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Life on earth is sustained by oxygenic photosynthesis, a process that converts solar 
energy, carbon dioxide, and water into chemical energy and biomass. Sunlight is essential 
for growth and productivity of photosynthetic organisms. However, exposure to an 
excessive amount of light adversely affects fitness due to photooxidative damage to the 
photosynthetic machinery, primarily to the reaction center of the oxygen-evolving 
photosystem II (PSII). Photosynthetic organisms have evolved diverse photoprotective 
and adaptive strategies to avoid, alleviate, and repair PSII damage caused by high-
irradiance or fluctuating light. Rapid and harmless dissipation of excess absorbed light 
within antenna as heat, which is measured by chlorophyll fluorescence as non-photochemical 
quenching (NPQ), constitutes one of the most efficient protective strategies. In parallel, 
an elaborate repair system represents another efficient strategy to maintain PSII reaction 
centers in active states. This article reviews both the reaction center-based strategy for 
robust repair of photodamaged PSII and the antenna-based strategy for swift control of 
PSII light-harvesting (NPQ). We discuss evolutionarily and mechanistically diverse strategies 
used by photosynthetic organisms to maintain PSII function for growth and productivity 
under static high-irradiance light or fluctuating light environments. Knowledge of 
mechanisms underlying PSII maintenance would facilitate bioengineering photosynthesis 
to enhance agricultural productivity and sustainability to feed a growing world population 
amidst climate change.

Keywords: photosystem II, photosynthesis, non-photochemical quenching, repair, fluctuating light

INTRODUCTION

Cyanobacteria, algae, and plants convert sunlight into chemical energy through photosynthesis to 
provide oxygen and food building blocks that are essential for most life forms on earth. Photosynthesis 
starts with capture of light by light-harvesting antenna, which drives photosynthetic electron flow 
through photosynthetic machinery comprising several large protein complexes embedded in the 
thylakoid membranes of prokaryotic cyanobacteria and eukaryotic chloroplasts. Oxygen-evolving 
photosystem II (PSII) is a highly conserved multi-subunit pigment-containing membrane complex 
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that functions as a light-driven water:plastoquinone oxidoreductase 
during photosynthetic electron transport (reviewed in Kern and 
Renger, 2007; Koochak et al., 2019). The electrons extracted from 
water are converted and stored into organic molecules. Counter-
intuitively, PSII is extremely vulnerable to light irradiance, which 
causes photodamage to PSII reaction centers (reviewed in Townsend 
et  al., 2018; Leister, 2019). The damage is exacerbated if light 
energy exceeds what can be utilized for carbon fixation, particularly 
when photosynthetic organisms are subjected to environmental 
stresses, such as high light, extreme temperature, drought and 
nutrient depletion, or combined stresses (Ghotbi-Ravandi et  al., 
2014; reviewed in Murata et al., 2007; Sainz et al., 2010; Salomon 
et  al., 2013; Strzepek et  al., 2019; Wilson and Ruban, 2019). The 
excess light energy also leads to massive generation of reactive 
oxygen species (ROS) photoproducts, which damage PSII or 
suppress the repair of damaged PSII (Mishra and Ghanotakis, 
1994; Miyao et  al., 1995; Okada et  al., 1996; Nishiyama et  al., 
2001; Kale et  al., 2017; reviewed in Pinnola and Bassi, 2018). 
Paradoxically, ROS also act as critical signal molecules to mediate 
photoacclimation response (Alboresi et  al., 2011; reviewed in 
Wagner et  al., 2004; Dogra et  al., 2018).

