering
that some of these are not encountered with enveloped VLPs
(eVLPs), there has been a growing trend toward the use of
eVLPs as production platform (Gheysen et al., 1989). In this
system, structural viral proteins are expressed and incorporated
into host membranes released as particles. The envelope provides
the flexibility for integration of complete envelope-proteins and
glycoproteins resembling the native virus (Yamshchikov et al.,
1995; Baumert et al., 1998; Latham and Galarza, 2001). Along
this idea attempts have been made to produce various eVLPs
for vaccine purposes, e.g., against influenza virus (production
of eVLPs in insect cells expressing influenza virus structural
proteins) (Khurana et al., 2011), HIV (based on virosome, in vitro
associated/spiked with an HIV1 gp41-derived peptide) (Leroux-
Roels et al., 2013) and breast cancer (based on in vitro association
of antigenic peptides to synthesized phospholipid membranes)
(Wiedermann et al., 2010).

Influenza eVLPs have been produced from the co-expression
of the two major antigenic envelope proteins hemagglutinin (HA)
and neuraminidase (NA) plus matrix 1 (M1) (Pushko et al., 2005)
or from the co-expression of HA and M1 to enable budding
(Galarza et al., 2005). Most of these attempts have been performed
in animal cell systems, but recently plants have also been used
as platform for producing eVLPs against avian H5N1 Influenza
(Landry et al., 2010). HA-based influenza VLPs were found to be
budding from the plasma membrane of plant cells expressing HA
only, without the need of further viral proteins (D’Aoust et al.,
2008), due to the absence of glycoprotein sialylation in plants
(Séveno et al., 2004). Moreover, and importantly, these plant-
produced HA based eVLP vaccines were found to elicit durable
and cross-reactive T cell responses and are currently undergoing
clinical trials by Medicago (Landry et al., 2014). These findings
support and strengthen the development and exploitation of
enveloped plant virus-based vector systems, amenable for genetic
manipulation, in plant molecular pharming. Few plant viruses
exist that have a naturally occurring envelope. They classify
within the orders Bunyavirales and Mononegavirales, of which the
family Rhabdoviridae, and have a negative strand RNA genome
(King et al., 2018). Considering that monopartite rhabdoviruses
are easier to handle and a reverse genetics system has recently
been established for a plant infecting rhabdovirus, they present
the most attractive platform for development of pseudotyped
viral-vaccines upon which their inherent envelope will provide
the needed flexibility to incorporate large and complex antigens.

PLANT VIRUSES AS BIOLOGICAL
PARTICLES, THE CASE OF INHERENTLY
ENVELOPED VIRUSES –
RHABDOVIRUSES AS AN EXAMPLE

The Rhabdoviridae family contains an ecologically diverse group
of viruses infecting hosts from a wide plethora of aquatic
and terrestrial vertebrates and plants (Kuzmin et al., 2009);
rhabdoviruses from different kingdoms are listed Table 4.
Plant rhabdoviruses, like all other viruses of the Rhabdoviridae
family are enveloped, negative-sense RNA viruses (Jackson
et al., 2005). They have a bacilliform shape defined by two
major structural components: an outer envelope made of the
host lipid bilayer embedded with surface projections of the
virus glycoprotein and a tightly coiled internal nucleocapsid
composed of genomic RNA (gRNA) together nucleoprotein,
phosphoprotein, and the polymerase protein (Wolanski et al.,
1967) (Figure 5, traditionally, plant rhabdoviruses were divided
into Cytorhabdovirus or Nucleorhabdovirus genera, depending on
the virus propagation sites within the cell while recently two new
genera Dichorhavirus and Varicosavirus, with bipartite genomes,
were added (Dietzgen et al., 2017; Whitfield et al., 2018).

Many of the plant rhabdoviruses are transmitted by
arthropods in a persistent propagative way in which the virus
enters and replicates within the insect before transmission
(Sylvester and Richardson, 1992; Creamer et al., 1997;
Redinbaugh et al., 2002) while dichorhaviruses are transmitted
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TABLE 4 | List of some rhabdoviruses including plant Cytorhabdoviruses and Nucleorhabdoviruses together with their host, host class, and vectors.

