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Plant-parasitic nematodes constrain chickpea (Cicer arietinum) production, with annual
yield losses estimated to be 14% of total global production. Nematode species causing
significant economic damage in chickpea include root-knot nematodes (Meloidogyne
artiella, M. incognita, and M. javanica), cyst nematode (Heterodera ciceri), and root-
lesion nematode (Pratylenchus thornei). Reduced functionality of roots from nematode
infestation leads to water stress and nutrient deficiency, which in turn lead to poor plant
growth and reduced yield. Integration of resistant crops with appropriate agronomic
practices is recognized as the safest and most practical, economic and effective
control strategy for plant-parasitic nematodes. However, breeding for resistance to
plant-parasitic nematodes has numerous challenges that originate from the narrow
genetic diversity of the C. arietinum cultigen. While levels of resistance to M. artiella,
H. ciceri, and P. thornei have been identified in wild Cicer species that are superior
to resistance levels in the C. arietinum cultigen, barriers to interspecific hybridization
restrict the use of these crop wild relatives, as sources of nematode resistance. Wild
Cicer species of the primary genepool, C. reticulatum and C. echinospermum, are the
only species that have been used to introgress resistance genes into the C. arietinum
cultigen. The availability of genomic resources, including genome sequence and re-
sequence information, the chickpea reference set and mini-core collections, and new
wild Cicer collections, provide unprecedented opportunities for chickpea improvement.
This review surveys progress in the identification of novel genetic sources of nematode
resistance in international germplasm collections and recommends genome-assisted
breeding strategies to accelerate introgression of nematode resistance into elite
chickpea cultivars.
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INTRODUCTION

Chickpea (Cicer arietinum L.) is a nutritionally rich cool-season pulse crop that plays an important
role in ensuring global food security, as it is an important source of dietary protein. Chickpea
also plays an important role in farming systems by fixing atmospheric nitrogen, contributing to
soil fertility, acting as a disease break and controlling weeds. Currently, chickpea is grown in an
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area of over 14.5 Mha in 55 countries with total annual
production of 14.7 Mt (FAO, 2017). India is the world’s largest
consumer of chickpea and also the world’s largest producer,
contributing over 70% of total global chickpea production
(FAO, 2017). There are two types of chickpea differentiated
by seed type and flower color, namely, desi and kabuli. Desi
chickpeas have smaller dark colored seeds and pink flowers,
and are predominantly grown in central Asia and in the
Indian subcontinent. Whereas, kabuli chickpeas have larger beige
seeds and white flowers and are predominantly grown in the
Mediterranean region (Gaur et al., 2012). In India, chickpea
is grown on residual moisture with low input management
by resource-poor farmers (Singh and Reddy, 1991). The world
average chickpea yield is less than 1 t/ha which is far less than the
potential yield of 6 t/ha under favorable and irrigated conditions
(Varshney et al., 2017). This enormous disparity between the
actual and expected yield of chickpea is due to biotic stresses,
caused by insects, bacteria, fungi, nematodes and viruses, and
abiotic stresses, such as drought, nutrient deficiencies, salinity
and chilling (Roorkiwal et al., 2016).

Globally, the loss of chickpea productivity due to plant
parasitic nematodes is estimated to be 14% (Sasser and Freckman,
1987). Important elements for effective integrated control of
plant-parasitic nematodes in cropping systems include (a) correct
diagnosis of the nematode species, (b) effective rotations with
non-hosts or fallow periods, and (c) use of tolerant and
resistant crop cultivars (Thompson et al., 2000). Accurate
diagnosis of nematode species requires extensive knowledge of
nematode taxonomy and/or application of molecular diagnostic
tools. Options for crop rotations are restricted in fields which
are infested with nematode species with wide host ranges
(Greco, 1987). Application of nematicides is avoided due
to environmental and economic reasons. The most effective
and sustainable long-term strategy to overcome constraints to
chickpea production caused by plant-parasitic nematodes is
the use of resistant cultivars. Resistance is the ability of a
plant to reduce nematode reproduction such that, no nematode
reproduction occurs in a highly resistant plant, a low level
of reproduction occurs in a moderately resistant plant and
unhindered nematode reproduction occurs in a susceptible
plant (Roberts, 2002). Tolerance is a separately measured trait
that characterizes the ability of a plant to grow and yield
well even when infested with nematodes (Trudgill, 1991).
Growing resistant cultivars has the advantage of preventing
nematode reproduction and reducing yield losses in the current
crop. Moreover, after growing resistant cultivars, nematode
populations residual in the soil to damage subsequent crops
are less than after susceptible cultivars, thus benefiting the
whole farming system.

Advances in chickpea genomic resources resulting from the
advent of next generation sequencing (NGS) technology, has
the potential to greatly assist molecular breeding approaches
to improve resistance to plant-parasitic nematodes and thereby
help in achieving the yield potential of chickpea (Thudi et al.,
2012). Recent reviews highlight the application of gene-editing
technologies to control plant-parasitic nematodes (Leonetti et al.,
2018) and improvements in chickpea genetic transformation

technologies (Amer et al., 2019). In this review, we provide
an overview of studies on the identification of nematode
resistance genes in the C. arietinum cultigen and related species,
focusing on three types of nematodes causing major economic
damage to chickpea crops globally, namely, root-knot nematodes
(Meloidogyne artiella, M. incognita, and M. javanica), chickpea
cyst nematode (Heterodera ciceri) and root-lesion nematode
(Pratylenchus thornei). We highlight the current status of
nematode resistance in chickpea and discuss genomic tools
available to improve the level of nematode resistance using
genomic-assisted breeding.

