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Protein-protein interactions (PPIs) play fundamental roles in various cellular processes.
Here, we present a new version of computational interactome that contains more than
345,000 predicted PPIs involving about 51.2% of the Arabidopsis proteins. Compared
to the earlier version, the updated AraPPINet displays a higher accuracy in predicting
protein interactions through performance evaluation with independent datasets. In
addition to the experimental verifications of the previous version, the new version
has been subjected to further validation test that demonstrates its ability to discover
novel PPIs involved in hormone signaling pathways. Moreover, network analysis shows
that many overlapping proteins are significantly involved in the interactions which
mediated the crosstalk among plant hormones. The new version of AraPPINet provides
a more reliable interactome which would facilitate the understanding of crosstalk among
hormone signaling pathways in plants.

Keywords: Arabidopsis thaliana, computational interactome, protein-protein interaction network, random forest,
plant hormone crosstalk

INTRODUCTION

Protein-protein interactions (PPIs) play important roles in many cellular processes, including
DNA replication, transcription, translation, and signal transduction. Detecting PPIs is essential
for uncovering unknown functions of proteins at the molecular level and gaining insight into
complex cellular networks. The importance of understanding PPIs has prompted the development
of various experimental approaches such as yeast two-hybrid assay, co-immunoprecipitation and
affinity chromatography for detecting PPIs (Braun et al., 2013). Although experimental techniques
greatly enhanced proteomics studies, these methods remain expensive, time-consuming and
labor-intensive, which even may be of uncertain reliability (Venkatesan et al., 2009).

A number of complementary computational approaches, such as gene fusion (Marcotte et al.,
1999), phylogenetic profiling (Pellegrini et al., 1999), gene co-expression (Grigoriev, 2001), gene
neighborhood (Rhodes et al., 2005), and interolog (Matthews et al., 2001), have been developed
for prediction of PPIs based on genomic context in complete genomes. Recently, computational
predictions of PPIs based on the structural context have gained much attention due to the rapid
growth of protein structures (Zhang et al., 2012; Rose et al., 2015). Unlike genomic context-based
methods, structure-based approaches allow for a much more detailed analysis of PPIs, which can
determine the physical characteristics of the interactions and residues at the protein interface.
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More recently, we have developed a hybrid computational
approach by combining structural information with genomic
context to predict PPIs in plants (Zhang et al., 2016). In
contrast to structure-based approaches that depend on detailed
information of experimental structures (Mosca et al., 2013), we
calculated the characteristics of protein interfaces for interaction
clues based on homology models that enabled the use of protein
structural information on a genome-wide scale. By applying
the hybrid method, we have constructed a computational
interactome, AraPPINet, which contained more than 316,000
PPIs and showed high efficiency for discovering novel PPIs in
Arabidopsis. This hybrid approach with structural information
greatly increased prediction accuracy of protein interactome
by largely reducing false positives on a genome-wide scale
(Zhang et al., 2016; Liu et al., 2017).

Here, we present an updated version of AraPPINet that takes
advantage of increasing information such as protein structure,
gene expression data and functional annotation. The resulted
new AraPPINet network contains over 345,000 reliably predicted
PPIs with considerably increased accuracy compared to the
previous version. In addition to the experimental validations
reported previously, the new version was subjected to further
tests that demonstrated its ability to detect PPIs involved in
crosstalk of hormone signaling pathways. The updated version of
AraPPINet provides a more reliable interactome which facilitates
the understanding of gene function and the molecular regulation
mechanisms of hormone signaling pathways in plants.

MATERIALS AND METHODS

Preparation of Training and Testing
Datasets
All experimentally determined PPIs of Arabidopsis were collected
from five public databases: BioGRID (Chatr-Aryamontri et al.,
2017), IntAct (Orchard et al., 2014), DIP (Salwinski et al.,
2004), MINT (Licata et al., 2012), and BIND (Isserlin et al.,
2011). The PPIs derived from low-throughout experiment or
the interactions supported by at least two independent high-
throughput experiments were extracted as positive reference
dataset in May 5, 2017 (Table 1). Protein pairs without any
experimental evidence for interactions were randomly chosen to
generate the negative reference dataset for model training. To
overcome the problem of training set imbalance, we oversampled
the positive class by synthetically generating additional samples
with the SMOTE method (Fernandez et al., 2018).