Plant Rhabdoviruses

Cytorhabdovirus

Virus Plant host and class Vector References

Barley yellow striate mosaic virus Hordeum vulgare and Triticum durum Monocotyledonous Laodelphax striatellus Conti, 1969

Lettuce necrotic yellows virus Lactuca sativa Dicotyledonous Hyperomyzus lactucae Stubbs and Grogan, 1963

Nucleorhabdovirus

Cereal chlorotic mottle virus Zea mays Monocotyledonous Nesoclutha pallida Greber, 1979

Sonchus yellow net virus Sonchus oleraceus and Bidens pilosa Dicotyledonous Aphis coreopsidis Christie et al., 1974

Animal Rhabdoviruses

Vesiculovirus

Virus Animal host Vector References

Vesicular stomatitis Indiana virus Livestock Lutzomyia shannoni Tesh et al., 1972

Vesicular stomatitis New Jersey virus Livestock Simulium vittatum Comer et al., 1990

Lyssavirus

Rabies virus Broad host range Vamplire bats Mollentze et al., 2014

Duvenhage virus Broad host range Insectivorous bats Tignor et al., 1977

Fish Rhabdoviruses

Virus Fish host Vector References

Snakehead rhabdovirus Ophicephalus striatus – Ahne et al., 1988

Rhabdovirus of penaeid shrimp Penaeus stylirostris – Lu et al., 1991

A B

C

FIGURE 5 | LNYV bullet-shape structure and its genomic RNA organization, replication and transcription strategy. (A) Diagram representing an LNYV particle
showing the transmembrane glycoprotein, lipid bilayer, matrix protein, and genomic RNA together with the nucleoprotein forming the ribonucleoprotein coil.
(B) LNYV gRNA (negative-sense) showing the 3′ leader, the N, P, 4b, M, G, and L genes, the 5′ trailer (sequential genes separated by a gene junction) and the
transcription gradient. Genomic RNA is first replicated into agRNA (positive-sense), which is used as template for the production of (accumulating amounts of)
progeny gRNA (negative-sense). (C) Legend of panel (B).

by mites (Dietzgen et al., 2018) and varicosaviruses by soil-borne
fungi (Latham et al., 2004). Their spread is correlated
with that of the vector (Sylvester and Richardson, 1992),

and no seed transmission has been reported. They infect
both monocotyledonous (Conti and Appiano, 1973) and
dicotyledonous (Salazar et al., 2000) plants, harming agricultural
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production (Chen et al., 1979; Fang et al., 1996). The typical
symptoms of viral infection are necrosis, mosaic mottling of leaf
tissue, and vein clearing (Jackson et al., 2009).

Plant rhabdovirus gRNA encodes the rhabdoviruses canonical
genes: Nucleoprotein (N), Phosphoprotein (P), Matrix (M),
Glycoprotein (G), and Large Polymerase (L) (Jackson et al., 2018),
in addition to accessory genes (Walker et al., 2011) such as those
coding for a cell-to-cell MP such as the 4b gene in lettuce necrotic
yellow virus (LNYV) (Dietzgen et al., 2007), gene 3 of rice yellow
stunt rhabdovirus (RYSV) (Huang et al., 2005). Furthermore,
the gRNA is flanked by UTRs termed 3′ leader and 5′ trailer
(Fu, 2005) (Figure 5B). The leader and trailer sequences are
partially complementary and contain cis-acting signals involved
in transcription and replication (Zuidema et al., 1986; Choi et al.,
1994; Wang et al., 1999) while short intergenic sequences regulate
mRNA synthesis and sequential transcription of the canonical
genes (Wetzel et al., 1994; Bandyopadhyay et al., 2010).

Rhabdoviruses Transcription
Theoretical models that explain rhabdovirus transcription
and replication were built upon experiments on mammalian
rhabdoviruses, and one of the most well studied is Vesicular
Stomatitis virus (VSV) (Emerson, 1987; Wertz et al., 1987). The
ribonucleoprotein (RNP) unit, consisting of viral RNA associated
with the N, L, and P proteins, acts as the template for viral
transcription and replication (Yang et al., 1998, 1999; Kawai et al.,
1999). Virion-associated L protein transcribes the NC into mRNA
of distinct proteins (Moyer and Banerjee, 1975; Toriyama and
Peters, 1980). The transcription direction and gradient follow
the order of genes in the virus genome and are controlled by
the untranslated 3′ – leader sequence (Emerson, 1982) and the
non-translated inter-genomic regions respectively as shown in
Figure 5B (Barr et al., 1997; Finke et al., 2000). Transcription
of the viral genes results in the generation of monocistronic
5′-capped and polyadenylated mRNAs.