CHICKPEA-NEMATODE INTERACTIONS

Chickpea is a host for over 100 species of plant-parasitic
nematodes (Nene et al., 1996; Sikora et al., 2018). However,
only a small number of predominant species are considered to
cause economic damage to chickpea crops throughout the world
(Table 1). Crop damage due to nematode infestation can be
challenging to diagnose because of non-specific above-ground
plant symptoms seen on the plants (Sharma et al., 1992). The
reduced functionality of the host plant roots due to the damage
caused by plant-parasitic nematodes feeding and/or reproducing
inside the root cells, results in infected plants showing the
same symptoms as nutrient deficiency and water stress, namely,
stunting, wilting, chlorotic leaves, reduced number of flowers and
pods, reduced yield and patchiness in the field (Castillo et al.,
2008). The significant root damage caused by plant-parasitic
nematodes also reduces the ability of plants to cope with abiotic
stresses of drought and low levels of plant nutrients in the soil.

Plant-parasitic nematodes contribute to decreased plant vigor
by reducing Rhizobium root nodulation and nitrogen-fixing
ability of the host plant (Tiyagi and Parveen, 1992; Vovlas
et al., 1998; Wood et al., 2018). Furthermore, plant-parasitic
nematodes exacerbate crop damage caused by other biotic
stresses. Nematode infection leads to enhanced severity of
infection with soil-borne fungal pathogens causing Fusarium wilt
(Fusarium oxysporum f. sp. ciceris) (Castillo et al., 1998, 2003) and
dry root rot (Rhizoctonia bataticola) (Ali and Sharma, 2003).

Root-Knot Nematodes
Root-knot nematodes, Meloidogyne spp., rank as the most
economically damaging nematodes to agricultural crops
worldwide due to their broad host range and wide geographical
distributions (Jones et al., 2013). Root-knot nematodes are
sedentary endoparasites. Many Meloidogyne species are
parthenogenic or facultatively parthenogenic. Motile male
and female second stage juveniles penetrate the root surface.
Female root-knot nematodes migrate to the vascular tissue and
establish permanent feeding sites called giant cells (Vovlas et al.,
2005). As the juveniles feed they become swollen and at maturity
they produce egg masses that contain up to 600 eggs (Hernández
Fernández et al., 2005). The characteristic galls on infected roots
(Figure 1A) contain four to six giant cells that are formed by
repeated nuclear division without cell division. Galls induced by
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TABLE 1 | Geographic distribution of plant-parasitic nematodes infecting chickpea crops.

Region/Country Plant-parasitic nematodes

Annual chickpea
production (kt)∗

Root-knot
nematodes
(Meloidogyne spp.)

Cyst nematodes
(Heterodera spp.)

Root-lesion nematodes
(Pratylenchus spp.)

References

Mediterranean region

Turkey 455 M. artiella H. ciceri P. thornei, P. mediterraneus,
P. penetrans, P. zeae, P.
brachyurus, P. alleni, P.
alkan, P. erzurumensis

Di Vito et al., 1994b

Syria 52 M. artiella, M. arenaria H. ciceri, H. rosii P. thornei, P. mediterraneus Greco et al., 1988, 1992b

Italy 22 M. artiella P. thornei Greco, 1984

Spain 27 M. artiella H. goettingiana P. thornei, P. penetrans, P.
neglectus, P. minyus (syn.
neglectus)

Greco, 1984; Castillo et al.,
1996; Nene et al., 1996

Jordan 2 H. ciceri Di Vito et al., 2001

Lebanon 3 H. ciceri Pratylenchus Di Vito et al., 2001

North Africa

Morocco 44 M. artiella P. thornei, P. mediterraneus,
P. penetrans, P. zeae, P.
ritteri

Di Vito et al., 1994a

Algeria 20 M. artiella P. thornei, P. mediterraneus,
P. penetrans, P. neglectus

Di Vito et al., 1994a; Nene
et al., 1996

Tunisia 5 M. artiella H. goettingiana P. thornei, P. mediterraneus,
P. penetrans,

Di Vito et al., 1994a

Egypt 1 M. artiella, M. incognita;
M. javanica

Nene et al., 1996

East Africa

Ethiopia 444 M. incognitia, M.
javanica

Sharma et al., 1992

Zimbabwe 0 M. javanica Sharma et al., 1992

West Africa

Malawi 67 M. javanica Sharma et al., 1992

South Asia

India 7,819 M. incognita, M.
javanica, M. arenaria

H. swarupi, H.
cajani

P. thornei, P. mulchandi, P.
coffeae, P. zeae

Sharma and McDonald, 1990;
Ali, 1995; Castillo et al., 2008

Nepal 11 M. incognita, M.
javanica

Pakistan 517 M. incognita, M.
javanica

Bangladesh 8 M. incognita, M.
javanica

Myanmar P. thornei Nene et al., 1996

Australasia

Australia 875 P. thornei, P. neglectus, P.
brachyurus

Nene et al., 1996

North America

United States 108 H. goettingiana P. neglectus, Nene et al., 1996

Mexico 122 P. thornei

South America

Brazil – M. incognita, M.
javanica

P. brachyurus Sharma and McDonald, 1990;
Nene et al., 1996

∗Source: (FAO, 2017).