Two independent experimentally determined datasets,
including high-throughput PPIs supported by only one
publication and the whole newly reported PPIs collected after
May 5, 2017, were used to evaluate the performance of different
computational prediction methods.

Calculation of Structure-Based Feature
The homology models of Arabidopsis proteins were constructed
by ModPipe (Pieper et al., 2014). A representative homology
structure with the highest ModPipe quality score was selected
for each protein according to the previously described criteria

(Zhang et al., 2016; Liu et al., 2017). A total of 25,557 homology
models were generated for Arabidopsis.

The structural data of over 205,000 protein complexes was
collected from both the protein data bank (PDB) (Rose et al.,
2015) and proteins, interfaces, structures, and assemblies (PISA)
databases (Xu et al., 2008). A total of 378,000 chain–chain binary
interfaces of protein complexes were generated by PIBASE with
an interatomic distance cut-off of 6.05 Å (Davis and Sali, 2005).
Approximately 10 billion structural comparisons were created by
aligning the protein homology models to the chains of complexes
using TM-Align (Zhang and Skolnick, 2005). With a normalized
TM score cut-off of 0.4 for structural similarity, over 88 million
homology model-chain alignments were remained for building
interaction models.

Four structural features including structural similarity (TM-
score), structural distance (RMSD), preserved interface size and
fraction of the preserved interface were calculated from structural
superposition of homology models and complexes. The detailed
method of structural features calculated for each interaction
model refers to the previous paper (Zhang et al., 2016).

Calculation of Genomic-Based Feature
Gene co-expression analysis was performed based on 594
Arabidopsis RNA-Seq data collected from SRA database in NCBI.
The cleaned reads without adaptors and low-quality ones were
then mapped to Arabidopsis genome sequences by using Tophat2
(Trapnell et al., 2012). Mapped reads were counted by using
HTSeq-Counts (Anders et al., 2015). Relying on these data, reads
per kilobase of transcript per million mapped reads (RPKM)
(Mortazavi et al., 2008) were calculated to measure the level
of gene expression. Pearson correlation coefficients were then
calculated for each gene pair.

Gene functional similarity is defined as S = log(n/N)/log(2/N)
on three independent gene ontologies (GO) (biological process,
molecular function, and cellular component), where n represents
the number of genes in the lowest GO class containing
these two genes, and N is the total number of genes in the
Arabidopsis genome annotation. The GO data used came from
the ontology file (Ashburner et al., 2000). The feature based
on the cellular component ontology is used to capture the
cellular co-localization of proteins for PPI prediction, which
could avoid the false interactions raised by spatially separated
proteins (Huh et al., 2003).

The calculation method of gene phylogenetic profile similarity
was the same as that of the previous network (Zhang et al.,
2016). A total of 300 eukaryotic and 1,026 prokaryotic
sequenced genomes were collected in the study after removing
evolutionarily similar genomic data. The Arabidopsis proteins
were then BLAST aligned with all of the collected protein-
encoding sequences.

Interolog analysis was performed similarly to a strategy
proposed by Jonsson and Bates (2006). InParanoid with default
settings was used to identify the orthologs of Arabidopsis
proteins with that of Escherichia coli, Saccharomyces cerevisiae,
Caenorhabditis elegans, Drosophila melanogaster, Mus musculus,
and Homo sapiens. The experimentally determined PPI datasets
of these six model organisms used for interolog analysis were
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TABLE 1 | The gold standard PPI data from various databases.

Database BioGRID IntAct DIP BIND MINT Unique PPIs in total

BioGRID 8,953 6,603 95 107 22 8,953

IntAct – 6,861 48 128 30 6,861

DIP – – 146 3 0 146

BIND – – – 153 1 153

MINT – – – – 30 30

All – – – – – 9,260

derived from the BioGRID, IntAct, DIP, and MINT databases
(Supplementary Table S1).