Rhabdoviruses Replication
Later during the infection, the N-P complex inhibits transcription
and switches the function of the L protein from that of
transcription to replication (La Ferla and Peluso, 1989; Gupta
and Banerjee, 1997). First, the gRNA is replicated into an
antigenomic sense RNA (agRNA) template, which is full positive-
sense RNA without a cap and poly (A) tail and is encapsidated
by the N protein (Arnheiter et al., 1985; Zhang et al., 2008).
Later, agRNA functions as a template for progeny negative-
sense gRNA (Albertini et al., 2008; Ivanov et al., 2011). With
the progeny gRNA assembled as RNP, the M protein converts
the extended helical RNP into a condensed form (Kaptur
et al., 1991), resulting in the bullet-shape morphology of
rhabdoviruses (Mebatsion et al., 1999). Finally, the G protein
tail is incorporated into the assembled M-RNP complex, aiding
the budding of progeny virus particles (Whitt et al., 1989;
Schnell et al., 1998).

Recovery of Rhabdoviruses From cDNA
Initial attempts to generate rhabdoviruses from cDNA were
based on mammalian rhabdoviruses. Research on VSV revealed

that genomic RNA must be encapsidated with the viral N
protein to be a functional template for RNA-dependent RNA
polymerase (Emerson and Wagner, 1972). This discovery was
followed by a set of experiments that enabled the first rescue
(reverse genetics system) of VSV defective interfering (DI)
particles from cells co-transfected with the five canonical proteins
(Pattnaik and Wertz, 1990, 1991). Research on rabies virus
(RABV) demonstrated the expression of a reporter gene cloned
between the viral 3′ and 5′ termini in cells co-transfected with
plasmids encoding for the three helper proteins N, P, and L
(Conzelmann and Schnell, 1994). This finding was followed
by the recovery of infectious, enveloped rabies virus particles
from cDNA (Schnell et al., 1994). Similarly, this strategy was
subsequently used to rescue other vertebrate rhabdoviruses, such
as VSV (Whelan et al., 1995), Snakehead rhabdovirus (SHRV)
(Johnson et al., 2000), infectious haematopoietic necrosis virus
(IIHNV) (Brémont, 2005), and haemorrhagic septicaemia virus
(VHSV) (Kim et al., 2011).

Similar attempts to reconstitute a plant rhabdovirus started
at Jackson’s laboratory, where N. benthamiana cellulose-digested
protoplasts were found to be suitable for studying sonchus yellow
net virus (SYNV) replication (Jones and Jackson, 1990). However,
the real challenge was the co-delivery of all plasmids needed
for the recovery of recombinant viruses into a single cell. This
difficulty was circumvented by using Agrobacterium infiltration
to co-deliver vectors expressing SYNV helper proteins into
N. benthamiana leaves (Goodin et al., 2002). In 2013, the same
group demonstrated the success of the first plant rhabdovirus
SYNV minireplicon (MR) strategy (Ganesan et al., 2013).
Plasmids harboring a positive-sense MR cassette containing two
sequentially cloned reporter genes between the SYNV 3′ and 5′
termini together with SYNV helper proteins were co-infiltrated
into N. benthamiana. The fluorescence signal was detected in
5–6 days post-infiltration and was restricted to single cells only.
This promising success culminated in 2015 when infectious
SYNV was recovered from the upper leaves of N. benthamiana
plants agroinfiltrated with four plasmids harboring positive-
sense SYNV cDNA together with helper protein plasmids
(Wang et al., 2015).

