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Bioethanol production obtained from cereal straw has aroused great interest in recent
years, which has led to the development of breeding programs to improve the quality of
lignocellulosic material in terms of the biomass and sugar content. This process requires
the analysis of genotype–phenotype relationships, and although genotyping tools are
very advanced, phenotypic tools are not usually capable of satisfying the massive
evaluation that is required to identify potential characters for bioethanol production in
field trials. However, unmanned aerial vehicle (UAV) platforms have demonstrated their
capacity for efficient and non-destructive acquisition of crop data with an application in
high-throughput phenotyping. This work shows the first evaluation of UAV-based multi-
spectral images for estimating bioethanol-related variables (total biomass dry weight,
sugar release, and theoretical ethanol yield) of several accessions of wheat, barley, and
triticale (234 cereal plots). The full procedure involved several stages: (1) the acquisition
of multi-temporal UAV images by a six-band camera along different crop phenology
stages (94, 104, 119, 130, 143, 161, and 175 days after sowing), (2) the generation
of ortho-mosaicked images of the full field experiment, (3) the image analysis with an
object-based (OBIA) algorithm and the calculation of vegetation indices (VIs), (4) the
statistical analysis of spectral data and bioethanol-related variables to predict a UAV-
based ranking of cereal accessions in terms of theoretical ethanol yield. The UAV-based
system captured the high variability observed in the field trials over time. Three VIs
created with visible wavebands and four VIs that incorporated the near-infrared (NIR)
waveband were studied, obtaining that the NIR-based VIs were the best at estimating
the crop biomass, while the visible-based VIs were suitable for estimating crop sugar
release. The temporal factor was very helpful in achieving better estimations. The results
that were obtained from single dates [i.e., temporal scenario 1 (TS-1)] were always less
accurate for estimating the sugar release than those obtained in TS-2 (i.e., averaging the
values of each VI obtained during plant anthesis) and less accurate for estimating the
crop biomass and theoretical ethanol yield than those obtained in TS-3 (i.e., averaging
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the values of each VI obtained during full crop development). The highest correlation to
theoretical ethanol yield was obtained with the normalized difference vegetation index
(R2 = 0.66), which allowed to rank the cereal accessions in terms of potential for
bioethanol production.

Keywords: remote sensing, unmanned aerial vehicle, vegetation index, biomass, sugar release, theoretical
ethanol yield, breeding program

INTRODUCTION

Currently, there is a renewed interest in biomass recovery for
energy consumption because biomass is a renewable and carbon
neutral source of energy (Perea-Moreno et al., 2019). Two types of
biofuels can be distinguished according to the different feedstock
types. The first generation liquid biofuel is produced from cereals,
sugar crops, and oilseeds, and the second-generation liquid
biofuel is produced from lignocellulosic feedstock (Mittal and
Decker, 2013; Kang et al., 2014). Between the two types, second-
generation biofuel is a more sustainable option because it is not
in direct competition with the food supply and, consequently,
it does not increase food prices. Additionally, it produces lower
greenhouse gas emissions and better water and land uses (Sims
et al., 2010). The process of biofuel production could be improved
in terms of productivity, efficiency and cost reduction by using
two powerful tools, classical breeding and biotechnology, and by
analyzing the genotype–phenotype relationships in both cases.

Genotyping tools have been investigated in deep over the
last 20 years and have led to a better understanding of
the plant genome through DNA sequencing and molecular
technologies. In contrast, that investigation has not happened
with phenotyping tools, which usually have been unable to
satisfy the greatest number of technical requirements non-
destructively with high performance and speed at a low price
(Araus and Cairns, 2014). However, in recent years, new high-
throughput phenotyping platforms are undergoing a rapid
evolution that could significantly improve the understanding
about the association between genes and phenotypes (White et al.,
2012; Cobb et al., 2013; Dhondt et al., 2013). These platforms
for phenotyping are capable of generating large quantities of
data quickly and give the opportunity to evaluate plants in
actual field conditions. Several high-throughput platforms had
been developed for non-destructive plant data collection, as
examples, tractor-mounted platforms (Busemeyer et al., 2013;
Walter et al., 2019), cable-driven platform (White and Bostelman,
2011), aerial vehicles (Shi et al., 2016; Tattaris et al., 2016),
and portable or pushed platforms (Jay et al., 2015; Bai et al.,
2016; Crain et al., 2016), among others (Araus et al., 2018;
Rouphael et al., 2018). In the specific case of cereals, some
of these high-throughput sensor-based techniques have been
applied, e.g., for assessing salt-tolerance in Triticum (Rajendran
et al., 2009), drought-tolerance in barley (Hartmann et al., 2011)
and maize (Winterhalter et al., 2011), biomass and/or plant height
in maize (Han et al., 2019), barley (Bendig et al., 2014), triticale
(Alheit et al., 2014), wheat (Yue et al., 2017; Hassan et al., 2019)
and sorghum (Watanabe et al., 2017), growth status in wheat
(Du and Noguchi, 2017), wheat spike (Zhou et al., 2018), and

seedling emergence and spring stand in winter wheat (Sankaran
et al., 2015a). However, to our knowledge, there are no works
in which image-based technologies have been used to evaluate
the potential for bioethanol production from cereals grown in
field conditions. In this specific case, the cultivation of cereals
with the dual fitness of providing the grains for food and the
crop residues for bioethanol production has been the subject of
many investigations, in which the main interest lies in obtaining
organic residues with a cell wall that is easily degradable by
enzymes but do not compromise grain yield (Jensen et al., 2011;
Lindedam et al., 2012).