Photoinhibition occurs when PSII suffers from excess light-
induced damage or PSII photochemistry is downregulated, 
resulting in decreased photosynthetic performance and reduced 
growth and productivity (Kapri-Pardes et  al., 2007; Chen et  al., 
2019; reviewed in Takahashi and Badger, 2011; Wittenberg et al., 
2014; Ting and Owens, 2016; Li et  al., 2018). Photosynthetic 
organisms evolved a suite of photoprotective and adaptive 
mechanisms to prevent or recover from the deleterious effects 
of photoinhibitory light. These include fast regulatory mechanisms, 
for instance, movement of chloroplasts away from high-light 
intensity, reduction of antenna size, induction of alternative 
electron transport pathways, and slow regulatory mechanisms, 
such as operation of both enzymatic and non-enzymatic ROS 
scavenging systems, and triggering systemic acquired acclimation 
(reviewed in Jarillo et  al., 2001; Frigerio et  al., 2007; Okegawa 
et al., 2010; Erickson et al., 2015). Non-photochemical quenching 
(NPQ) represents one of the fast regulatory mechanisms that 
is immediately activated and rapidly inducible upon excess solar 
energy. It protects against excess absorbed sunlight within the 
PSII antenna by converting photons into dissipative heat (Niyogi 
et al., 1998; reviewed in Wobbe et al., 2016). In addition, certain 
organism-specific protein factors evolved to maintain maximal 
PSII activity under photoinhibitory light conditions (Chen et al., 
2018). The land plant-specific thylakoid membrane proteins 
MPH1 (MAINTENANCE OF PSII UNDER HIGH LIGHT 1) 
and HHL1 (HYPERSENSITIVE TO HIGH LIGHT 1) evolved 
to protect PSII against high-light illumination following the 
transition from aquatic habitats to terrestrial environments (Jin 
et  al., 2014; Liu and Last, 2015a,b). Despite these multi-faceted 
photoprotective mechanisms, light-induced damage to PSII still 
occurs. Photosynthetic organisms employ an efficient repair 
system to replace damaged subunits within PSII reaction centers 
and restore PSII function (reviewed in Li et  al., 2018). A suite 
of auxiliary proteins, including kinases, phosphatase(s), proteases, 
and repair/assembly factors have been documented to  
promote the repair of damaged PSII core subunits (reviewed in 

Nickelsen and Rengstl, 2013; Järvi et  al., 2015). These auxiliary 
proteins could also cooperate with each other to facilitate the 
repair process. For instance, Arabidopsis thaliana (a flowering 
plant model species) LQY1 (LOW QUANTUM YIELD OF 
PHOTOSYSTEM II 1) protein—interacting with HHL1—regulates 
repair of damaged core complexes to sustain high PSII efficiency 
upon exposure to excessive light (Lu, 2011; Lu et  al., 2011; Jin 
et  al., 2014). Another example is the recent finding that OHP1 
(ONE-HELIX PROTEIN1), OHP2, and HCF244 (HIGH 
CHLOROPHYLL FLUORESCENCE244) form a transient 
functional heterotrimeric complex assisting in assembly and/or 
repair of PSII (Hey and Grimm, 2018; Myouga et  al., 2018; Li 
et  al., 2019). These repair and NPQ systems may become 
especially important and could operate in parallel or synergistically 
to maintain optimal PSII efficiency under fluctuating light 
environments because photosynthetic organisms live in—and 
adapt to—their natural growth conditions where light fluctuates 
rapidly and unpredictably. This review focuses on antenna- and 
reaction center-based strategies that coexist in oxygenic organisms 
to minimize the production of the photosynthetic byproducts 
ROS, thereby safeguarding PSII under changes in light conditions.

PREVENTION: REGULATION OF LIGHT 
CAPTURE AS A PHOTOPROTECTIVE 
MECHANISM ACROSS 
PHOTOSYNTHETIC ORGANISMS

Non-photochemical Quenching Regulation 
of Light-Harvesting Efficiency
Photosynthesis is initiated by the capture and trapping of solar 
energy by light-harvesting systems in thylakoid membranes of 
cyanobacteria or chloroplasts. However, absorbed light that 
exceeds what can be used by photosynthesis causes light-induced 
damage, primarily to PSII. Therefore, maintenance of optimal 
photosynthetic performance requires efficient regulation of light 
harvesting for photoprotection. NPQ safely dissipates excess 
light energy within the PSII antenna system and is found 
ubiquitously across oxygenic photosynthetic organisms (reviewed 
in Niyogi and Truong, 2013).