Animal Rhabdoviruses as a Potential
Model for Plant Rhabdoviruses in
Plant Molecular Pharming
As mentioned earlier, mammalian rhabdoviruses, and in
particular vesicular stomatitis virus (VSV), remains the
prototype for reverse engineering and molecular adaptation of
rhabdoviruses. Like all other rhabdoviruses it has the canonical
N, P, M, G, and L genes in a negative sense single stranded RNA
genome (Figure 6A). VSV was successfully rescued from cDNA
in 1995 (Whelan et al., 1995) and in 1996 it was first engineered
to express a reporter gene placed between those of the viral
glycoprotein and the polymerase (Schnell et al., 1996b). Later
in the same year, recombinant VSV (rVSV) was successfully
produced incorporating a foreign protein, in addition to the VSV
inherent glycoprotein, in viral envelope (Schnell et al., 1996a). In
these recombinant VSV particles, two designs were considered.
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FIGURE 6 | A schematic representation of wild type VSV and recombinant VSV designs. (A) 3′ to 5′ negative-strand genomic RNA organization of wild type VSV.
(B) Recombinant VSV (rVSV) with foreign protein inserted between the VSV G and L genes. (C) rVSV with foreign protein fused to the inherent VSV glycoprotein.
(D) Recombinant VSV1G with foreign protein replacing the inherent VSV glycoprotein. (E) rVSV with foreign protein gene inserted upstream of the VSV N protein.
(F) rVSV with the gene for foreign protein inserted upstream of the VSV N protein and with truncated VSV glycoprotein. le, leader; tr, trailer; insP, gene for inserted
protein; Gtrc, truncated glycoprotein.

TABLE 5 | List of some of the animal rhabdoviruses that have been reverse engineered for various medical applications.

Recombinant virus vaccine based on VSV

Pseudotype glycoprotein References

Viral vaccines for infectious diseases

Ebola virus (EBOV) Ebola virus Zaire strain (ZEBOV) glycoprotein Regules et al., 2017

Hepatitis B virus (HBV) HBV middle envelope surface protein (MS) Cobleigh et al., 2010

Hepatitis C virus (HCV) HCV envelope glycoproteins E1 and E2 Majid et al., 2006

Human immunodeficiency virus (HIV) HIV envelope protein with its cytoplasmic domain replaced with
that of the VSV glycoprotein

Rose et al., 2001

Influenza virus H5N1 (H5 of an H5N1 highly pathogenic avian influenza virus
and the N1 of the mouse-adapted H1N1 influenza virus)

Ryder et al., 2015

Severe acute respiratory syndrome (SARS) SARC coronavirus (CoV) spike (S) glycoprotein Kapadia et al., 2008

Oncolytic virotherapy

Brain tumor cells Chikungunya polyprotein (E3-E2-6K-E1) Zhang et al., 2018

Human T-Cell Leukemia Virus Type 1 (HTLV-1) Infected Cells HTLV-1 Primary Receptors Tezuka et al., 2018

Malignant Melanoma Lymphocytic choriomeningitis virus glycoprotein Kimpel et al., 2018

Prostate cancer Lymphocytic choriomeningitis virus glycoprotein Urbiola et al., 2018

Biomedical applications

Retrograde trans-neuronal tracing Rabies virus glycoprotein Beier et al., 2013
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The first was with the full foreign protein incorporated into
the VSV envelope (Figure 6B) while the second was the
exoplasmic domain of the foreign protein fused upstream of the
transmembrane domain and the cytoplasmic tail of the VSV
glycoprotein (Figure 6C). Furthermore, in 1997, recombinant
VSV lacking its inherent glycoprotein and expressing CD4
receptor to infect and kill HIV-1 infected T-cells was successfully
rescued (Schnell et al., 1997) (Figure 6D).

The ability to rescue VSV without its inherent G protein
(VSV1G) gave the opportunity to generate safer non-
propagating VSV based vaccines (Roberts et al., 1999). Moreover,
further attenuation strategies based on malleability of the
rhabdovirus genome, strategies such as decreasing the expression
level of viral genes by manipulating their position down
the expression gradient (Flanagan et al., 2003) or by G gene
truncations and N gene translocations (Clarke et al., 2007) were
also considered. For instance, inserting the foreign gene upstream
of the VSV N gene (Figure 6E), or inserting the foreign gene
upstream the N gene while relocating the N gene downstream
the M gene and truncating VSV G protein (Figure 6F) were
also adapted to rescue a recombinant VSV based HIV-1 vaccine
(Cooper et al., 2008).