In recent years, unmanned aerial vehicles (UAVs) have
become a relevant tool for phenotyping because of their
advantages over other platforms (Yang et al., 2017). UAVs
are a low-cost and reliable method for taking remote images
by using global positioning and inertial navigation systems,
which allows for frequent field observations to capture the
variation of plant traits over time. Furthermore, the capacities
of the UAV to use a wide range of sensors and to operate
at a low flight altitude provide high-resolution spatial and
spectral information on the studied plants (Peña et al.,
2015). Based on the knowledge of phenotypes related to
the bioethanol potential and on the capability of the UAVs
to collect high-resolution images in field trials, a UAV-
based phenotyping system was developed and tested on a
multi-temporal field experiment composed of 66 genotypes
belonging to several species of cereal crops. First, this
work describes the full protocol to collect remote images
with a multi-spectral camera and to analyze the images
by using a customized object-based image analysis (OBIA)
algorithm. The OBIA partitions the image in spatially and
spectrally homogenous objects following a segmentation process
and then combine several features of spectral information,
location, proximity and hierarchy of the segmented objects
to analyze the vegetation fraction (Torres-Sánchez et al.,
2014). The use of OBIA methodology drastically increase
the success of vegetation classification and facilitate multi-
temporal analysis of vegetation blocks. Then, a comparison of
multi-temporal UAV-based data and on-ground measurements
of the crop trials allowed the correlation between image
spectral information in the visible and near-infrared spectrum
regions (by focusing to specific vegetation indices) and three
primary variables related to bioethanol potential (i.e., total
biomass dry weight, sugar release, and theoretical ethanol
yield) as affected by species and several temporal scenarios
(TSs) to be determined. The final target of the UAV-
based phenotyping system was to provide a ranking of
accessions in terms of the bioethanol potential with value for
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facilitating the decision making process in the context of plant
breeding programs.

MATERIALS AND METHODS

Field Trial and Plant Material
A field trial with 66 accessions belonging to the species Hordeum
vulgare (barley, 21 accessions), Triticum aestivum (bread wheat,
24 accessions), Triticum durum (durum wheat, 11 accessions)
and x Triticosecale (triticale, a hybrid of wheat and rye,
10 accessions) was established at the experimental station of
the Institute for Sustainable Agriculture Center in Cordoba,
Spain (Table 1).

The cereals were sown on 15 November, 2013 following a
completely randomized block design with three replications.
Each block was counted in 78 plots that were distributed
in 10 rows, with an inter-plot distance of 30 cm and an
inter-row distance of 50 cm. Each plot included four plants
at approximately 15 cm apart (Figure 1). The cereals were
under an irrigation localized system, and the experiment was
covered with netting to protect of insects and birds during
the growing months.

The Cayuga and Caledonia accessions were planted in
duplicate because we had two replicates with different acquisition
dates. Plant material was obtained from the USDA-ARS National
Small Grain Collection1 or from the Barley and Wild Plant
Resource Center at Okayama University2. When available, the
accessions used as parental lines in the cartographic populations
were selected according to a double criterion: (1) to allow
the identification of suitable cartographic populations to study
the genetic basis of saccharification, and (2) to have a fair
representation of the available variability in each species, since
parental lines are normally selected to be as divergent as possible.

UAV-Based Phenotyping System
A quadrocopter UAV model md4-1000 (microdrones GmbH,
Siegen, Germany) was used to collect the multi-temporal set
of aerial images (Figure 2). The whole system consists of the
vehicle, the radio control transmitter, a ground station with
software for mission planning and flight control, a telemetry
system, and a camera or sensor embedded in the UAV. In this
experiment, a six-band Tetracam camera, model mini-MCA-
6 (Tetracam, Inc., Chatsworth, CA, United States) was used
to collect the multi-spectral images. This camera collected six
individual images at B (450 nm), G (530 nm), R (670 mm), R
edge (700 nm), and near-infrared (NIR, 740 and 780 nm) by using
its user configurable bandpass filters (Andover Corporation,
Salem, NH, United States) of 10-nm full-width at half-maximum.
These bandwidth filters were selected across the visible and NIR
regions with regard to well-known biophysical indices that were
developed for vegetation monitoring (Kelcey and Lucieer, 2012).

The UAV system collected the remote images of the
experimental field on seven different dates: (1) 17 February

1http://www.ars.usda.gov/
2http://earth.nig.ac.jp/~dclust/cgi-bin/index.cgi?lang=en

[94 days after sowing (DAS)], (2) 27 February (104 DAS),
(3) 14 March (119 DAS), (4) 25 March (130 DAS), (5)
7 April (143 DAS), (6) 25 April (161 DAS), and (7)
9 May (175 DAS). The UAV route was configured to
fly at 3 m/s speed and at 10 m above ground level,
and to take down-facing photos at 1 s interval with side
overlap of 60% and forward overlap of 90%. At this flight
altitude, the spatial resolution of the UAV images was
5.41 mm/pixel of ground sampling distance. The set of multi-
spectral images was first processed with the PixelWrench2
software (Tetracam, Chatsworth, CA, United States) and then
with the Agisoft PhotoScan Professional software (Agisoft
LLC, Saint Petersburg, Russia). PixelWrench2 was supplied
with the camera and was used to automatically correct
the vignette effect, align the six images taken on each
camera shot and to create multiband images, as explained
in Tetracam (2019). Image alignment consisted on match
the individual images from the five slave channels to the
image from the master channel by applying the band-to-
band registration file that contains information about the
translation, rotation and scaling between the six images.
Next, a photogrammetric process was performed with Agisoft
PhotoScan to generate the ortho-mosaicked images of the
entire experimental field by following three consecutive phases:
(1) aerial triangulation; (2) building field geometry, and (3)
generation of the orthomosaics (Figure 3). This process was
automatically performed by the software except for the manual
assignment of absolute coordinates to the ortho-mosaicked
images from a few ground control points located at the edges of
the study field. Readers can found detailed information on these
processes in previous investigations (Torres-Sánchez et al., 2013;
Mesas-Carrascosa et al., 2017).