NPQ responds rapidly and prevents ROS formation during 
photosynthesis (Figure 1). It is a protective strategy for 
photosynthetic machinery to acclimatize to excess light 
conditions. NPQ consists of a variety of processes, such as 
redistribution of antenna between PSII and PSI to balance 
electron transport (qT type of NPQ, or state transition) 
(Bellafiore et  al., 2005; reviewed in Erickson et  al., 2015), 
deepoxidation of violaxanthin into zeaxanthin in the 
xanthophyll cycle and global structural reorganization of 
PSII-LHCII complexes (Niyogi et al., 1998; Ruban et al., 2007; 
Park et al., 2019). The most prominent and fastest component 
is zeaxanthin-facilitated energy-dependent quenching (qE type 
quenching or feedback de-excitation) (Li et  al., 2000; Tian 
et  al., 2019). Because it operates on a time scale of seconds 
to minutes, rapid and reversible qE is often referred to as 
flexible thermal dissipation (Demmig-Adams et  al., 2006; 
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reviewed in Niyogi and Truong, 2013). qE formation is strictly 
dependent on a high ΔpH and the PsbS protein but also 
requires zeaxanthin synthesis (Niyogi et  al., 1998; Avenson 
et al., 2008; Holzwarth et al., 2009). Another NPQ component 
(qZ type quenching), which is distinguished from qE, is 
formed within 10–30 min (Nilkens et al., 2010). The formation 
of qZ is strictly dependent on zeaxanthin but independent 
of PsbS (Dall’Osto, 2005). The relaxation of qZ depends on 
zeaxanthin epoxidation and is linked to the kinetics of the 
zeaxanthin pool. Photoinhibitory quenching is a zeaxanthin-
mediated, but not rapidly reversible NPQ component (qI-type 
quenching or inflexible/sustained thermal dissipation) 
(Demmig-Adams et  al., 2006; reviewed in Pinnola and Bassi, 
2018). The relative contribution of each process to the overall 
NPQ capacity depends on individual photosynthetic organisms 
and the changing environmental conditions.

Because photosynthetic organisms live in a broad range of 
habitats, the intensity and spectra of light experienced by different 
photosynthetic organisms vary extensively. This is particularly 
true for aquatic organisms, which are subjected to rapidly 
changing environmental factors, such as abrupt wave movements 
or phytoplankton migrations. Therefore, it is not surprising that 
aquatic photosynthetic organisms display distinct photoprotective 
strategies. For example, the green alga Chlamydomonas reinhardtii 
(a unicellular model species) and diatom Phaeodactylum 
tricornutum both need the LHCSR (LHC STRESS-RELATED 
PROTEIN) family protein for NPQ formation. Synthesis of the 
Chlamydomonas LHCSR protein is dramatically induced by high 
light, and it is responsible for the majority of flexible NPQ 
(Peers et al., 2009; Girolomoni et al., 2019). Notably, the induction 
of LHCSR expression under high light intensities is found to 
be  controlled by the blue-light photoreceptor phototropin.  

This suggests that sensing, dissipation, and utilization of light 
is a concerted process (Petroutsos et  al., 2016). Likewise, the 
LHCSR family protein LHCX1  in Phaeodactylum determines 
NPQ’s high capacity, which correlates with its strong ability to 
cope with various light stresses (Bailleul et al., 2010; Gundermann 
et  al., 2019). However, the expression and accumulation of 
LHCX1 is not further induced by excess light energy like it 
is with Chlamydomonas LHCSR (Petroutsos et  al., 2016). This 
demonstrates that Phaeodactylum has constitutive and highly 
efficient photoprotection. These differences in photoprotective 
capacity between the two aquatic groups reflect their unique 
ecological adaptations to the sudden, strong changes in underwater 
light environments.

NPQ mechanisms in terrestrial plants are diverse and 
elaborate, as reflected by the remarkable diversity of plant 
species that are distributed in different geographic locations 
with potentially differential ecological effects. The PsbS 
(PHOTOSYSTEM II SUBUNIT S) protein in higher plants 
plays a similar role to the algal type LHCSR. It senses the 
pH of the chloroplast thylakoid lumen when there is excess 
light and induces flexible NPQ (Niyogi et  al., 1998; Li et  al., 
2004; Liguori et  al., 2019). Short-lived, fast-growing plants 
such as annual crops have lower qE capacity than long-lived, 
slow-growing species such as tropical evergreens (Demmig-
Adams et  al., 2006). It is possible that slow-growing species 
utilize a smaller proportion of solar energy for photosynthesis, 
thus having lower intrinsic photosynthetic capacities. In contrast, 
in overwintering evergreen plants, qI is the predominant NPQ 
component and it operates independent of PsbS and trans-
thylakoid pH, which evolved to cope with combined 
environmental stresses. The component responsible for qI is 
correlated initially with sustained D1 protein phosphorylation 