M. artiellia on chickpea roots are smaller than those produced by
other root-knot species (Vovlas et al., 2005).

Meloidogyne incognita and M. javanica are the most prevalent
species of root-knot nematodes in tropical chickpea growing

countries, including Ethiopia, Zimbabwe and Malawi in Africa
(Sharma et al., 1992), India, Nepal, Pakistan and Bangladesh in
South Asia (Castillo et al., 2008) and Brazil in South America
(Sharma and McDonald, 1990; Table 1). In India, M. arenaria
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FIGURE 1 | Visual symptoms of nematode infection in chickpea roots. (A) Galled roots caused by Meloidogyne incognita (source: P. Castillo). (B) Cysts caused by
Heterodera ciceri (source: ICARDA). (C) Necrotic lesions caused by Pratylenchus thornei (source: DPIRD).

also causes severe damage to chickpea crops (Castillo et al., 2008).
M. artiellia is the most widespread root-knot nematode species in
cooler chickpea growing countries of the Mediterranean region,
including Italy, Spain, Syria, Turkey, Morocco, Algeria, and
Tunsia (Greco et al., 1992b; Di Vito et al., 1994a,b). The root-
knot nematodes, M. incognita and M. javanica, cause yield losses
of 19 to 40% to chickpea in India (Ali and Sharma, 2003) with
thresholds for damage for these species varying from 200 to
2000 eggs and/or juveniles per liter soil at the time of sowing
(Sharma et al., 1992). On the other hand, the damage threshold
for M. artiellia is calculated to be considerably lower at 20 to
140 eggs and juveniles per liter of soil, with 2000 nematodes
per liter at planting resulting in yield losses of 50 to 80%
(Di Vito and Greco, 1988).

Cyst Nematodes
Chickpea cyst nematode, H. ciceri, is the most damaging cyst
nematode infecting chickpea, although several other Heterodera
spp. have been reported on or in the rhizosphere of chickpea
without causing damage (Table 1), namely, H. cajani and
H. swarupi in India (Ali and Sharma, 2003) and H. goettingiana
in Tunisia and Morocco (Di Vito et al., 1994a). Cyst nematodes
are sedentary semi-endoparasites. Motile juvenile nematodes
penetrate the root surface and move to the vascular tissue where
they form a permanent feeding site characterized by syncytia cells
(Greco et al., 1992a). Swollen females rupture root tissues with the
posterior portion of their bodies, which then protrude from the
root surface forming visual cysts about 0.5 to 1.0 mm in diameter.
The females retain eggs inside their bodies. While only one
generation is completed per growing season on chickpea, each
cyst contains up to 300 eggs (Kaloshian et al., 1986). Moreover,
eggs can survive long periods in the soil in the absence of a host
(Castillo et al., 2008). Infected chickpea roots are characterized by
the visible swollen adult females protruding from the root surface
(Figure 1B). The lemon shaped cysts change from white to brown
as females mature (Kaloshian et al., 1986).

Heterodera ciceri is distributed throughout the eastern
Mediterranean region in Turkey (Di Vito et al., 1994b), Syria
(Greco et al., 1992b), Jordan and Lebanon (Di Vito et al., 2001).
While H. ciceri predominantly affects chickpea (Greco et al.,
1986), other grain legumes, fodder species and ornamental plants

have been reported as hosts (Di Vito et al., 2001). H. ciceri was
the most damaging plant-parasitic nematode in chickpea crops
in Syria (Greco et al., 1992b). H. ciceri is aggressive on chickpea
crops with economic yield losses occurring with 1000 eggs per
liter soil. Moreover, yield losses of 20, 50, 80, and 100% were
reported to occur with 8000, 16000, 32000, and 64000 eggs per
liter soil at planting, respectively (Greco et al., 1988).

Root-Lesion Nematodes
Root-lesion nematodes are the predominant plant-parasitic
nematode found in chickpea crops in surveys in North Africa
(Di Vito et al., 1994a), Turkey (Di Vito et al., 1994b), and
Spain (Castillo et al., 1996). Root-lesion nematodes are migratory
endoparasites that cause extensive damage to cortical cells in the
pathway of migration and during feeding (Castillo et al., 1998).
In the species P. thornei male nematodes are rare and females
reproduce by mitotic parthenogenesis, depositing eggs in the
cavities of root cells caused by nematode feeding and movement.
P. thornei takes 25 to 35 days to complete its life cycle at 20 to
25◦C on carrot disk culture (Castillo et al., 1995); thus several
generations can occur in a growing season (Sikora et al., 2018).
P. thornei eggs and nematodes can survive in the soil in the
absence of host plants. If the soil dries slowly a high proportion
of the nematodes can survive the dry conditions (Thompson
et al., 2017, 2018). Infection by P. thornei is characterized by dark
brown to black lesions on chickpea roots (Figure 1C). Damage
caused by root-lesion nematodes is generally less obvious than
that caused by root-knot or cyst nematodes (Sharma et al.,
1992) and symptoms of P. thornei damage to the roots do
not always result in visible symptoms on above-ground plant
parts. The wide host range of root-lesion nematodes hampers
management strategies.

Pratylenchus thornei is the predominant species of root-lesion
nematode causing damage to chickpea crops throughout the
world. The distribution of P. thornei extends throughout major
chickpea growing countries, including Australia (Thompson
et al., 2000), India (Sharma et al., 1992), North Africa (Di Vito
et al., 1994a), Turkey (Di Vito et al., 1994b), and Spain (Castillo
et al., 1996). In India, the world’s largest producer and consumer
of chickpea, P. thornei is emerging as a serious threat to chickpea
production, with high populations reported in Madhya Pradesh
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(Baghel and Singh, 2013), Rajasthan (Ali and Sharma, 2003),
Maharashtra (Varaprasad et al., 1997), and Uttar Pradesh
(Sebastian and Gupta, 1995). Numerous other Pratylenchus
species have been reported in surveys of chickpea crops in North
Africa and the Mediterranean region, Brazil and North America
(Table 1), however, limited information is available on the extent
of crop damage they cause. The species P. thornei infects many
cereal and pulse crops (Sikora et al., 2018); thus high populations
can build up quickly in the soil and affect the whole farming
system. In Australia, where P. thornei is ranked as the second
most economically important biotic stress affecting chickpea
(Murray and Brennan, 2012), yield losses of 25% were obtained
in chickpea fields with 11600 P. thornei/kg of soil at planting
(Thompson et al., 2000; Reen et al., 2014). A damage threshold
as low as 31 nematode per liter of soil was reported for P. thornei
by Di Vito et al. (1992) in field conditions in Syria, with 2000
nematodes per liter at planting resulting in yield losses up to 58%.