The ortho-mosaicked images enabled visual identification of
each one of the 234 trial plots, which were manually defined
over the image and saved as a vector file. Then, a customized
algorithm was created with the eCognition Developer software
(Trimble GeoS-patial, Munich, Germany) to analyze the images
of each studied date by using an object-based approach after
image segmentation (Blaschke et al., 2014). The algorithm was
specifically programmed to run in a fully automatic manner
without the need for user intervention, and with the ability
to sequentially discriminate the vegetation fraction of every
trial plot over time by applying the Otsu thresholding method
described in Torres-Sánchez et al. (2015). Once the crop
objects were classified in each plot, the algorithm computed
the central coordinates and the relative position of every
plot within the experimental design (row, order in the row
and block), the crop spectral values from the multi-spectral
camera and a list of crop-related vegetation indices (VIs), which
were grouped into those computed from bands in the visible
spectrum region (referred to as visible-based VIs) and those
that included the NIR band (referred to as NIR-based VIs)
(Table 2). These VIs have been commonly used to monitor
diverse physiological and phenological crop characteristics that
may be relevant in the context of this investigation, such as
leaf pigment (e.g., chlorophyll, carotenoid, and anthocyanin),
foliage and canopy structure, biomass, non-photosynthetic
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TABLE 1 | Plant material used in this investigation.

Species ID Accession namea Accession number

T. aestivum Anza Anza ∗ NA

BW BobWhite ∗ NA

Peri Perico ∗ NA

TP2 UC1110 ∗∗ GSTR 13501

TP3 OS9A ∗∗ PI658243

TP4 QCB 36 ∗∗ PI658244

TP5 Opata 85 ∗∗ PI591776

TP6 Cayuga ∗∗ PI595848

TP7 Caledonia ∗∗ PI610188

TP8 CIGM90.248 ∗∗ PI610750

TP10 P91193 ∗∗ GSTR 10001

TP11 P92201 ∗∗ GSTR 10002

TP16 TAM107-R7 ∗∗ GSTR 11601

TP17 SS550 ∗∗ GSTR 12501

TP21 M6 ∗∗ PI83534

TP22 Kanqueen ∗∗ PI401539

TP24 Avocet ∗∗ PI464644

TP25 Penawawa ∗∗ PI495916

TP27 Renan ∗∗ PI564569

TP28 Excalibur ∗∗ PI572701

TP29 McNeal ∗∗ PI574642

TP30 Thatcher ∗∗ CItr 10003

TP31 Jaypee ∗∗ PI592760

TP32 USG 3209 ∗∗ PI617055

TP33 Caledonia ∗∗ PI610188

TP34 Cayuga ∗∗ PI595848

T. durum TP1 IDO444 ∗∗ GSTR 12902

TP9 UC1113 Yr36 Gpc-B1 ∗∗ PI638741

TP12 Grandin∗5/ND614-A ∗∗ GSTR 10401

TP13 NY18/Clark’s Cream 40-1 ∗∗ GSTR 10402

TP14 Jupateco 73S ∗∗ GSTR 10501

TP15 CO940610 ∗∗ GSTR 10702

TP18 Amadina ∗∗ GSTR 12701

TP19 Weebill 1 ∗∗ GSTR 10502

TP20 Rugby ∗∗ CItr 17284

TP23 Avalon ∗∗ PI446910

TP26 Rio Blanco ∗∗ PI531244

H. vulgare CP1 Vada ∗∗ PI280422

CP2 Clipper ∗∗ PI349366

CP3 Ko A ∗∗ PI383935

CP4 Igri ∗∗ PI406263

CP5 Mokusekko 3 ∗∗ PI420938

CP6 Dicktoo ∗∗ CIho 5529

CP7 L94 ∗∗ CIho 11797

CP8 Fredrickson ∗∗ CIho 13647

CP9 Steptoe ∗∗ CIho 15229

CP10 Morex ∗∗ Ciho 15773

CP11 Lina ∗∗ PI584808

CP12 Apex ∗∗ PI600966

CP13 OWB dominant ∗∗ GSHO3450

CP14 OWB recessive ∗∗ GSHO3451

(Continued)
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TABLE 1 | Continued

Species ID Accession namea Accession number

CP16 Golden Promise ∗∗ PI467829

CP17 Cebada Capa ∗∗ PI539113

CP18 Stander ∗∗ PI564743

CP19 Franklin ∗∗ PI373729

CP20 Franka ∗∗ PI574293

CP21 Azumamugi ∗∗∗ J698

CP22 Kanto Nakate Gold ∗∗∗ J518

x Triticosecale TS43 Rahum ∗∗ PI422269

TS45 Zebra ∗∗ PI429031

TS51 Kramer ∗∗ PI476216

TS53 Currency ∗∗ PI483066

TS58 Wapiti ∗∗ PI511870

TS61 Yoreme Tehuacan 75 ∗∗ PI519876

TS67 Navojoa ∗∗ PI520421

TS75 Drira ∗∗ PI520478

TS78 Juanillo 95 ∗∗ PI520488

TS97 Armadillo 130 ∗∗ PI583701

aPlant material availability: ∗ IAS-CSIC; ∗∗USDA-ARS, National Small Grain Germplasm Research Facility, Aberdeen, ID, United States; ∗∗∗Barley and Wild Plant Resource
Center, Institute of Plant Science and Resources, Okayama University, Okayama, Japan.

FIGURE 1 | Layout of the field trial (plot IDs correspond to the accessions listed in Table 1). The empty plots were not considered in the evaluation due to errors
committed in plant identification.

components (e.g., lignin, cellulose, and starch, etc.) (Asner,
1998; Yang et al., 2017). Finally, the customized algorithm
automatically exported all the trial plot data as a table file
(e.g., CSV or ASCII format) for further descriptive and
statistical analysis.