Rosetta stone protein (gene fusion) was calculated by
following the previous described method (Zhang et al., 2016).

Prediction of Protein Interaction
Positive and negative reference sets with 11 features were used
to train the random forest classifier in R with the setting
of 500 trees (Liaw and Wiener, 2001). The whole possible
protein pairs were then classified by the optimized random
forest model. The predicted network was generated by Cytoscape
(Cline et al., 2007).

Evaluation of Prediction Performance
Ten-fold cross-validation method was used to evaluate the
performance of the model. Training dataset was divided into 10
equal shares. Nine of them were used to train the model and the
remaining one was used to test the prediction. This progress was
repeated for 10 times by using the different dataset each time. The
average value of these results was set as the final evaluation. The
value of TP (true positive), FP (false positive), TN (true negative)
and FN (false negative) were counted. True positive rate (TPR) or
recall = TP/(TP+ FN), false positive rate (FPR) = FP/(FP+ TN)
and precision = TP/(TP + FP) were calculated to measure the
performance of the model.

Precision-recall (PR) curves were produced from the Random
Forest classifier testing progress in order to compare the
prediction performance of the updated AraPPINet with the
earlier version (Zhang et al., 2016). Additionally, the performance
of the updated AraPPINet was compared with that of the
previous version and three other available PPI prediction
methods: AtPID (Cui et al., 2008), AtPIN (Brandão et al., 2009)
and PAIR (Lin et al., 2011) based on the test datasets. The latest
versions of the three methods (AtPID V5.03, AtPIN V9, and PAIR
V3) were used to predict PPIs and compare the values of TPRs
and F-measures.

Significance Analysis of Pathway
Interaction
Proteins interacted with the core proteins of hormone signaling
pathway were predicted by the updated AraPPINet. A Fisher’s
exact test was performed to test the significance of overlapping
interacting proteins between two hormone signaling pathways
based on the following 2× 2 table,

Hormone 1 Not Hormone 1

Hormone 2 X12 X2−X12
Not Hormone 2 X1−X12 13,929−X1−X2+X12

where X1 and X2 are the numbers of interacting proteins in
hormone signaling pathway 1 and 2, respectively; X12 is the
number of overlapping proteins between the two hormone
signaling pathways. A total of 13,929 proteins were contained
in the updated AraPPINet network. P-value obtained from
reference data (using function fisher test in R) with the level less
than 0.001 indicates the significance of overlapping interacting
proteins between two hormone signaling pathways.

Function Analysis of
Hormone-Interacting Proteins
Functional enrichment of hormone-interacting proteins
was gained from database for annotation, visualization, and
integrated discovery (DAVID) (Huang da et al., 2009) by
comparing the genes with their FDR values.

Enrichment Analysis of Interactions
Between Hormone Signaling Pathways
To estimate the possibility of core components linked to
proteins in another hormone signaling pathway, an edge-
shuffling method was used to generate 1000 randomized
networks with the same degree of each node as that in the
protein interaction network. The number of interactions of
core components between two hormone signaling pathways
was then counted in the original network and the randomized
networks. The fold enrichment of interactions was calculated by
dividing the observed links in original network by that in the
randomized networks.

RESULTS

Updating PPI Networks in Arabidopsis
We have updated the Arabidopsis PPI networks inferred from
both structural information and genomic contexts. Currently,
the genomic features were improved by new data, such as RNA
sequencing data, which greatly increased the data coverage of
gene co-expression from 59.51 to 96.02%. Moreover, 23.94% of all
possible protein pairs were supported by structural information,
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FIGURE 1 | Comparison of feature coverage in the updated and the previous versions. (A) Data coverage of all protein pairs with the listed features in the updated
and the previous datasets. The coverage represents a ratio of the number of protein pairs with available information in each feature divided by the number of whole
possible protein pairs. (B) Data coverage of the predicted PPIs with the given features in the two AraPPINet versions. The coverage represents a ratio of the number
of predicted PPIs with available information in each feature divided by the number of all predicted interactions.

which is much higher than the previous version (11.48%). The
higher data coverage would improve the accuracy of model for
discovering PPIs (Figure 1A).