The inherent genomic characteristics of rhabdoviruses, such
as having well-defined transcription start/stop signals (Stillman
and Whitt, 1997), and the ability to accommodate large inserts
while retaining high level expression rates (Haglund et al.,
2000), together with negligible seropositivity in the human
population (Roberts et al., 1999) made VSV a lucrative candidate
for vaccine development and as vector for a number of
biomedical applications such as recombinant viral vaccines
(Safronetz et al., 2015; Lauretti et al., 2016), gene delivery
vectors (Beier et al., 2013), or oncolytic vectors (Bridle et al.,
2009) as exemplified in Table 5. Currently, there are a number
of on-going clinical trials based on VSV1, such as Phase I/II
clinical trials for VSV based Ebola virus vaccines (rVSV-ZEBOV)
(Huttner et al., 2018).

Nowadays VSV is commonly considered a very successful
and widely used platform for heterologous expression of more
complex and interesting pharmaceuticals and biomolecules, and
for the generation of (pseudo) typed eVLPs for vaccine purposes.
It is expected that the availability and exploitation of enveloped
plant viruses as biological particles, in analogy to VSV, will give a
boost to the exploitation of plant-based production platforms for
more complex (glyco)proteins.

CONCLUDING REMARKS

Plant molecular pharming has materialized as a reliable and
cost-effective platform for the production of pharmaceuticals,
vaccines, and biobetter products with a number of plant-
produced proteins starting to be commercialized (Ratner, 2010;
Yusibov et al., 2011). Simultaneously, the development of
viral vectors, together with agroinfection, culminated in rapid
transient expression systems that successfully express high levels

1https://clinicaltrials.gov

of large and complex pharmaceutical proteins and antimicrobial
peptides (Fischer and Emans, 2000; Chen et al., 2013; Peyret
and Lomonossoff, 2013; Loh et al., 2017; Leite et al., 2019) and
enabled the production of plant-virus based VLPs against chronic
and infectious diseases (Hefferon, 2018; Sahithi et al., 2019).
However, as with their comparative systems counterparts, plant-
virus based VLP(s) are inherently constrained in their ability
to present complex antigens and glycoproteins. Moreover, in
the case of rapidly evolving viruses, such as influenza, selective
pressure will drive viral evasion of immune response induced
by VLP vaccines based on few amino acids or antigens that
cannot reproduce native conformational epitopes. Furthermore,
attempts to produce plant-made eVLP, such as influenza HA
VLP, has been so far proven successful only because of the
inherent characteristics of the influenza virus HA and its ease
of detachment as eVLP from plants cell surface (D’Aoust
et al., 2010); a basis for success not necessary applicable in
other cases. Therefore, developments in reverse engineering
inherently enveloped plant-viruses such as rhabdoviruses is
expected to give plant molecular pharming a platform for a
wide range of biotechnological applications, most relevant of
which is expressing enveloped VLPs exposing chimeric and
complex antigens.

Considering VSV as prototype, the inherent rhabdovirus
characteristics of being enveloped, with defined genomic
transcription units (Schnell et al., 1996b), genome stability
(Walker et al., 2015), and an ability to stably incorporate
recombinant glycoprotein into their envelope (Schnell et al.,
1996a) make them ideal for various biotechnological applications.
Plant rhabdoviruses, share such inherent characteristics, together
with dispensability of the G protein for systemic plant-infection
as demonstrated with SNYV (Wang et al., 2015). The G protein
is required for virus entry and subsequent propagation within
the arthropods vector (Hogenhout et al., 2003), while only the
carboxyl-terminal domain of the G protein, together with M
protein are required for the morphogenesis and the budding of
the enveloped particles (Sun et al., 2018). Hence these additional
characteristics will enable large scale production of recombinant
rhabdovirus based eVLP in which the (exposed) ectodomain of
the G has been exchanged for another gene-of-interest (GOI)
glycoprotein. Such chimeric viruses are contained within the
plant and require less stringent containment controls. Similarly
to VSV-recombinant design, plant rhabdovirus vector constructs
can also be constructed containing a GOI at different gene
positions for various expression purposes (Figure 6). All these
advantages together with the establishment of plant molecular
pharming as cost effective and reliable production platform,
make plant rhabdoviruses promising candidates in biotechnology
in general and in the field of plant-made recombinant viral
vaccines in specific.
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