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Drought stress can cause huge crop production losses. Drought resistance consists
of complex traits, and is regulated by arrays of unclear networks at the molecular
level. A stress-responsive NAC transcription factor gene SNAC1 has been reported
for its function in the positive regulation of drought resistance in rice, and several
downstream SNAC1 targets have been identified. However, a complete regulatory
network mediated by SNAC1 in drought response remains unknown. In this study,
we performed Chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA-Seq of
SNAC1-overexpression transgenic rice (SNAC1-OE) lines and wild-type under normal
and moderate drought stress conditions, to identify all SNAC1 target genes at a
genome-wide scale by RNA-Seq analyses. We detected 980 differentially expressed
genes (DEGs) in the SNAC1-OE lines compared to the wild-type control under
drought stress conditions. By ChIP-Seq analyses, we identified 4,339 SNAC1-binding
genes under drought stress conditions (SNAC1BGDs). By combining the DEGs and
SNAC1BGDs, we identified 93 SNAC1-targeted genes involved in drought responses
(SNAC1TGDs). Most SNAC1TGDs are involved in transcriptional regulation, response to
water loss, and other processes related to stress responses. Moreover, the major motifs
in the SNAC1BGDs promoters include a NAC recognition sequence (NACRS) and an
ABA responsive element (ABRE). SNAC1-OE lines are more sensitive to ABA than wild-
type. SNAC1 can bind to the OsbZIP23 promoter, an important ABA signaling regulator,
and positively regulate the expression of several ABA signaling genes.

Keywords: SNAC1, stress response, transcriptional regulation, ChIP-Seq, RNA-Seq

INTRODUCTION

Sessile plants unavoidably encounter diverse environmental stresses during their growth and
development. Among the adverse stresses, water deficit, or drought can cause huge yield loss or even
loss of the entire crop harvest. It has been a long-lasting goal to completely unveil the mechanisms
of drought response and to develop new tools for drought resistance improvement in stable food
crops such as rice (Hu and Xiong, 2014), since irrigated rice, which is more sensitive to water deficit
than upland crops, frequently suffers from drought stress in the rice planting regions worldwide
(Hussain and Mumtaz, 2014).

Plants respond to drought stress through a series of known (such as abscisic acid
[ABA]-dependent) and unknown signaling pathways, which ultimately lead to morphological,
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physiological, and biochemical changes to adapt to the drought
conditions (Xiong et al., 2002). Transduction of the drought
stress signal activates diverse regulatory proteins and modulates
expression changes of numerous stress-responsive genes to
enable plant survival. Among the regulatory proteins, many
transcription factors (TFs) belonging to diverse families play
important roles in drought resistance, through directly or
indirectly regulating the expression of downstream genes under
drought stress conditions, through feedback regulation of
the upstream stress signaling, and/or interacting with other
regulatory proteins to form a complex network (Xiong et al.,
2002; Hirayama and Shinozaki, 2010; Santos et al., 2011; Song
et al., 2016; Samad et al., 2017).

NAC (NAM, ATAF1/2, and CUC2) transcription factors
comprise one of the largest TF families, which are found only
in plants (Sun et al., 2015). NAC proteins are identified by a
highly conserved DNA binding domain which is termed as the
NAC domain in the N-terminal region, whereas the transcription
regulatory region in the C-terminal domain in NAC proteins is
usually diversified both in length and amino acid composition
(Souer et al., 1996; Aida et al., 1997). The NAC transcription
factor family has been systematically identified or annotated
in many plants including rice, which contains 151 members
(Nuruzzaman et al., 2010). NAC genes have been implicated in
organ development, secondary wall synthesis, senescence, iron
homeostasis, pathogen defenses, and abiotic stress responses
(Takada et al., 2001; Guo and Gan, 2006; Kim et al., 2006;
Uauy et al., 2006; Zhong et al., 2006; Puranik et al., 2012).
The consensus NAC recognition site (NACRS) CGT(G/A) and
core DNA binding sequence (CDBS) CACG were first identified
in the promoter of EARLY RESPONSIVE TO DEHYDRATION
1 (ERD1) in Arabidopsis (Tran et al., 2004). The recognition
sequence for NACs might be conserved in plants, since quite
a few NACs can bind to this NACRS (Jensen et al., 2010;
Sakuraba et al., 2015; Bhattacharjee et al., 2017; Fan et al.,
2018). Meanwhile, several stress-related cis-elements such as
ABRE (ABA responsive element), DRE (dehydration responsive
element), salicylic acid responsive element, and jasmonic acid
responsive element were also identified in the promoters of many
stress-responsive NAC genes (Nakashima et al., 2012). These
stress-related cis-elements are involved in the regulation of NAC
genes under stress conditions.