SOURCES OF NEMATODE RESISTANCE

Accurate, reliable phenotyping is essential for screening
germplasm to identify sources of resistance. Accurate
phenotyping experiments require robust statistical design
in a controlled environment with plants inoculated with a known
initial population of nematodes and/or eggs. Resistance to
root-knot nematode is generally quantified by visual inspection
and rating of infected roots using a root-galling index on a 1 to 5
scale (with 1 = no galls and 5 = greater than 100 galls per root)
(Rao and Krishnappa, 1995; Hassan and Devi, 2004; Haseeb
et al., 2006; Chakraborty et al., 2016). In addition to scoring
root-galling index, Sharma et al. (1992, 1993, 1995) evaluated
gall size (on a 1–9 scale with 1 = no galls and 9 = very large
galls) and percent galled area (on a 1 to 9 scale with 1 = no
galls and 9 = more than 50% root area galled) to calculate a root
damage index, as an average of the three ratings. Mechanisms
of resistance, such as increased peroxidase activity of infected
roots, have also been used to screen chickpea germplasm against
root-knot nematode (Siddiqui and Husain, 1992; Chakrabarti
and Mishra, 2002). The resistance level of a plant to chickpea cyst
nematode is determined by rating the number of females and
cysts on infected roots using a 0 to 5 scale (with 0 = no females
and cysts and 5 = greater than 50 females and cysts) (Di Vito
et al., 1988; Singh et al., 1989). In the case of migratory root-
lesion nematodes, the nematodes need to be extracted from roots
and/or soil before quantification is possible. Researchers have
reported resistance levels to P. thornei in relation to reproduction
factor (final nematode population/initial nematode population)
(Tiwari et al., 1992; Di Vito et al., 1995), or as number of
nematodes per unit of root and/or soil (Thompson et al., 2011;
Reen et al., 2019). Measuring visual lesions present on infected
roots (Ali and Ahmad, 2000), is not recommended as lesions are
only symptoms and not a direct measure of nematode numbers.

Cicer arietinum Cultigen
To date, there has been relatively little success in identifying
resistance to plant-parasitic nematodes in the C. arietinum

cultigen, namely, chickpea cultivars, breeding lines and landraces
held in global genebanks, compared with the number of
accessions that have been evaluated (Table 2). Extensive
screening efforts in Syria by the International Center for
Agricultural Research in the Dry Areas (ICARDA) and the
Institute for Sustainable Plant Protection, Italy, have been
devoted to identifying resistance to H. ciceri, the most devastating
nematode to chickpea production in the Mediterranean region.
Despite screening close to 10000 chickpea accessions from global
germplasm collections held by ICARDA and the International
Crop Research Institute for the Semi-Arid Tropics (ICRISAT),
none were found to be resistant (Di Vito et al., 1996; Singh et al.,
1996) and merely 20 lines were rated as moderately resistant to
H. ciceri (Di Vito et al., 1988).

Screening efforts focusing on identifying resistance to
M. javanica in the C. arietinum germplasm collection held in the
ICRISAT genebank proved futile, with no resistance identified in
numerous studies testing several thousand accessions (Sharma
et al., 1992, 1993, 1995; Ali and Ahmad, 2000; Bhagwat and
Sharma, 2001; Ansari et al., 2004). Nonetheless, a few susceptible
lines were deemed tolerant to M. javanica and produced a higher
yield and shoot biomass in M. javanica-infested soil, even though
the roots supported nematode reproduction (Sharma et al., 1992,
1993, 1995). Hussain et al. (2001) screened ten chickpea cultivars
from Pakistan for resistance to M. javanica, and found all ten
cultivars showed a moderate level of resistance.

Early studies were unsuccessful in finding resistance to
M. incognita in Indian chickpea cultivars (Siddiqui and Husain,
1992; Rao and Krishnappa, 1995; Mhase et al., 1999; Chakrabarti
and Mishra, 2002). However, more recent studies have reported
resistance and moderate resistance to M. incognita in Indian
chickpea cultivars and breeding lines (Hassan and Devi, 2004;
Haseeb et al., 2006; Chakraborty et al., 2016). Considering the
broad host range and widespread occurrence of this nematode
species in India (Khan et al., 2014) it is plausible that incidental
selection for resistance to M. incognita has occurred in more
recent breeding programs. Sikora et al. (2018) reported that no
attempts have been made to screen chickpea germplasm for
resistance to M. artiella.

Sources of resistance and moderate resistance to P. thornei in
the C. arietinum cultigen have been identified in breeding lines in
India (Tiwari et al., 1992; Ali and Ahmad, 2000) and in accessions
in the ICRISAT genebank in India (Ali and Ahmad, 2000) and
Australia (Thompson et al., 2011).

The limited diversity of resistance genes in the C. arietinum
cultigen is not restricted to plant-parasitic nematodes.
C. arietinum lacks diversity for a range of biotic and abiotic
stresses (Smýkal et al., 2015). Abbo et al. (2003) proposed that
this low level of diversity can be attributed to the following
genetic bottlenecks that occurred during the evolution and
domestication of chickpea: (i) there is a limited distribution
of chickpea wild progenitor species, (ii) the founder effect
arising from the domestication of only a small number of wild
genotypes, which is a bottleneck common to all modern crops,
(iii) a shift from winter to spring phenology to avoid devastation
by Ascochyta blight (Ascochyta rabiei), and (iv) the substitution
of a large number of landraces with a small number of elite
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TABLE 2 | Studies to identify resistance to root-knot nematodes (Meloidogyne incognita, M. javanica), cyst nematode (Heterodera ciceri), and root-lesion nematode
(Pratylenchus thornei) in the Cicer arietinum cultigen.