Manual Measurements of Plant
Phenotypic Data
To evaluate the UAV-based assessments, the total biomass dry
weight (kg/m2) and sugar release (ul/mg), which are two crop

variables that are particularly related to bioethanol potential
from lignocellulosic biomass, were determined in each trial
plot after harvest. The biomass was measured as weight for
complete plant (spike, stem, and leaves) and the sugar release
was obtained by using a suitable method of saccharification.
Assays to determine saccharification involved three main steps:
pretreatment, hydrolysis and sugar detection. First, 20 mg of
ground straw were loaded into 2 mL screw-cap tubes. In the
pretreatment solution a volume of 1.5 mL of NaOH (6.25 mM)
was used and incubated at 90◦C for 3 h in a water bath,
and it was then cooled on ice. Enzymatic hydrolysis was
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FIGURE 2 | The UAV with the multi-spectral camera flying toward the
experimental field on the 7th date (175 DAS).

performed using 0.05 µL of enzyme cocktail with a 4:1 ratio of
Celluclast – Novozyme 188 (Novozymes, Bagsværd, Denmark)
for 1 straw mg dry weight (dw). Hydrolysis was performed for
20 h with constant shaking at 50◦C in a 0.5M sodium citrate
buffer at pH 4.5. The determination of sugars released after
hydrolysis was carried out using the glucose oxidase/peroxidase
(GOPOD) assay kit (Megazyme International Ireland, Bray,
Ireland). The assay volumes were reduced to allow the procedure
to be performed in 96-well ELISA plates. In every plate, we
included solution blanks, enzyme blanks, glucose standards
used in the calibration curve as an internal control for the
reaction, and eight technical repetitions that left 76 wells free
for the samples. These eight samples were formed by eight
different genotypes that were randomly selected, except for Anza,
Bobwhite, and Perico that were chosen because their glucose
releases were previously known. Determination was performed
using 8 µL of the digestion reaction mixture and 240 µL
GOPOD assay reagent followed by incubation at 50◦C for
20 min. The glucose yield was analyzed using 96 well plates. The
absorbance readings were determined at 490 nm in a BioTek
ELx800 Absorbance Microplate Reader (BioTek Instruments,
Inc., Winooski, VT, United States).

After determining the total biomass and sugar release,
the theoretical ethanol yield was calculated considering the
total biomass conversion per surface area unit (ha) according
to the National Renewable Energy Laboratory Standards
(Dowe and McMillan, 2008), as follows [1]:

Theoreticalethanolyield(L/ha) = [Sugarrelease(ul/mg)x0.511x

Biomass(kg/ha)]/1000[1]

In addition, other data were also accounted for throughout
the experiment: (1) the plant heights on the same days on which
the UAV flights were performed, (2) starting and ending dates of
plant anthesis, as well as dates of plant and spikes emergences,
(3) damages due to pests and diseases, specifically stem rust and
barley yellow dwarf (BYD) virus, as well as ones provoked by
birds and rodents.

Data Analysis
The field trial design was generated with the statistical software R
version 3.3.1 (R Core Team, 2016) and its function design.rcbd
(Mendiburu, 2016), and data analysis was conducted with the
statistical software JMP version 10 software (SAS Institute, Inc.,
Cary, NC, United States). First, the variability of plant phenotypic
data was studied by using analysis of the variance (ANOVA).
Next, capability of the UAV-based phenotyping system to predict
bioethanol potential was studied by analyzing the degree of
correlation (in terms of the coefficient of determination, R2) of
multi-temporal UAV-based VIs with total biomass dry weight,
sugar release, and theoretical ethanol yield. These correlations
were determined in several TSs, as follows: (1) on each single
date of the seven UAV flights (TS-1), (2) averaging the values
of each VI obtained during plant anthesis (TS-2), and (3)
averaging the values of each VI obtained during the full crop
development (TS-3). TS-2 was proposed because anthesis is a
critical period for cereal grain filling, which could also have an
influence on the plant biomass accumulation and sugar left in the
stems (Yang and Zhang, 2006; Barmeier and Schmidhalter, 2017)
and, hypothetically, increase the spectral differences between the
studied accessions. Finally, the VI and TS that reported the

FIGURE 3 | UAV-based ortho-mosaicked images in color-infrared of the experimental field over time. DAS, days after sowing.
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TABLE 2 | Crop-based vegetation indices computed in every trial plot.

Spectral region/vegetation
index (VI)

Equation∗ References

Visible

Excess Green (ExG) 2∗G−R1−B Woebbecke et al., 1995

Green VI (VIgreen) (G−R1)/(G+ R1) Gitelson et al., 2002

Triangular Chlorophyll Index (TCI) 1.2∗(R2−G)−1.5∗(R1−G)∗(R2/R1)1/2] Haboudane et al., 2008

Visible and NIR

Normalized Difference VI (NDVI) (NIR1−R2)/(NIR1+R2) Rouse et al., 1973

Green NDVI (GNDVI) (NIR2−G)/(NIR2+G) Gitelson and Merzlyak, 1996

Modified Chlorophyll Absorption in
Reflectance Index (MCARI)

10.1.1.1 [(NIR1−R2)
−0.2∗(NIR1−G)]∗(NIR1/R2)

Daughtry et al., 2000

Modified Simple Ratio (MSR) [(NIR1/R2) −1]/[(NIR1/R2)1/2
+1] Chen, 1996

∗Reflectance (%) at central wavelengths: B = 480 nm (blue region); G = 530 nm (green region); R1 = 670 nm (red region); R2 = 700 nm (Red-edge region); NIR1 = 740 nm
(NIR region); NIR2 = 780 nm (NIR region).

highest coefficient of determination were adjusted to a lineal
model, which allowed the plant accessions to be ranked in terms
of theoretical ethanol yield.

RESULTS

Variability of Plant Phenotypic Data
All cultivars were well-adapted to Mediterranean climate
conditions, which were favorable due to the low incidence of
pests and diseases during the growing season in the studied
campaign. The studied varieties were hardly affected by stem
rust or BYD virus, and only occasional bird attacks of moderate
importance were accounted for. Given the multitude of screened
genotypes, many different phenotypes were observed in the
study trial plots in terms of plant anthesis, plant heights, total
biomass dry weight, sugar release and theoretical ethanol yield
(Figure 4), which suggested high potential for ranking the
observed phenotypes.