The training datasets with different ratios of positive to
negative samples were used to train the model. When the model
was trained by a dataset consisting of positive and negative
samples of equal size (1:1), the predicted model presented
a relatively high TPR of 70.62%. Although the accuracy of
the trained model had been relatively well, a higher FPR of
14.97% would result in a large number of FP interactions on

a genome-scale (Table 2). When more negative examples were
added to the training dataset, the enlarged negative dataset
effectively decreased the FPR, but meanwhile the imbalance in
training dataset significantly compromised the TPR (Table 2).
In order to reduce the imbalance level, synthetic minority
oversampling technique (SMOTE) was applied to synthetically
generate additional samples for the positive class (Fernandez
et al., 2018). The model performance became better as the ratio
of positive training samples increased. When the ratio of positive
to negative samples was optimized to 1:40, the generated model
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TABLE 2 | Performance comparisons of PPI predictions with and without SMOTE technique.

Positive to negative ratio SMOTE or not TPR on training set (%) FPR on training set (%) TPR on test set (%) FPR on test set (%)

1:1 (9260:9260) No 70.62 14.97 64.01 14.07

1:10 (9260:92600) No 40.05 0.839 22.36 0.753

1:50 (9260:463000) No 27.51 0.114 11.51 0.098

1:60 (9260:555600) No 26.34 0.092 10.76 0.086

1:80 (9260:740800) No 24.64 0.061 9.64 0.065

1:100 (9260:926000) No 23.19 0.047 9.01 0.055

1:10 (92600:1389000) SMOTE 84.51 0.405 18.77 0.179

1:30 (46300:1389000) SMOTE 63.33 0.103 14.47 0.101

1:40 (34725:1389000) SMOTE 49.74 0.095 14.20 0.095

1:50 (27780:1389000) SMOTE 47.94 0.071 13.78 0.072

1:75 (18520:1389000) SMOTE 28.29 0.047 12.29 0.057

The bold values mean the optimized positive to negative ratio of training set with a relatively high TPR and a low level of FPR.

showed a relatively high TPR of 49.74%, while the FPR (0.095%)
remained at the low level of less than 0.1% (Table 2). This level
of FPR was expected due to the use of random protein pairs as
the negative dataset in model training (Arabidopsis Interactome
Mapping Consortium, 2011).

By applying the optimized PPI prediction model, we
constructed a new version of Arabidopsis PPI network.
The updated AraPPINet contained 345,006 reliable PPI
predictions involving 13,929 (51.2%) proteins, about 8.9%
more interactions and 10.8% more proteins than the previous
version. Over half of the predicted PPIs were supported
by structural information, which is much higher than that
of the earlier version (Figure 1B). Similar to the previous
version, the new protein interaction network also exhibited
free-scale traits, and its high-clustering coefficient values
revealed that the topological structure was highly modular
(Supplementary Figure S1).

Prediction Accuracy With Respect to the
Previous Methods
We assessed the performance of the current method with respect
to the previous version. Firstly, a 10-fold cross-validation was
performed using the training datasets. Performance evaluation
showed that the TPR of the new method reached 49.74%,
while the FPR remained at the low level of 0.095%. PR
curves based on test dataset as well as on training dataset
showed that the new method had a higher area under the
curve (AUC) value than the previous version (Figure 2A
and Supplementary Figure S2). These results suggested that
the updated AraPPINet network was much more efficiency
and accuracy than the previous version. Moreover, among
the 36,147 experimentally determined PPIs without training
positive interactions, a total of 5,133 PPIs were predicted
by the updated model, and much higher than the previous
version (Figure 2B).