FIGURE 1 | A proposed simplified model illustrating regulation of PSII function by NPQ and repair under fluctuating light environments or high-light irradiance. 
Fluctuating light or high light can cause damage to PSII and downregulation of PSII photochemistry, with concomitant generation of ROS. To maintain normal PSII 
function, photosynthetic organisms deploy the antenna-based strategy, NPQ, and the reaction center-based strategy, PSII repair, to efficiently regulate light utilization 
and energy transfer. ROS act on PSII through damage, inhibition of repair, or retrograde signaling, whose production can be decreased by NPQ or repair. These 
intricate interplays between NPQ and repair can optimize PSII performance and facilitate acclimation of photosynthetic groups to fluctuating light environments or 
high-light irradiance.
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and xanthophyll cycle arrest and subsequently with newly 
synthesized zeaxanthin and lutein (Demmig-Adams et  al., 
2006). This sustained NPQ has critical ecophysiological 
significance of conferring unique and highly efficient 
photoprotection in repeated unfavorable seasons over the 
lifetime of evergreens. It enables these species to downregulate 
photosynthetic efficiency while continuously harvesting light 
that does not need to be  immediately rechanneled for 
photosynthesis and growth (reviewed in Demmig-Adams and 
Adams, 2006). To distinguish the slowly reversible, 
photoprotective NPQ from qI, this sustained NPQ is termed 
as qH, which recently has been unveiled to occur in the 
peripheral antenna of PSII at thylakoid membranes (reviewed 
in Malnoë, 2018; Malnoë et  al., 2018). Genetic screening in 
Arabidopsis discovered that the molecular player of qH is 
the plastid lipocalin, LCNP (Brooks et al., 2013; Malnoë et al., 
2018). Intriguingly, LCNP is a soluble protein localized in 
the thylakoid lumen, whose expression is induced by stresses 
such as drought or high light (Levesque-Tremblay et al., 2009). 
These data suggest that the localization of LCNP to thylakoid 
membranes likely depends on changes in environments 
(reviewed in Malnoë, 2018). The importance of sustained 
quenching is to maintain the normal function of thylakoids 
by allowing photoprotective NPQ in LHCII under stressful 
conditions (Lacour et  al., 2018; Malnoë et  al., 2018).

Coevolution of Flexible Non-photochemical 
Quenching and Antenna in Photosynthetic 
Lineages
The wide distribution of NPQ across photosynthetic prokaryotes 
and eukaryotes highlights its crucial role in PSII photoprotection. 
Notably, different NPQ systems have evolved in these diverse 
photosynthetic organisms. Flexible NPQ (qE), the major and 
also best-studied component of photoprotective excess energy 
dissipation, constitutes three systems, which are classified based 
on their associations with the diversification of the light-
harvesting equipment in photosynthetic organisms: the OCP 
(ORANGE CAROTENOID PROTEIN)-dependent system in 
cyanobacteria, the LHCSR-dependent system in algae and 
mosses, and the PsbS-dependent system in mosses and vascular 
plants (Li et  al., 2000; Gerotto et  al., 2012; Kosuge et  al., 
2018; Girolomoni et  al., 2019; reviewed in Wilson et  al., 2006; 
Rochaix and Bassi, 2019). Therefore, distinct NPQ regulatory 
mechanisms have evolved to adjust to differential demands of 
light energy absorption and utilization, allowing ecological 
adaptations to specific environments. Intriguingly, these diverse 
types of NPQ are relevant to the diversified antenna systems 
during evolution of oxygenic photosynthesis. Cyanobacteria 
deploy thylakoid membrane-bound phycobilisomes as their 
light-harvesting antenna (reviewed in Kirilovsky and Kerfeld, 
2016) and a special carotenoid molecule within OCP to absorb 
blue-green light and quench excessive excitation energy from 
phycobilisomes (Wilson et  al., 2006; Mezzetti et  al., 2019). 
Cyanobacterial OCP is both the sensor and site of flexible 
NPQ (Sedoud et  al., 2014; Slonimskiy et  al., 2019). Algae and 
plants utilize transmembrane three-helix LHC antennas, which 