Species Total no. of lines
screened

No. of lines Source of germplasm References

Resistant Moderately resistant

M. incognita 20 0 0 Indian cultivars Siddiqui and Husain, 1992

13 0 0 Indian cultivars Rao and Krishnappa, 1995

108 0 0 Indian Agricultural Research Institute,
Delhi; Indian Institute of Pulse
Research, Kanpur; Rajasthan College
of Agriculture; Mohanlal Sukhadia
University, Udaipur; Mahatma Phule
Krishi Vidyapeeth, Rahuri, India

Mhase et al., 1999

10 0 0 Indian cultivars Chakrabarti and Mishra,
2002

72 58 0 Indian Institute of Pulse Research,
Kanpur, India

Hassan and Devi, 2004

32 6 32 Indian Institute of Pulse Research,
Kanpur, India

Haseeb et al., 2006

34 17 60 Indian Institute of Pulse Research,
Kanpur, India

Chakraborty et al., 2016

M. javanica 1,000 0 0 ICRISAT, India Sharma et al., 1992

178 0 0 ICRISAT, India Sharma et al., 1993

47 0 0 ICRISAT, India Sharma et al., 1995

600 0 0 ICRISAT and Indian Institute of Pulse
Research, India

Ali and Ahmad, 2000

10 0 0 ICRISAT, India Bhagwat and Sharma,
2001

10 0 0 National Agricultural Research Council,
Pakistan

Hussain et al., 2001

7,000 0 0 ICRISAT, India Ansari et al., 2004

H. ciceri 2,001 0 20 ICARDA, Syria Di Vito et al., 1988

7,258 0 0 ICARDA, Syria Di Vito et al., 1996

P. thornei 215 35 68 Indian Institute of Pulse Research,
Kanpur; JNKVV Jabalpur, India

Tiwari et al., 1992

600 0 17 ICRISAT and Indian Institute of Pulse
Research, India

Ali and Ahmad, 2000

453 1 14 ICARDA; ICRISAT; Australian cultivars
and breeding lines

Thompson et al., 2011

cultivars from modern breeding caused yet further reduction in
the diversity of the C. arietinum genepool.

The availability of large and diverse germplasm collections
is a key element for the successful identification of disease
resistant lines (Infantino et al., 2006). Landraces, traditional
locally adapted varieties that lack formal crop improvement (Villa
et al., 2005), serve as a valuable genetic resource that may help
widen the narrow genetic base of chickpea by circumventing the
genetic bottlenecks caused by changing from winter to spring
phenology and modern breeding. While landraces hold much
genetic diversity of the C. arietinum cultigen, strategic methods
are crucial to mine the global chickpea germplasm collections,
which have conserved close to a hundred thousand accessions
(Smýkal et al., 2015). Recent developments of core, reference
and mini-core collections (Upadhyaya et al., 2001, 2008) and
subsampling strategies such as the focused identification of
germplasm strategy (FIGS) (Khazaei et al., 2013) have created
unprecedented opportunities for the systematic screening of a
practical number of accessions.

A core collection is defined as a subset of all the accessions
representing the genetic diversity of crop species and wild
relatives with minimum repetition (Frankel and Brown, 1984).
It constitutes about 10% of the total number of accessions
and represents genetic diversity of the entire global germplasm
collection. Based on geographic distribution and quantitative
traits of accessions held at ICRISAT, a core subset was developed
consisting of 1956 accessions of chickpea (Upadhyaya and
Ortiz, 2001). However, the size of the core collection was
still too large to be systematically evaluated for traits of
interest. To overcome this limitation, a mini-core collection was
developed where a subset of 211 accessions (1.1% of the entire
collection) was selected based on taxonomic, morphological
and geographic data (Upadhyaya and Ortiz, 2001). Also, a
composite collection of 3000 accessions was formed, which
represents the diversity of accessions held at ICRISAT and
ICARDA collectively. From this collection, the ‘Reference
Set,’ was produced, composed of the full mini-core collection
(211) and an additional 82 C. arietinum accessions, plus

Frontiers in Plant Science | www.frontiersin.org 6 July 2019 | Volume 10 | Article 966

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00966 July 23, 2019 Time: 18:41 # 7

Zwart et al. Resistance to Nematodes in Chickpea

four C. reticulatum and three C. echinospermum genotypes
(Upadhyaya et al., 2006).

The chickpea mini-core collection and Reference Set have
been phenotyped in several studies to identify traits of interest
to combat biotic and abiotic stresses. These traits include
resistance to multiple diseases of economic concern namely,
Ascochyta blight, Fusarium wilt, dry root rot and Botrytis
gray mold (Pande et al., 2006), as well as root architectural
traits for optimal use of soil resources, and adaptation to
drought and other abiotic challenges (Kashiwagi et al., 2005;
Krishnamurthy et al., 2010, 2011). In addition to identifying
germplasm with traits of interest, these collections have been used
to understand the genetic basis of heat and drought tolerance
traits by using genome-wide association studies (GWAS) and
candidate gene-based mapping approaches (Thudi et al., 2014).
These valuable repositories of germplasm covering the genetic
diversity of C. arietinum offer opportunities to efficiently search
for sources of resistance to plant-parasitic nematodes that were
not previously available.