The earliest plant anthesis started for T. durum TP14
(Jupateco 73S) and T. aestivum TP5 (Opata 85) accessions at 110
and 112 DAS, respectively, and the latest plant anthesis started
160 DAS forT. durumTP23 (Avalon),T. aestivumTP34 (Cayuga)
and T. aestivum TP27 (Renan) accessions. The early anthesis
date of some accessions could be due to a short duration of
their vegetative stage (Jamieson et al., 1998), which might have
produced a smaller number of leaf primordia and resulted in
a lower sink capacity and a decrease in biomass accumulation
during the pre-anthesis period (Giunta et al., 1999). This was
partially observed at the level of cereal species, in which the
average dates of anthesis and the total biomass for x Triticosecale
were significantly lower in comparison to the average values for
other three species that were studied.

Plant height was a highly variable factor among genotypes
over time. The average plant heights collected in the field during
crop development ranked from minimum values of 38–40 cm
for H. vulgare CP20 (Franka), T. durum TP23 (Avalon) and
T. aestivum TP27 (Renan) accessions, to maximum values of 92–
99 cm for x Triticosecale TS58 (Wapiti) and TS78 (Juanillo 95)
and for T. durum TP20 (Rugby) accessions. At the level of cereal
species, the average heights for T. aestivum and x Triticosecale

(62.24 and 80.93 cm, respectively) were significantly smaller and
larger, respectively, than for other species; however, H. vulgare
and T. durum did not show significant differences in the average
plant heights (65.90 and 69.87 cm, respectively).

Regarding the bioethanol-related variables, the values of
total biomass ranked from 0.26 to 0.29 kg/m2 measured for
x Triticosecale TS67 (Navojoa) and TS45 (Zebra) accessions,
respectively, to 1.31–1.40 kg/m2 measured for H. vulgare CP19
(Franklin) and T. durum TP1 (IDO444) accessions, respectively;
the values of sugar release ranked from 0.77 ul/mg measured
for T. durum TP26 (Cayuga) and BW (Bobwhite) accessions to
1.35–1.36 ul/mg measured for H. vulgare CP9 (Steptoe) and CP14
(Oregon wolfe barley recessive) accessions, respectively; and
the values of theoretical ethanol yield ranked from 1.18 m3/ha
for x Triticosecale TS67 (Navojoa) accession to 7.60 m3/ha for
T. durum TP1 (IDO444) accessions.

Variability of the Vegetation Index (VI)
Values Over Time
The VI values were automatically retrieved from the multi-
spectral images collected at each UAV flight and by applying
the customized OBIA procedure that was developed in this
investigation. As an example, Figure 5 shows the progress of the
three VIs (i.e., ExG, NDVI, and GNDVI) that produced better
results in predicting some of the bioethanol-related variables. The
ExG values varied from a minimum of 0.14 for T. aestivum Anza
measured at the first date (94 DAS) to a maximum of 0.73 for
H. vulgare CP7 (L94) and CP14 (OWB recessive) at the last date
(175 DAS). The normalized difference vegetation index (NDVI)
values varied from a minimum of 0.36 for T. aestivum BW
(BobWhite) measured at the first date (94 DAS) to a maximum
of 0.84 for H. vulgare CP8 (Fredrickson) and CP11 (Lina) at
the fourth date (130 DAS). The GNDVI values varied from a
minimum of 0.38 for T. aestivum BW (BobWhite) measured at
the first date (94 DAS) and H. vulgare CP5 (Mokusekko 3) and
x Triticosecale TS67 (Navojoa) at the last date (175 DAS) to a
maximum value of 0.72 for T. aestivum TP30 (Thatcher) at the
6th date (161 DAS).

A detailed analysis of the variation of each VI over time
confirmed that two different spectral patterns were observed
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FIGURE 4 | Plant phenotyping variability observed in the study trial plots in terms of start of plant anthesis (DAS), plant height, total biomass dry weight, sugar
release, and theoretical ethanol yield.
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FIGURE 5 | Spectral variability of three selected vegetation indices (VIs) measured by the UAV-based phenotyping system over time: (a) GNDVI, (b) ExG, (c) NDVI.

(Figure 6). On the one hand, visible-based VIs (i.e., ExG,
VIgreen, and TCI) generally followed a horizontal trend,
characterized by minor variations from date 1 (94 DAS) to date
6 (161 DAS), but with a marked increase in the last date (175
DAS); the increase was most pronounced for species T. aestivum,
T. durum, and x Triticosecale. The spectral profiles for these
three species was analogous in the three visible-based VIs studied,
although the mean values for two Triticum species were slightly
higher than those for x Triticosecale species between the date
2 (104 DAS) and 6 (161 DAS), but all three species showed
significantly lower values than those for H. vulgare species on all
the studied dates. On the other hand, the values of NIR-based VIs
(i.e., NDVI, GNDVI, MSR, and MCARI) generally described a
bell-shaped curve. Depending on the accession considered, the
maximum values were mostly around the 4th (130 DAS), 5th (143
DAS) or 6th (161 DAS) dates, while the values of the previous
dates progressed increasingly, and those of the following dates
declined from the maximum; some accessions even reaching
values on the last date that were close to those that were obtained
during the earliest dates of the study. In this case, the lowest
average values were always for the x Triticosecale species for all
dates studied, while the highest values were observed for the
H. vulgare species up to the 5th date (143 DAS) for GNDVI and
MSR and up to the 6th date (161 DAS) for NDVI and MCARI.
From these dates onward, the maximum average values of these
four NIR-based VIs were reached for T. durum species followed
by T. aestivum species. This turning point corresponded to cereal
anthesis in most species, which suggested that special attention

should be given to the UAV images that were taken during the
anthesis period.