further diversified into algae- and moss-specific LHCSR proteins. 
Unlike LHC antennas, LHCSR proteins do not absorb light 
energy but rather act as quenchers by sensing pH across 
thylakoid membranes and triggering excess light energy 
dissipation (Bonente et  al., 2011; Pinnola et  al., 2013; Tian 
et  al., 2019). In an independent evolutionary innovation from 
the LHC superfamily, the four-helix protein PsbS in vascular 
plants functions specifically as a thylakoid membrane pH sensor 
to trigger and accelerate the formation of NPQ within the 
LHC antenna (Li et  al., 2000; reviewed in Niyogi and Truong, 
2013). In contrast to LHCSR (Bonente et  al., 2011; Liguori 
et  al., 2019), PsbS neither binds pigments nor quenches excess 
excitation energy (Bonente et  al., 2008; Ruban et  al., 2009; 
Wilk et  al., 2013). Therefore, the sensor (PsbS) and the site 
(LHC) of NPQ are separated in higher plants, which allow 
high plasticity and flexibility in efficient NPQ induction 
and recovery.

It should be  mentioned that algae also contains PsbS 
but only accumulates transiently during high light stress, 
contrasting with LHCSR that accumulates over a much 
longer period. PsbS shows the ability to increase NPQ but 
no clear photoprotection activity (Tibiletti et al., 2016). PsbS 
is unable to compensate for the function of LHCSR in the 
lhcsr mutant (Correa-Galvis et  al., 2016). LHCSR alone can 
explain almost all fast induced NPQ in high light acclimated 
Chlamydomonas cells (Peers et  al., 2009). Moss represents 
a transitional state between algae and vascular plants and 
has both PSBS and LHCSR. PSBS- and LHCSR-dependent 
NPQ operate independently and additively (Alboresi et  al., 
2010; Gerotto et  al., 2012). An increased need for flexible 
NPQ might explain why both LHCSR- and PSBS-dependent 
NPQ systems are present in early land plants like mosses 
(Gerotto et  al., 2011).

Exploiting Natural Non-photochemical 
Quenching Variation to Optimize 
Photoprotection and Photochemical 
Efficiency
Natural variation in NPQ capacity is commonly observed in 
oxygenic photosynthetic organisms, from cyanobacteria to 
flowering plants, and even between different populations or 
accessions of the same species grown in the same conditions 
(Demmig-Adams, 1998; Demmig-Adams et  al., 2006; Wang 
et  al., 2017; Hamdani et  al., 2019). For instance, different 
Arabidopsis thaliana ecotypes exhibit diverse maximum levels 
of NPQ: Col-0 and Ws possess lower NPQ compared to Ll-1, 
Sf-2 (Jung and Niyogi, 2009). The variations in NPQ are not 
attributable to differences in PsbS or carotenoids required for 
NPQ formation but to previously unknown polygenic nuclear 
traits (Jung and Niyogi, 2009). Identification of these genes 
and understanding the physiological mechanisms responsible 
for the high NPQ phenotypes should provide a more complete 
picture of various NPQ systems and potentially lead to approaches 
for engineering or breeding plants with enhanced photoprotection 
capability against adverse environmental conditions while 
maintaining optimal photosynthetic efficiency.
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OPERATION OF EFFICIENT 
PHOTOSYSTEM II REPAIR CYCLE 
ALLOWS HIGH PHOTOSYNTHETIC 
CAPACITY