Furthermore, we employed two independent datasets as
the benchmarks to compare the performance of the different
computational methods: in discovering PPIs. One is the dataset
derived from the high-throughput PPIs supported by only
one publication, and another one is the dataset comprising

all PPIs released after May 5, 2017. Among the 14,815
high-throughput PPIs, 2,252 (15.2%) protein interactions could
be successfully predicted by the updated AraPPINet, which
showed better performance than the previous version and three
other methods: AtPID, AtPIN, and PAIR (Figure 2C). Moreover,
we evaluated the abilities of these different methods to predict
novel PPIs with the newly reported dataset. Of these 21,332
newly reported PPIs, 2,880 (13.5%) protein interactions were
successfully recognized by the updated model, which significantly
overperformed the four other methods (Figure 2D). We also
compared F-measure of different prediction methods using
the test datasets and the updated AraPPINet showed great
improvement over other PPI prediction methods based on the
F1 score (Tables 3, 4). These results suggested that the new
model could effectively increase the accuracy of the predicted
protein interactome.

Inference of Major Hormone Signaling
Networks
Plant hormones play important roles in regulating plant growth,
development, and responses to the environment. Although
many components of hormone signaling pathways are well
known, the signaling networks consisting of interactions between
core components and their related proteins are still largely
unclear. By inferring from the updated version of AraPPINet, we
constructed the signaling networks of five hormones including
gibberellin (GA), auxin (IAA), cytokinin (CK), ethylene (ET),
and abscisic acid (ABA). Compared to the previous version, the
new version of AraPPINet could predict more PPIs involved
in the hormone signaling networks of GA, IAA, and CK
in the new protein interaction network (Figures 3A–E). For
example, a total of 4,398 interactions were predicted to be
related to GA signaling in the new version, while 3,352
PPIs were identified in the previous version. Moreover, the
accuracy of predicted PPIs in hormone signaling networks was
evaluated by two independent datasets of experimentally verified
interactions. For IAA signaling, a total of 518 predicted PPIs
were identified from high-throughput experiments, of which
388 (75%) protein pairs could be successfully predicted by the
new network, that was much more accuracy than the previous
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FIGURE 2 | Performance comparison of the updated AraPPINet with other computational methods. (A) PR curves of the updated AraPPINet and the previous
version on test dataset. (B) Venn diagram of predicted PPIs overlapping with the experimentally determined protein interactions. (C) Comparison of the updated
AraPPINet with other methods based on the high-throughput dataset. (D) Comparison of the updated AraPPINet with other methods based on the newly reported
interactions.

version (53%) (Figure 3F). Among 513 newly reported PPIs
involved in IAA signaling, 315 (61%) PPIs were predicted by
the new network, while 219 (43%) interactions were recognized
by the previous network (Figure 3G). Furthermore, we also
evaluated the accuracy of the predicted PPIs associated with
other hormone signaling pathways. As shown in Figures 3F,G,
apparently the new network shows great improvement in
PPI prediction of GA, CK, and ET signaling pathways over
the previous version on both two test datasets. All these
results suggested that the new version of AraPPINet was more
powerful to discover novel PPIs involved in plant hormone
signaling pathways.

Interplay of Hormone Signaling
Pathways
Plant hormone signaling pathways are often interconnected with
each other in the regulation of diverse biological processes.
To identify common proteins involved in different hormone
signaling, we analyzed candidate proteins that were interacted

with the core components of GA, IAA, CK, ET, and ABA
signaling pathways and compared these interacting proteins
inferred from the new AraPPINet. Remarkably, many interacting
proteins were overlapped in two or more hormone signaling
networks (Figure 4A). According to the Fisher’s exact test
analysis, we found that the level of overlap between hormone
signaling networks was much greater than expected at random,
indicating that all five hormone signaling pathways significantly
interact with each other (Figure 4B). Moreover, a subset
of well-represented GO terms was used to identify the
functional trends of the interacting proteins in each hormone
signaling. Proteins interacting with each hormone signaling
were significantly involved in the regulation of other four
hormone signaling pathways (Figure 4C and Supplementary
Table S2), suggesting that many of these proteins play
important roles in the regulation of more than one hormone
signaling pathway.