Wild Cicer Relatives
Chickpea wild relatives can be used to reintroduce traits and
widen the genetic base of the C. arietinum cultigen that did
not pass through the domestication bottleneck (Abbo et al.,
2003). The genus Cicer comprises 44 species, of which nine are
annuals and 35 perennials (Smýkal et al., 2015). Annual Cicer
species in the primary genepool (C. arietinum, C. reticulatum,
and C. echinosperum) are cross-compatible, while those in
the secondary genepool (C. bijugum, C. pinnatifidum, and
C. judaicum) and tertiary genepool (C. chorassanicum, C.
cuneatum, and C. yamashitae) have barriers to hybridization
with C. arietinum (Croser et al., 2003). Despite this, accessions
from all three genepools held in germplasm collections have been
screened for resistance to plant-parasitic nematodes (Table 3).

In search for resistance to H. ciceri, a limited number of
wild Cicer relatives were screened. Singh et al. (1989) screened
accessions from all 8 annual wild Cicer species and identified
a high level of resistance to H. ciceri only in accessions
of C. bijugum. However, screening of additional germplasm
identified resistance to H. ciceri in one accession of C. reticulatum,
one of C. bijugum and six of C. pinnatifidum (Di Vito et al.,
1996). The resistance from the cross-compatible C. reticulatum
accession was then successfully transferred to C. arietinum
breeding lines (Singh et al., 1996; Malhotra et al., 2002, 2008). Di
Vito et al. (1995) reported resistance to P. thornei in accessions
from the secondary genepool (C. bijugum and C. judaicum) and
tertiary genepool (C. cuneatum and C. yamashitae), while no
resistance was found in accessions from the primary genepool
(C. echinosperum and C. reticulatum). Thompson et al. (2011)
identified moderate resistance to P. thornei in accessions from
both C. echinosperum and C. reticulatum in the primary genepool,
as well as accessions of C. bijugum. Successful hybridizations
of these C. echinosperum and C. reticulatum accessions with
C. arietinum in the Australian chickpea breeding program has
produced breeding lines with resistance at a level equivalent to
the Cicer wild relative parents (Thompson et al., 2011; Rodda
et al., 2016). To date, no sources of resistance to root-knot

nematodes have been identified in the Cicer primary genepool.
Resistance to M. artiellia has been identified in one accession
of C. bijugum and one accession of C. pinnatifidum from
the ICARDA genebank (Di Vito et al., 1995). No resistance
was found for M. javanica in wild Cicer relatives screened
by Sharma et al. (1993).

Using embryo rescue and tissue culture techniques, hybrids
between C. arietinum and accessions of secondary genepool
species C. bijugum, C. judaicum, and C. pinnatifidum are possible
(Ahmad and Slinkard, 2004; Clarke et al., 2006). However, these
techniques are extremely inefficient. Many crosses are required
to recover hybrids and the few hybrids that are recovered are
affected by androgenesis, infertility and lack of vigor (Clarke et al.,
2011). Thus, further advancements in techniques are required
to increase efficiency and cross the barriers to hybridization
that exist between accessions of the secondary genepool and
the C. arietinum cultigen before these sources of resistance
can be applied in chickpea breeding (Pratap et al., 2018). For
now, the only accessible sources of wild Cicer germplasm are
accessions of C. echinosperum and C. reticulatum. However,
Berger et al. (2003) highlighted the limited number of unique
accessions of these wild Cicer species held in international
genebanks. Of 43 C. echinosperum accessions in the world
collection, only 13 are original independent accessions, with the
remainder being duplicates under different accession numbers
used by different genebanks. Of 139 C. reticulatum accessions,
only 18 were original accessions. This under-representation
of wild Cicer relatives in global genebank collections has
been recently addressed with new collecting expeditions for
C. echinosperum and C. reticulatum in south-eastern Turkey
spanning the geographic range of these wild Cicer species
(von Wettberg et al., 2018). Reen et al. (2019) recently
demonstrated the value of this collection for increasing genetic
diversity for resistance to plant-parasitic nematodes. Thirteen
accessions were identified as significantly more resistant to
P. thornei (P < 0.05) than the previously most resistant
C. echinosperum accession reported by Thompson et al. (2011).
Moreover, wild introgression populations of C. echinosperum
and C. reticulatum parents into C. arietinum using elite
chickpea varieties adapted to the major chickpea growing
regions of the world, namely, India, Australia, Turkey, Ethiopia,
and Canada (von Wettberg et al., 2018), will be invaluable
resources for the identification and utilization of traits of
interest in wild Cicer relatives, including resistance to plant-
parasitic nematodes.

CHICKPEA GENOMIC RESOURCES

Molecular Marker-Based Resources
Recent advances in genomics research have enabled the
development and application of molecular markers for crop
improvement (Thudi et al., 2014; Varshney et al., 2018b). In the
case of chickpea, 2n = 2x = 16 chromosomes and a genome size
of ∼738 Mb (Varshney et al., 2013b), extensive genomic and
transcriptomic resources have been developed (Varshney et al.,
2009; Nayak et al., 2010; Hiremath et al., 2011; Thudi et al., 2011;
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TABLE 3 | Studies to identify resistance to root-knot nematodes (Meloidogyne artiellia, M. javanica), cyst nematode (Heterodera ciceri), and root-lesion nematode
(Pratylenchus thornei) in Cicer wild relatives.