Susceptibility to light-induced photodamage and/or photoinhibition, 
which can be  measured as an increase in NPQ component qI, 
is an intrinsic and unavoidable feature of all PSII reaction centers—
from cyanobacteria to flowering plants. The main site of photodamage 
in PSII is the reaction center D1 subunit, which constantly undergoes 
rapid turnover (degradation and synthesis) (Aro et  al., 1993; 
Reviewed in Järvi et  al., 2015). Although cyanobacteria, algae, 
and plants have repair mechanisms that differ in detail, they share 
a central feature: the replacement of the photodamaged D1 subunit 
with a newly synthesized copy (Armbruster et  al., 2010; Kato 
et  al., 2012; reviewed in Nixon et  al., 2005; Komenda et  al., 2012; 
Lu, 2016). The PSII repair cycle involves disassembly, targeted 
reaction-center protein proteolysis, replacement of damaged core 
proteins, and reassembly of new functional PSII supercomplexes 
(Haußühl et  al., 2001; Kato et  al., 2018; reviewed in Nickelsen 
and Rengstl, 2013). In addition, individual steps in the PSII repair 
cycle are vulnerable to environmental changes (reviewed in Nath 
et al., 2013), further necessitating an efficient and timely operation 
of the repair machinery (Figure 1).

Cyanobacteria and chloroplasts employ distinct PSII repair 
mechanisms, which may be  relevant to evolutionarily distinct 
thylakoid structures. The photosynthetic membrane systems in 
oxygenic photosynthetic organisms have evolved into discrete 
morphological architectures, despite their common ancestry—
eukaryotic chloroplasts evolved from cyanobacteria via an ancient 
endosymbiotic event (reviewed in Ku et  al., 2015; Bock, 2017). 
In plant chloroplasts, photosynthetic membranes are differentiated 
into a network of extensively stacked grana thylakoids and 
unstacked stromal lamellae. Grana thylakoids are enriched in 
functional PSII supercomplexes, while the interconnecting stromal 
lamellae are enriched in PSI and ATP synthase complexes, with 
cytochrome b6f complex evenly distributed between the two 
(Dekker and Boekema, 2005; Daum et  al., 2010). In contrast, 
cyanobacterial thylakoid membranes are not differentiated in 
grana and stromal lamellae; therefore, their photosynthetic apparatus 
are not laterally separated (Liberton et al., 2013; Rast et al., 2019).

In higher plants, the individual repair steps take place in 
discrete subcompartments and occur in a well-defined order 
(reviewed in Kosuge et  al., 2018). Kinases, phosphatases, 
proteases, ribosomes, and repair/assembly factors are spatially 
segregated to ensure an operation with minimal interference 
(Puthiyaveetil et  al., 2014; Koochak et  al., 2019). 
Phosphorylation remodels the thylakoid structure to facilitate 
monomerization of photodamaged PSII supercomplexes in 
the grana core. These damaged monomeric PSII complexes 
are then trafficked to granal margins, where dephosphorylation 
and disassembly likely occur. This allows damaged D1 to 
be degraded successively by FtSH and Deg proteases (Haußühl 
et  al., 2001; Kato et  al., 2012; Krynická et  al., 2015; reviewed 
in Silva et  al., 2003; Sun et  al., 2007; Tikkanen et  al., 2008; 
Li et  al., 2018). The site of de novo D1 protein synthesis is 

located in unstacked stroma lamellae, whereas reformation 
of active PSII supercomplexes takes place in the highly stacked 
grana core (Okada et  al., 1996; Danielsson et  al., 2006).

The green alga Chlamydomonas has a thylakoid membrane 
organization similar to that in higher plants, though with less 
stacking of thylakoid membranes in its single cup-shaped 
chloroplast (Wei et  al., 2014). Consistent with the less stacking 
of thylakoids, experimental evidence indicates that individual 
PSII repair steps in Chlamydomonas are not restricted to 
thylakoid subdomains but rather are dispersed all over in the 
thylakoids (Uniacke and Zerges, 2007).

PSII repair in cyanobacteria seems to be restricted to specific 
sites in the thylakoid membranes named repair zones (Silva 
et  al., 2003; Klinkert et  al., 2004). Some other studies 
demonstrated that these repair zones could also be  located in 
the plasma membrane where repair zones converge with PSII 
biogenesis centers at PDM (PRATA-DEFINED MEMBRANES) 
subcompartments to allow damaged D1 to be promptly replaced 
(Schottkowski et al., 2009; Stengel et al., 2012). Another special 
feature in cyanobacteria is that the conserved phosphorylatable 
threonine residues in PSII reaction center proteins are not 
phosphorylated during PSII repair (Calzadilla et  al., 2019; 
reviewed in Komenda et  al., 2012). This suggests that 
phosphorylation- and dephosphorylation-facilitated PSII repair 
may be  a specific step evolved in photosynthetic eukaryotes.