Among these interacting proteins, some are core components
in hormone signaling pathways. We found that many core
proteins could also directly interact with each other in different
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TABLE 3 | F-measure comparison of different prediction methods based on high-throughput dataset.

Method Positive PPIs All predicted PPIs Precision Recall F1 score

RandNet 123 345,006 0.0004 0.0083 0.0007

AtPID 222 24,418 0.0091 0.0150 0.0113

AtPIN 165 87,936 0.0019 0.0111 0.0032

PAIR 724 137,837 0.0053 0.0489 0.0095

The previous AraPPINet 1,779 316,747 0.0056 0.1201 0.0107

The updated AraPPINet 2,252 345,006 0.0065 0.152 0.0125

TABLE 4 | F-measure comparison of different prediction methods based on newly released dataset.

Method Positive PPIs All predicted PPIs Precision Recall F1 score

RandNet 124 345,006 0.0004 0.0058 0.0007

AtPID 154 24,418 0.0063 0.0072 0.0067

AtPIN 187 87,936 0.0021 0.0088 0.0034

PAIR 843 137,837 0.0061 0.0395 0.0106

The previous AraPPINet 2,091 316,747 0.0066 0.098 0.0124

The updated AraPPINet 2,880 345,006 0.0083 0.135 0.0157

FIGURE 3 | Performance comparison of the two AraPPINet versions for predicting hormone signaling networks. (A–E) Venn diagram of predicted PPIs involved in
different hormone signaling overlapping with the experimentally determined PPIs (F) Comparison of the two AraPPINet versions for predicting PPIs involved in
hormone signaling based on the high-throughput dataset. (G) Comparison of the two AraPPINet versions for predicting PPIs involved in hormone signaling based on
the newly reported interactions.

hormone signaling pathways. Enrichment analysis of protein
interactions between GA and another pathway revealed that
GA pathway had a high possibility in connecting with different
hormone signaling pathways through the interactions of the
core components (Figure 4D and Supplementary Table S3).
The network consisting of all predicted links among the core
components of five signaling pathways is shown in Figure 4E.
These results suggested that the new interactome had a high

possibility in discovering connections among core proteins in
different hormone signaling pathways.

It is interesting that 298 proteins were predicted to interact
with all five hormone signaling pathways (Figure 5A). Functional
enrichment analysis showed that these overlapping proteins were
significantly involved in the protein binding and regulation of
transcription, as well as the regulation of five hormone signaling
pathways (Figure 5A and Supplementary Table S4). As shown

Frontiers in Plant Science | www.frontiersin.org 7 July 2019 | Volume 10 | Article 870

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00870 July 5, 2019 Time: 13:29 # 8

Zhao et al. An Updated Computational Interactome in Arabidopsis

FIGURE 4 | Inference of hormone signaling crosstalk from the updated AraPPINet. (A) Venn diagram of hormone signaling interacting proteins inferred from the
updated network. (B) Overlapping interacting proteins of five hormone signaling pathways. Numbers on the diagonal line represent total number of proteins
interacting with each hormone signaling. The number of common interacting proteins between any two hormone signaling pathways is indicated above the diagonal.
P-value of the overlap obtained from fisher’s exact test is presented below the diagonal line. (C) Enriched GO functional categories of proteins interacting with each
hormone signaling pathway. (D) Enrichment folds of interactions connected core components of GA with that in other hormone signaling pathways. (E) Interactions
among core components in five hormone signaling pathways. All predicted connections among core proteins are colored in yellow, and experimentally demonstrated
interactions are colored in red.

in Figure 5B, a total of 22,292 interactions are found among
these overlapping proteins and core components of five hormone
signaling pathways, of which 224 interactions have been proved
by experimental assays. All of these results indicated that these
overlapping proteins might play important roles in connecting
five hormone signaling pathways in plants.