Nematode species Genepool Cicer species Total no. of lines screened No. of lines References

Resistant Moderately resistant

M. artiellia Primary C. echinospermum 1 0 0

C. reticulatum 15 0 0

Secondary C. bijugum 32 1 5 Di Vito et al., 1995

C. judaicum 31 0 0

C. pinnatifidum 23 1 3

C. chorassanicum 3 0 3

Tertiary C. cuneatum 3 0 1

C. yamashitae 3 0 0

M. javanica Primary C. reticulatum 3 0 0 Sharma et al., 1993

Secondary C. bijugum 2 0 0

C. judaicum 14 0 0

C. pinnatifidum 4 0 0

Tertiary C. chorassanicum 1 0 0

C. cuneatum 1 0 0

H. ciceri Primary C. echinospermum 1 0 0 Di Vito et al., 1988

C. reticulatum 2 0 0

Secondary C. bijugum 3 0 2

C. judaicum 6 0 0

C. pinnatifidum 5 0 0

C. chorassanicum 1 0 0

Tertiary C. cuneatum 1 0 0

C. yamashitae 1 0 0

Primary C. echinospermum 4 0 0 Singh et al., 1989

C. reticulatum 23 0 0

Secondary C. bijugum 23 21 0

C. judaicum 47 0 0

C. pinnatifidum 30 0 0

C. chorassanicum 5 0 0

Tertiary C. cuneatum 3 0 0

C. yamashitae 2 0 0

Primary C. echinospermum 8 0 0 Di Vito et al., 1996

C. reticulatum 36 1 0

Secondary C. bijugum 13 1 0

C. judaicum 18 0 0

C. pinnatifidum 18 6 0

C. chorassanicum 3 0 0

Tertiary C. cuneatum 3 0 0

C. yamashitae 3 0 0

P. thornei Primary C. echinospermum 1 0 0 Di Vito et al., 1995

C. reticulatum 34 0 0

Secondary C. bijugum 32 6 7

C. judaicum 38 11 9

C. pinnatifidum 31 0 0

C. chorassanicum 5 0 1

Tertiary C. cuneatum 3 3 0

C. yamashitae 3 1 1

Primary C. echinospermum 15 0 2 Thompson et al., 2011

C. reticulatum 52 0 2

Secondary C. bijugum 35 0 6

C. pinnatifidum 1 0 0

Primary C. echinospermum 41 3 11 Reen et al., 2019

C. reticulatum 133 10 29
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Kudapa et al., 2014; Agarwal et al., 2016; Mashaki et al., 2018).
The availability of these resources has facilitated the development
of molecular markers and high density genetic maps in chickpea
(Thudi et al., 2011; Varshney et al., 2014b; Jaganathan et al.,
2015; Kale et al., 2015). Over 2000 simple sequence repeat (SSR)
markers, millions of single nucleotide polymorphism (SNP)
markers, and over 15000 diversity array technology (DArT)
markers, have been developed for chickpea (Varshney, 2016) in
the last decade. These molecular markers and genetic linkage
maps, in combination with phenotypic data and quantitative
trait loci (QTL) analysis, have been used to identify genomic
regions responsible for complex traits in chickpea like drought
tolerance (Varshney et al., 2014b), salinity tolerance (Vadez
et al., 2012; Pushpavalli et al., 2015), heat tolerance (Paul et al.,
2018), early flowering (Mallikarjuna et al., 2017), vernalization
(Samineni et al., 2016) and resistance to Fusarium wilt and
Ascochyta blight (Sabbavarapu et al., 2013). Further, using a
GWAS approach, markers associated with drought and heat
tolerance traits (Thudi et al., 2014) and protein content (Jadhav
et al., 2015) have also been reported. Besides using molecular
markers to assist understanding molecular mechanisms of
different traits, several functional genomics approaches, such as
suppression subtractive hybridization (SSH), super serial analysis
of gene expression (SuperSAGE), microarray, and expressed
sequence tags (EST) sequencing were also recently applied
to chickpea (Buhariwalla et al., 2005; Molina et al., 2008;
Varshney et al., 2009). These molecular marker-based resources,
when coupled with robust and accurate phenotyping to detect
marker-trait associations, can be applied to chickpea breeding
to (i) assist the indirect selection of nematode resistance, (ii)
facilitate pyramiding of resistance genes from several resistant
or moderately resistant sources to provide cultivars with durable
nematode resistance, and (iii) combine resistance to multiple
biotic stresses.

Next-Generation Sequencing-Based
Resources
Several key traits have been targeted for transcriptomic studies
in chickpea (Varshney et al., 2009; Hiremath et al., 2011;
Kudapa et al., 2014; Kaashyap et al., 2018). In recent years,
sequencing and de novo assembly of the chickpea transcriptome
using short-reads and high-throughput small RNA sequencing
were also deployed to discover tissue-specific and stress-
responsive expression profiles (Jain et al., 2014; Kohli et al.,
2014). These functional genomic resources were also used to
develop informative SSR and SNP markers in chickpea (Agarwal
et al., 2012; Hiremath et al., 2012; Jhanwar et al., 2012; Garg
et al., 2014; Kudapa et al., 2014; Pradhan et al., 2014; Parida
et al., 2015). Recently, a Gene Expression Atlas (CaGEA) from
27 chickpea tissues across five developmental stages, namely,
germination, seedling, vegetative, reproductive, and senescence,
of a chickpea breeding cultivar, ICC 4958, has been developed
(Kudapa et al., 2018). Ramalingam et al. (2015) extensively
reviewed several studies on application of proteomics and
metabolomics in chickpea and other crop legumes. Integration of
these technologies with genomics has the potential to inform the
molecular mechanisms of plant responses to biotic stresses such

as nematode infestation and identify key candidate genes to be
introgressed for chickpea improvement.