APPROPRIATE PHOTOSYSTEM II 
MAINTENANCE ENSURES OPTIMAL 
PHOTOSYNTHETIC PERFORMANCE 
UNDER NATURAL FLUCTUATING  
LIGHT ENVIRONMENTS

Photosynthetic organisms experience abrupt and strong changes 
in light irradiance from seconds to seasons in their aquatic or 
terrestrial habitats. A multitude of protective and regulatory 
mechanisms evolved to facilitate their adaptation to such 
environmental fluctuations. NPQ appears to be a ubiquitous and 
major light acclimation mechanism that contributes to fitness 
under varying environments. LHCSR deficiency caused an increased 
death rate in Chlamydomonas following a shift from low to high 
light, suggesting that LHCSR-induced NPQ is required for optimal 
survival under variable light conditions (Peers et al., 2009; Kosuge 
et  al., 2018; Girolomoni et  al., 2019; Tian et  al., 2019). In 
Phaeodactylum, a decreased LHCX1 level led to reduced fitness 
under stressful light, and even non-stressful light conditions, 
suggesting that LHCX-dependent NPQ endows diatoms with 
maximal survival capacity under a wide range of light environments 
(Bailleul et al., 2010; Gundermann et al., 2019; Park et al., 2019). 
In Arabidopsis plants, NPQ plays a crucial role in rapidly adjusting 
PSII to artificial fluctuating light (Armbruster et  al., 2014, 2016; 
Duan et  al., 2016; Herdean et  al., 2016). In field conditions with 
natural fluctuating light, the NPQ-defective mutants npq1 and 
npq4 exhibited lower PSII activity and produced fewer seeds 
than the wild type, although they had no visible vegetative growth 
defects (reviewed in Külheim et  al., 2002; Frenkel et  al., 2007; 
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Wobbe et  al., 2016). Compared to what we  know of NPQ in 
algae and plants, little is known about the importance of 
OCP-dependent NPQ in cyanobacteria under fluctuating light.

So far, there is no published experimental evidence addressing 
whether PSII deficiency affects cyanobacteria or Chlamydomonas 
growth under variable light conditions, but several studies in 
Arabidopsis identified protein factors required to safeguard PSII 
under rapidly changing light conditions. TLP18.3 (THYLAKOID 
LUMEN PROTEIN 18.3) protein is reported to have a crucial 
role in adjusting Arabidopsis photosynthesis to fluctuating light 
(Sirpio et  al., 2007; Jarvi et  al., 2016). The tlp18.3 mutants did 
not show visible phenotype under standard growth conditions. 
However, they exhibited retarded growth under fluctuating light 
and were highly susceptible to high-light stress. More importantly, 
the phenotypic defects of the tlp18.3 mutants were found to 
be  associated with inefficient operation of the PSII repair cycle 
(Sirpio et  al., 2007). Two recent studies uncovered that the loss 
of Arabidopsis PSB27 (PHOTOSYSTEM II SUBUNIT 27) and 
MET1 (MESOPHYLL-ENRICHED THYLAKOID PROTEIN 1) 
caused stunted phenotypes when exposed to fluctuating light 
intensities (Bhuiyan et  al., 2015; Hou et  al., 2015). These loss-
of-function mutations did not affect growth and development 
under normal light conditions. The reduced vegetative growth 
in the psb27 mutant under fluctuating light was attributed to 
decreased PSII efficiency; this, however, was independent to the 
PSII supercomplex formation (Hou et  al., 2015). The growth 
retardation in met1 was due to a defect in the regeneration of 
active PSII supercomplexes that correlated with the reduced PSII 
activity (Bhuiyan et al., 2015). Other PSII repair-impaired mutants, 
including the newly characterized mph2 and curt1, displayed 
growth retardation under fluctuating light (Liu and Last, 2017; 
Pribil et  al., 2018). The association of decreased growth with 
impairments in PSII repair suggests that proper maintenance of 
PSII photochemical efficiency represents an important strategy 
to ensure plant fitness under adverse light conditions. Exploring 
the mechanisms of PSII repair in algae and cyanobacteria under 
fluctuating light may offer further insight into the evolution of 
photosynthesis. Moreover, exploiting PSII repair mechanisms could 
be promising targets for bioengineering photosynthesis to increase 
photosynthetic capacity and productivity under controlled 
photoinhibitory light and natural fluctuating light environments.