DISCUSSION

In this study, we present a new version of AraPPINet, which
contains over 345,000 reliably predicted interactions, almost

30,000 PPIs more than the previous version. Most of the
increase of PPI predictions is due to the availability of new
structural information and new high-throughput genomic data
(Figure 1). Among the used data sources, structural distance,
and biological process ontology are the key structural and
genomic clues affecting the performance of the new method,
respectively. It should be noted that proteins cannot interact
with each other in vivo if they are spatially separated in
a cell. To avoid the false interactions raised by spatially
separated proteins, a feature based on the cellular component
ontology has been used to capture the cellular co-localization
of proteins for PPI prediction (Ashburner et al., 2000;

Frontiers in Plant Science | www.frontiersin.org 8 July 2019 | Volume 10 | Article 870

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00870 July 5, 2019 Time: 13:29 # 9

Zhao et al. An Updated Computational Interactome in Arabidopsis

FIGURE 5 | Functional enrichment and interaction network of overlapping proteins of five hormone signaling pathways. (A) Enriched GO functional categories of 298
overlapping proteins of five hormone signaling pathways. (B) Interaction network of overlapping proteins and core components in hormone signaling pathways.
Orange and blue nodes represent overlapping proteins and core components, respectively. All predicted links among these proteins are colored in gray and
experimentally demonstrated edges are colored in red.

Huh et al., 2003). These various interaction clues have been
combined to make reliable PPI predictions on a genome-wide
scale (Zhang et al., 2016).

In addition to the use of new data, the predictability of
new AraPPINet is also benefited from the reduced effects
of class imbalance by using SMOTE technique, which can
improve the prediction of the positive interactions (Fernandez
et al., 2018). Moreover, we used the optimized ratio of
positive to negative sample in training dataset to prevent FPs
from a large amount of non-interacting protein pairs. This
strategy has been shown to effectively increase the accuracy
of PPI prediction by reducing the FPR to the expected level
(Zhang et al., 2016; Liu et al., 2017). Performance comparisons
showed our optimized model significantly performed better than
the other developed methods, which could be able to make
reliable predictions on a genome-wide scale.

Different hormone signaling pathways can interact with
each other to regulate plant growth and development. The
extensive crosstalk among individual hormone pathways leads to
the formation of complex signaling networks (Murphy, 2015).
The evaluations with independent datasets suggested that the
new AraPPINet provides a valuable resource for identifying
protein interactions involved in hormone signaling networks of
plants. Indeed, the performance of the new network appears
comparable to that of experimental databases as measured by
TPR, and its coverage is far more extensive than that of the
previous network. Network analysis showed different hormone
signaling pathways extensively interact with each other in
the updated AraPPINet. Interestingly, we found approximately
300 overlapping proteins involved in the interplay of all five
hormone signaling pathways. For example, JAZ1 (AT1G19180),
a key repressor of JA signaling, was predicted to interact
with the core components in other four hormone signaling
pathways, of which interactions between JAZ1 and RGL1

(AT1G66350), and JAZ1 and EIL1(AT2G27050) have been
shown to modulate JA and GA, and JA and ET signaling
pathways, respectively (Hou et al., 2010; Zhu et al., 2011). The
increasing evidences suggested these common proteins would
serve as central regulators that mediate the crosstalk of various
hormones. The new version off computational interactome
greatly expanded the known interactions involved in hormone
signaling networks, which would facilitate the understanding of
hormone crosstalk in plants.
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FIGURE S1 | Topological properties of the updated and the previous AraPPINet
networks. (A) Degree distribution of the node proteins. (B) Average clustering
coefficient of proteins with the same degree.

FIGURE S2 | PR curves of the updated AraPPINet and the previous version on
training dataset.

TABLE S1 | Experimentally determined PPIs of six model organisms.

TABLE S2 | Enriched GO functional categories of proteins interacted with
hormone signaling pathways.

TABLE S3 | List of core proteins significantly interacting with GA signaling
pathway.

TABLE S4 | Enriched GO functional categories of overlapping proteins of five
hormone signaling pathways.
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