Following the release of the draft genomes of chickpea (Jain
et al., 2013; Varshney et al., 2013b), efforts have been made
during the last decade to improve the genome assemblies. For
instance, Ruperao et al. (2014) using sequence data from flow
cytometry isolated chromosomes to identify misplaced contigs
for improving and validating the desi and kabuli draft chickpea
genome assemblies. Similarly, Parween et al. (2015), using
additional sequence data and improved genetic maps, developed
an improved version of the desi genome assembly. In addition, a
draft genome assembly of C. reticulatum the wild progenitor of
chickpea has been recently reported (Gupta et al., 2017). Further,
in order to design new strategies to harness the existing genetic
diversity in germplasm lines conserved in genebanks across the
world, re-sequencing of germplasm lines has been advocated
(McCouch et al., 2013). Toward this direction in chickpea, 90
elite lines, 35 parental genotypes of mapping populations, and 129
released varieties have been re-sequenced (Varshney et al., 2013b,
2019; Thudi et al., 2016a,b). Moreover, efforts are currently
underway at ICRISAT to re-sequence the 3000 germplasm lines of
the composite chickpea collection. Next-generation sequencing-
based genomic resources can provide insights into candidate
genes determining nematode resistance and in this way enable
diagnostic markers for accurate and efficient indirect selection of
resistance to be developed. Furthermore, insights into candidate
resistance genes will enable mechanisms of resistance to plant-
parasitic nematodes to be deciphered. Increased knowledge of
the mechanisms of resistance in different germplasm sources
would allow the possibility to breed for enhanced durability of
nematode resistance by combining genes for different resistance
mechanisms in the one chickpea cultivar.

Genome-Assisted Breeding
Molecular breeding approaches utilizing markers and the large-
scale genetic and genomic resources that are now available for
chickpea have been successful in improving chickpea for target
traits. Some superior lines with enhanced tolerance or resistance
to abiotic and biotic stresses as well as agronomically important
traits have been successfully developed in legumes using marker-
assisted backcrossing (MABC) (Lucas et al., 2015; Varshney,
2016; Varshney et al., 2018a). A genomic region in chickpea
(known as “QTL-hotspot”) harboring several QTL for drought
component traits was identified (Varshney et al., 2014b) and
successfully introgressed initially into JG 11, an elite Indian
chickpea cultivar (Varshney et al., 2013a). Preliminary yield
trials indicated a 12 to 24% increase in yield under drought
conditions. In addition, the introgression of this genomic region
into different genetic backgrounds, like chickpea cultivars KAK 2
and Chefe, was also found to enhance drought tolerance. Further,
this genomic region is being introgressed into elite cultivars
in Kenya, Ethiopia and India (Thudi et al., 2017). Molecular
breeding lines with enhanced resistance to Fusarium wilt (Pratap
et al., 2017; Mannur et al., 2019) and Ascochyta blight in different
elite genetic backgrounds (Varshney et al., 2014a) have been
developed. ICRISAT has also developed highly cost-effective 10
SNP panels for several traits in legumes including chickpea
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that can be used for early generation selection to accelerate the
efficiency of selection in breeding programs, besides cost-effective
high-throughput genotyping platforms (Roorkiwal et al., 2018).
This 10 SNP panel is being used extensively in early generation
selection in south Asia and Sub-Saharan Africa. Identification
of molecular markers associated with nematode resistance will
enable genomics-assisted breeding to facilitate the introgression
of nematode resistance in elite chickpea cultivars in breeding
programs worldwide.

FUTURE PERSPECTIVES

In this review we have outlined progress in the discovery of
resistance to plant-parasitic nematodes in various germplasm
sources suitable for introgression into chickpea cultivars.
Screening a large number of germplasm lines is expensive
and time-consuming. In the past this has either limited the
number of lines that have been evaluated for nematode resistance
or required large investments in resources and effort. The
development of the chickpea mini-core and reference set
germplasm collections of landraces and C. arietinum breeding
lines, provides cost-effective and manageable entry points into
the vast global chickpea germplasm collections (Gaur et al.,
2012). Although major genetic bottlenecks may have contributed
to the lack of genetic diversity for resistance against plant-
parasitic nematodes available in the C. arietinum cultigen,
new opportunities exist to widen the genetic base of chickpea
for traits of interest. The small number of wild genotypes
contributing to the domesticated C. arietinum cultigen can be
circumvented by evaluating recent collections of chickpea wild
species C. reticulatum and C. echinospermum for resistance to
plant-parasitic nematodes.

To the best of our knowledge, no information is currently
available on the nature of inheritance and genetics of plant-
parasitic nematode resistance genes in chickpea. Considerable
advancements in chickpea genomic resources since the majority
of the past efforts to identify sources of resistance to
various nematode species, provide unprecedented opportunities
to accelerate identification and characterization of nematode
resistance genes. Availability of an extensive number of molecular
markers and genomic resources in chickpea, coupled with robust

phenotyping, will facilitate identification of markers linked
with resistance to plant-parasitic nematodes. Identification of
candidate genes for nematode resistance could provide diagnostic
markers that could be used for indirect selection of nematode
resistance. Furthermore, genomic tools can provide insights into
the mechanisms of resistance to plant-parasitic nematodes in
chickpea. Identification of marker-trait associations will facilitate
rapid introgression of resistance to plant-parasitic nematodes and
adoption of genomics-assisted breeding into chickpea breeding
programs world-wide. Sources of moderate resistance can be
dissected with molecular markers to identify minor genes. If
additive in gene action, sources of moderate resistance could
be successfully combined using genomics-assisted selection
to produce nematode resistant chickpea cultivars. We have
indicated a number of successes in the identification of resistance
to plant-parasitic nematodes that provide encouragement to
apply and exploit genomic tools and intensify efforts to have
resistant cultivars available to growers in all regions where plant-
parasitic nematodes diminish production of chickpea and of
other host crops grown in rotation.
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