Performance of UAV-Based Vegetation
Indices to Predict Bioethanol-Related
Variables
Simple linear regression analysis showed the degree of correlation
(in terms of coefficient of determination) between VIs and
crop total biomass dry weight, sugar release and theoretical
ethanol yield (Table 3), which may indicate the ability of
the UAV-based system to predict the bioethanol potential
of the studied cereals. Of the seven dates studied in our
experiment, we observed that the correlations were generally
higher during the anthesis of each accession; hence, our proposal
to study the three TSs described in Section “Data Analysis.” For
the interpretation of the results, correlations were considered
hereafter as low (R2 < 0.50), moderate (0.50 ≤ R2 < 0.60) and
high (R2

≥ 0.60).
NIR-based VIs showed better correlation with the crop total

biomass dry weight than visible-based VIs for all dates and
TS considered, although no high R2 values were obtained
in any case. On single dates (TS-1), moderate correlations
were found only on the 6th date (161 DAS), with R2 values
of 0.50 and 0.51 for NDVI and GNDVI, respectively, while
correlations on other dates were low. The NDVI and GNDVI
reported slightly better results in the TS-2 (i.e., averaged VI
values during plant anthesis), with R2 values of 0.54 and
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FIGURE 6 | Temporal profile of three selected vegetation indices as affected
by cereal species: (A) GNDVI, (B) ExG, (C) NDVI.

0.57, respectively, and they were even better in the TS-3 (i.e.,
averaged VI values during full crop development), with R2

values of 0.58 and 0.59, respectively. Moderate correlations
were also obtained with MSR in the TS-2 and TS-3 (with
R2 values of 0.52 and 0.56, respectively), and with MCARI
in TS-3 (R2 of 0.58). Regarding visible-based VIs, correlations
were low in all cases, with maximum values of 0.33 and
0.37 obtained by the TCI on the last date (175 DAS) and in
TS-3, respectively.

However, the results differed when studying the linear
relationship of VIs to sugar release. In this case, the highest
correlations were obtained with visible-based VIs in all the TS
considered, with moderate R2 values ranging from 0.52 (VIgreen
and TCI) to 0.57 (ExG) in the TS-2, and with a R2 value of
0.51 obtained for ExG in the TS-3. For the rest of the cases, the
correlations were low, although visible-based VIs obtained higher
R2 values than NIR-based VIs on all the single dates studied, in
particular ExG on the 4th (130 DAS) and 5th (143 DAS) dates

(R2 of 0.48 and 0.47, respectively) and TCI on the 2nd (104 DAS)
and 3rd (119 DAS) dates (R2 of 0.44 and 0.47, respectively).

Regarding the prediction of theoretical ethanol yield, great
correlations were obtained with the four NIR-based VIs in TS-3,
with R2 values between 0.61 (GNDVI) and 0.66 (NDVI). The
NDVI also obtained a high correlation with theoretical ethanol
yield in TS-2 (R2 of 0.62), while better correlations for singles
dates were obtained with NDVI on the 6th (161 DAS) date (R2 of
0.55) and with the four NIR-based indices on the 5th (143 DAS)
date (R2 ranged from 0.52 to 0.54). In constrast, visible-based
indices obtained low correlations in almost all the TS studied
except for TCI, which obtained a moderate correlation (R2 of
0.51) with theoretical ethanol yield in TS-3.

At the level of cereal species, ordering and significant values
reported for the selected VIs and the three bioethanol-related
variables were equal (Table 4). T. durum had significantly higher
average values than those of the other screened species for
GNDVI (0.57) and total biomass (0.83 kg/m2), while H. vulgare
was significantly higher for ExG (0.59) and sugar release
(1.16 ul/mg). Both species obtained significantly higher mean
values of NDVI (0.54 and 0.56, respectively) and theoretical
ethanol yield (4.14 and 4.21 m3/ha, respectively) than T. aestivum
and x Triticosecale. In all the factors, x Triticosecale showed
significant lowest mean values compared to that of the other
species, which confirmed the good performance of the selected
VIs in predicting a ranking of cereal species in terms of
bioethanol potential.

DISCUSSION

Several investigations have recently demonstrated the capability
of UAVs for collecting phenotypic data on numerous crops
and case studies (Sankaran et al., 2015b; Shi et al., 2016;
Yang et al., 2017). This study went beyond this by presenting
the first experiment with a UAV-based multi-spectral system
for phenotyping several characters of a population of known
genotypes of wheat, barley, and triticale with the purpose of
identifying the best accessions for bioethanol production. The
field trial showed high variability in plant height, anthesis
dates, and bioethanol-related factors such as total dry biomass,
sugar release, and theoretical ethanol yield. Variability was not
significantly associated with grain yields (Ostos-Garrido et al.,
2018), which was consistent with previous investigations in barley
(Capper, 1988) and wheat (Jensen et al., 2011; Lindedam et al.,
2012). This is a key aspect in breeding programs that aim to select
plants with better straw quality for bioethanol production but
without sacrificing grain yield.

Since there was phenotypic variability in the experiment,
the challenge was to quantify this variability with an efficient
and reliable system. The UAV-based phenotyping system first
computed the spectral variability of plant material (234 cereal
plots) over time, and then the system estimated the bioethanol-
related variables with acceptable precision by using selected
image-based vegetation indices calculated at specific temporal
intervals. At this point, it is relevant to highlight the influence
of the temporal factor to achieving better estimations. As can be
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TABLE 3 | The coefficient of determination (R2) of the linear relationship between the studied vegetation indices and crop total biomass dry weight, sugar release, and
theoretical ethanol yield as affected by the three temporal scenarios (TSs) studied.