OPTIMIZING NON-PHOTOCHEMICAL 
QUENCHING TO ENHANCE 
PHOTOSYNTHETIC CAPACITY AND 
GROWTH IN FIELD CONDITIONS

Deeper understanding of NPQ mechanisms should inform strategies 
to optimize the balance between photoprotection and photosynthetic 
productivity. Optimization of photoprotection to improve 
photosynthetic performance is an emerging strategy in agriculture. 
It is generally accepted that the solar energy conversion efficiency 
for crop plants is much lower than the theoretical maximum 
yield (~12%) (reviewed in Walker, 2009; Blankenship et al., 2011). 
One major cause for the low efficiency is that upper leaves of 

a canopy absorb more sunlight than can be used for photochemistry, 
while photosynthesis of lower leaves is limited by shading (reviewed 
in Long et  al., 2015). Altering the pigment content and leaf 
arrangement in the canopy may improve crop yield. A smart 
canopy with even light absorption would have light green vertical 
leaves at the top of the canopy and dark green horizontal leaves 
at the bottom (reviewed in Ort et  al., 2015). Therefore, an 
optimized canopy may achieve higher crop yield.

Another major reason for the lower than the expected maximal 
photosynthetic efficiency in crops (and other plants) is that NPQ 
relaxation lags behind fluctuations in sunlight during sudden 
transitions from high to low light. This happens when passing 
clouds or movement of neighboring leaves/plant species shade 
sunlit leaves. The slow NPQ response could cost up to 30% of 
carbon gain (Zhu et  al., 2004, reviewed in Zhu et  al., 2008), 
suggesting that accelerating NPQ relaxation would be  a strategy 
for increasing photosynthetic productivity. For example, speeding 
up the response to natural shading events by enhancing the 
recovery from photoprotective NPQ in Nicotiana tabaccum markedly 
increased photosynthetic capacity and bulked up leaves, stems, 
and roots, which contributed to a 15% gain in plant biomass 
production in field conditions (Kromdijk et al., 2016). Much more 
rapid NPQ induction in bright light and much faster NPQ 
relaxation following a drop in light intensity enable plants to 
track fluctuations in sunlight more closely, contributing to more 
efficient light energy utilization and carbon fixation. This proof-
of-concept field trial opens the door to enhancing photosynthetic 
performance and productivity in agricultural and natural ecosystems.

CONCLUDING REMARKS AND FUTURE 
PERSPECTIVES

In oxygenic photosynthesis, it is important to (1) safely handle 
excess absorbed light energy that would otherwise cause massive 
ROS production and damage the photosynthetic machinery 
and (2) efficiently convert solar energy into chemical bond 
energy. Tight regulation of these two aspects may contribute 
to an increase in productivity in agriculture and natural 
ecosystems. Understanding the elaborate NPQ mechanisms and 
the robust PSII repair systems may help identify targets to 
optimize photosynthetic efficiency. This would facilitate 
translational work toward exploring yield potential to sustainably 
meet the global rising demands for food, fuel, and fiber in 
the future climate change. Prior to accomplishing these grand 
goals, multiple outstanding questions await to be  addressed:

 1. Do antenna-based photoprotection and reaction center-based 
repair operate in concert or in parallel to regulate PSII efficiency 
and photosynthetic capacity under photoinhibitory light and 
other environmental stresses? How does evolution of NPQ in 
the oxygenic organisms contribute to that of repair and vice versa?

 2. How do ROS regulate PSII activity under fluctuating light 
environments or field conditions?

 3. Are the molecular mechanisms of PSII repair under changing 
light different or similar to those under high-light irradiance? 
Can photosynthetic species discern PSII damage caused by 
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these two types of light conditions and initiate distinct 
repair strategies?
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