Single dates, in DAS (TS-1)∗ Combined dates∗

Bioethanol-related
variable/vegetation
index

94 104 119 130 143 161 175 On anthesis
(TS-2)

Full crop
development

(TS-3)

Total biomass

Visible

ExG 0.18∗ 0.22∗ 0.16∗ 0.15∗ 0.11 0.16∗ 0.17

VIgreen 0.19∗ 0.23∗ 0.16∗ 0.19∗ 0.14∗ 0.27∗ 0.22∗ 0.23∗

TCI 0.29∗ 0.30∗ 0.25∗ 0.17∗ 0.21∗ 0.15 0.33∗ 0.19 0.37∗

Visible and NIR

NDVI 0.41∗ 0.41∗ 0.40∗ 0.35∗ 0.45∗ 0.50∗ 0.34∗ 0.54∗ 0.58∗

GNDVI 0.40∗ 0.40∗ 0.40∗ 0.39∗ 0.49∗ 0.51∗ 0.35∗ 0.57∗ 0.59∗

MCARI 0.39∗ 0.39∗ 0.41∗ 0.39∗ 0.47∗ 0.48∗ 0.40∗ 0.41∗ 0.58∗

MSR 0.30∗ 0.32∗ 0.37∗ 0.35∗ 0.40∗ 0.41∗ 0.41∗ 0.52∗ 0.56∗

Sugar release

Visible

ExG 0.29∗ 0.43∗ 0.45∗ 0.48∗ 0.47∗ 0.39∗ 0.57∗ 0.51∗

VIgreen 0.28∗ 0.42∗ 0.43∗ 0.46∗ 0.46∗ 0.36∗ 0.52∗ 0.48∗

TCI 0.18∗ 0.44∗ 0.47∗ 0.43∗ 0.39∗ 0.32∗ 0.12 0.52∗ 0.48∗

Visible and NIR

NDVI 0.18∗ 0.41∗ 0.42∗ 0.45∗ 0.45∗ 0.24∗ 0.34∗ 0.44∗

GNDVI 0.17∗ 0.28∗ 0.26∗ 0.26∗ 0.25∗ 0.20 0.23∗

MCARI 0.16∗ 0.35∗ 0.33∗ 0.37∗ 0.45∗ 0.17∗ 0.37∗ 0.39∗

MSR 0.13 0.29∗ 0.31∗ 0.32∗ 0.45∗ 0.22∗ 0.25∗ 0.39∗

Theoretical ethanol
yield

Visible

ExG 0.26∗ 0.35∗ 0.28∗ 0.27∗ 0.24∗ 0.21∗ 0.32∗ 0.32∗

VIgreen 0.27∗ 0.36∗ 0.28∗ 0.32∗ 0.27∗ 0.39∗ 0.37∗ 0.37∗

TCI 0.36∗ 0.42∗ 0.37∗ 0.27∗ 0.32∗ 0.27∗ 0.33∗ 0.34∗ 0.51∗

Visible and NIR

NDVI 0.46∗ 0.51∗ 0.48∗ 0.46∗ 0.54∗ 0.55∗ 0.34∗ 0.62∗ 0.66∗

GNDVI 0.43∗ 0.47∗ 0.45∗ 0.45∗ 0.53∗ 0.45∗ 0.28∗ 0.58∗ 0.61∗

MCARI 0.45∗ 0.50∗ 0.50∗ 0.48∗ 0.54∗ 0.49∗ 0.35∗ 0.53∗ 0.65∗

MSR 0.37∗ 0.42∗ 0.48∗ 0.44∗ 0.52∗ 0.48∗ 0.37∗ 0.57∗ 0.65∗

Significant R2 values at p ≤ 0.001 are marked with an asterisk, while insignificant R2 values are not shown. White, gray, and black cells indicate low (R2 < 0.50), moderate
(0.50 ≤ R2 < 0.60) and high (R2

≥ 0.60) correlations, respectively. The bold numbers and the underlined numbers enphasize the best result of each VI and each
TS, respectively. ∗Dataset: 234 samples for each date of TS-1, 495 samples for the combined dates of TS-2, and 1638 samples for the combined dates of TS-3.

TABLE 4 | Mean values and ANOVA of the GNDVI, ExG, and NDVI indices selected at the best temporal scenario (TS) for phenotyping of total biomass, sugar release
and theoretical ethanol yield, respectively, at the level of cereal species.

GNDVI (in TS-3) vs. total biomass dry weight ExG (in TS-2) vs. sugar release NDVI (in TS-3) vs. theoretical ethanol yield

Cereal species GNDVI Biomass (kg/m2) EXG Sugar release (ul/mg) NDVI Theoretical ethanol yield (m3/ha)

T. aestivum 0.54 b 0.67 b 0.44 b 0.98 b 0.52 b 3.49 b

T. durum 0.57 a 0.83 a 0.43 b 0.98 b 0.54 ab 4.14 a

H. vulgare 0.55 b 0.71 b 0.59 a 1.16 a 0.56 a 4.21 a

x Triticosecale 0.51 c 0.52 c 0.38 c 0.94 c 0.49 c 2.54 c

Within a column mean values followed by the same letter do not differ significantly according to least significant difference (LSD) test at P = 0.05.

observed in Table 3, the results of TS-1 (i.e., on each single date)
were always lower than those obtained in TS-2 (i.e., averaging
the values of each VI obtained during plant anthesis) and TS-3

(i.e., averaging the values of each VI obtained during full crop
development). This result suggests that future research on crop
phenotyping should include a multi-temporal study, and in some
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cases, should primarily consider the crop anthesis dates (TS-2).
For example, predictions of sugar release in our experiment were
more accurate with visible-based VIs that were calculated in TS-2
(R2 from 0.52 to 0.57) than in TS-3 (R2 from 0.48 to 0.51).

A general result was that NIR-based VIs (i.e., NDVI, GNDVI,
MCARI, and MSR in this study) were more appropriate to
estimate crop biomass, meanwhile visible-based VIs (i.e., ExG,
VIgreen, and TCI in this study) were suitable for crop sugar
release. Estimations were low on most of the single dates that
were studied (TS-1), although moderate correlations between the
NDVI and GNDVI with the crop biomass were obtained on DAS
161 (R2 of 0.50 and 0.51, respectively). The difference between
both VIs is that NDVI uses NIR-red and GNDVI uses NIR-green
spectral bands. Therefore, it seems that the green band, which is
sensitive to small changes in the vegetation greenness and canopy,
was slightly more correlated to the crop biomass. However,
better biomass estimations were obtained when GNDVI was
calculated during plant anthesis (TS-2, R2 of 0.57), and even
better estimations were obtained when NDVI, GNDVI, and
MCARI were calculated during full crop development (TS-3,
R2 of 0.58–0.59).

In the case of sugar release, EXG calculated during
plant anthesis (TS-2) revealed the highest correlation (R2

of 0.57) of the studied VIs. To our knowledge, there are
no previous studies that explain the indirect relationship
that may exist between a visible-based index and sugar
release. Lindedam et al. (2010) and Bekiaris et al. (2015)
revealed some near- and mid- infrared spectral regions with
a significant contribution in the prediction of the total sugar
release by applying spectroscopy analysis and they partially
attributed their results to plant senescence components such as

lignin, cellulose, and hemicellulose. However, our experiment
reported the best estimations prior to crop senescence, which
point to components or aspects related to green vegetation.
Upward progress of ExG correlations to reach a maximum
during crop anthesis may be explained by the influence
that changes of crop greenness and plant pigments have on
ExG measurements (Yu et al., 2013; Torres-Sánchez et al.,
2014). Plants have the greatest amount of carbon in the
form of sugars and the maximum number of leaves during
anthesis, which are easily degradable plant material (Jensen
et al., 2011; Lindedam et al., 2012; Bellucci et al., 2015).
ExG correlations decreased after crop anthesis (i.e., from 161
DAS onwards in almost all accessions), just as the plants
progressed toward senescent stages caused by the decrease in
the proportion of chlorophyll (green pigments) in favor of
anthocyanin (red pigments).

The primary purpose of phenotyping techniques is to provide
a ranking of the studied plants to facilitate or accelerate the
process of selecting genetic material for the next stages of plant
breeding. However, a ranking is not provided in many cases,
which reduces the impact of the experiment to monitoring only
one or various crop variables. Our UAV-based system aimed to
rank the cereal accessions in terms of theoretical ethanol yield as
a result of the linear combination of the total biomass and sugar
release (see Eq. 1). In this case, the linear equation of GNDVI,
ExG, and NDVI served to predict a ranking of accessions for each
crop variable related to bioethanol potential (Figure 7).

The range of selected VI values ordered the large variability
of cereal accessions with a root mean square error (RMSE) of
prediction of 0.16 kg/m2 for total biomass, 0.10 ul/mg for sugar
release, and 0.88 m3/ha for theoretical ethanol yield. This ranking

FIGURE 7 | Linear regressions of selected VIs against the crop variables that are particularly related to bioethanol potential showing the rank of cereal accessions:
(A) GNDVI (in TS-3) vs. Total biomass dry weight (kg/m2), (B) ExG (in TS-2) vs. Sugar release (ul/mg), (C) NDVI (in TS-3) vs. theoretical ethanol yield (m3/ha).
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showed the cereal accessions with higher and lower values of each
variable and, consequently, demonstrated the value of the UAV-
based system for the early and non-destructive identification of
improved varieties that combine high saccharification potential
and high biomass production for a cereal breeding program.
The UAV-based system mostly pointed out H. vulgare accessions
[e.g., CP21 (Azumamugi), CP17 (Cebada Capa), CP12 (Apex),
CP19 (Franklin), among others] as being those with the best
lignocellulosic source for bioethanol production, followed by
Triticum accessions [e.g., TP11 (P92201), TP32 (USG 3209), and
TP1 (IDO444)] and, finally, x Triticosecale accessions, which
generally agreed with the results of the laboratory analysis of
cereal straw (Table 4). These results were also in line with the
previous research of Chen et al. (2007a,b), which evaluated the
production of bioethanol from several straws and hays, and
highlighted barley as a major source of biomass and having a
greater potential for bioethanol than the other cereals studied.

Some of the contrasting accessions observed in the ranking,
e.g., CP9 (Steptoe) × CP10 (Morex) and OWB (CP13
and CP14) have been used as parental lines in mapping
populations for different characters (Kleinhofs et al., 1993),
including regulatory genes (Tondelli et al., 2006), resistance
to rust (Arru et al., 2003), and to develop a genetic link
map of SNP by consensus in barley (Close et al., 2009),
which is an important resource for genetic studies. As a
first approximation, our results suggest that some barley
mapping populations, e.g., CP13 (OWB dominant) × CP14
(OWB recessive) and CP19 (Franklin) × CP13, could be
good candidates for identifying the genetic factors underlying
the difference in theoretical bioethanol potential and in
wall recalcitrance.

CONCLUSION

This study demonstrated the capability of an UAV-based multi-
spectral images to rank several accessions of wheat, barley, and
triticale in terms of their potential for bioethanol production
with satisfactory accuracy. Analysis of the multi-spectral data
shown that the GNDVI, ExG, and NDVI correlated well with
total biomass dry weight, sugar release and theoretical ethanol
yield, respectively, and in all cases, the temporal component
was fundamental. In the case of biomass and ethanol yield, the
best result was obtained by averaging the values of GNDVI
and NDVI obtained during full crop development, while in
the case of sugar it was averaging the values of ExG obtained
during plant anthesis.

While genotypic tools have greatly advanced technologically,
phenotypic tools remain the main bottleneck in the

decision-making process. However, the innovative UAV-
based phenotyping system described in this article can enrich
breeding programs for bioethanol production by drastically
accelerating the timing to capture and process the field trial
data. In fact, the time required to conduct the entire process,
from operating the UAV flight to computing the spectral
data, was approximately 1 h, while obtaining phenotypic
data from 234 cereal plots by using conventional laboratory
techniques took several days. Therefore, although the UAV-
based predictions were moderate in most cases, the potential
to save time and resources certainly justifies the usefulness
of this technology. Additionally, this research reported the
phenological dates and specific spectral regions (i.e., vegetation
indices) that provide reliable beforehand information to predict
the biomass and sugar content of the studied plants, whose
large variability constituted a valuable resource for cereal
genetics studies.
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