Various stress-responsive NAC genes have been explored
for engineering plants with improved drought resistance (Hu
and Xiong, 2014). ANAC019, ANAC055, and ANAC072, which
were induced by drought, salt, and ABA, conferred drought
tolerance in transgenic Arabidopsis (Tran et al., 2004). SNAC1-
OE rice exhibited better performance under drought and salt
stress conditions at the vegetative stage, and the transgenic
plants exhibited greater seed production under drought stress
conditions at the reproductive stage (Hu et al., 2006). Genotyping
of the SNAC1 promoter in rice germplasm revealed four
haplotypes, and the C1 haplotype confers stronger gene induction
and showed better drought resistance than other haplotypes
under field drought conditions (Songyikhangsuthor et al., 2014).
SNAC2, a homolog of SNAC1, is responsive to various stresses and
SNAC2 overexpressing rice exhibited increased cold tolerance

and ABA sensitivity (Hu et al., 2008). Overexpression of
SNAC3, which is also responsive to diverse stresses, confers
increased resistance to both heat and drought stress, mainly
through regulating genes for detoxification of reactive oxygen
species (ROS) in rice (Fang et al., 2015). Overexpression of
OsNAC10 and OsNAC5, which were driven by a root-specific
promoter RCc3, enlarged the root diameter in rice, and therefore
conferred increased drought resistance and produced more
grains under field drought conditions (Jeong et al., 2010, 2013).
Overexpression of some NAC genes from one species in another
species may also improve drought tolerance. For example,
overexpression of SNAC1 in wheat (Saad et al., 2013) and cotton
(Liu et al., 2014) resulted in increased drought tolerance. A rose
NAC geneRhNAC3, which was induced by dehydration and ABA,
confers drought tolerance in transgenic Arabidopsis through
osmotic adjustment regulation (Jiang et al., 2014).

Despite numerous reports on the identification and functional
analysis of NAC genes, very few NACs have been thoroughly
characterized for their direct target genes. Previously, we
examined the differentially expressed genes in transgenic rice
overexpressing SNAC1 by microarray analysis (Hu et al., 2006),
and two genes, OsSRO1c and OsPP18, were confirmed to
be directly regulated by SNAC1 (You et al., 2013, 2014b).
However, because of the technical limitation of the microarray,
a complete scenario of the genes directly regulated by SNAC1
remains unclear. In this study, we performed Chromatin
immunoprecipitation sequencing (ChIP-Seq) and RNA-Seq to
identify SNAC1 target genes at a genome-wide scale. We analyzed
the ChIP-Seq and RNA-Seq profiles of SNAC1-OE rice and wild-
type (WT) under normal and drought stress conditions. We
identified 93 SNAC1-targeted genes related to drought resistance.
Most of these genes are involved in transcriptional regulation,
response to water loss, and other stress processes. We found that
SNAC1 can bind to the OsbZIP23 promoter, a key ABA signaling
regulator (Xiang et al., 2008; Zong et al., 2016). Characterization
of the SNAC1-targeted genes will provide insights into the
molecular mechanism of drought response and new candidates
for engineering drought resistance.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
The rice variety Zhonghua 11 (ZH11) and Nipponbare were
used in this research. ZH11 was the transgenic receptor and
used as the WT control for stress treatments, RNA-Seq, and
ChIP-Seq. The full SNAC1 coding sequence (LOC_Os03g60080)
and the OsbZIP23 promoter sequence (LOC_Os07g15770) were
amplified from the total Nipponbare cDNA. The amplified
SNAC1 coding sequence was cloned into pCAMBIA1301U which
was driven by a maize ubiquitin promoter with the primer set
SNAC1-1301F/R (Supplementary Table S1). The construct was
transformed into ZH11 by Agrobacterium (EH105)-mediated
transformation (Hiei and Komari, 2008). The transgenic and
WT seeds were sprouted on half-strength MS medium in
the dark for 2–3 days at 28◦C, and then 4–5 days in the
greenhouse. The seedlings were then moved to pots or a
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paddy field with sand/paddy (1:3) soil under natural conditions
at Wuhan, China.

Drought Stress Treatment and ABA
Treatment at the Seedling Stage
After germination, the 1-week-old seedlings that were of uniform
growth status were moved to pots filled with sandy soil. The
three independent transgenic lines (OE-14, OE-19, and OE-25)
and ZH11 control plants were grown in a half-and-half manner
(15 plants each) in the pots. At the 4-leaf stage, the seedlings
were subjected to drought stress treatment by stopping water
for 10 days until the relative soil water content reached 8–10%
and kept for 2–3 days until the leaves were dehydrated and
turned yellow. Then, the seedlings were recovered with sufficient
water for 5–7 days. The experiment was repeated three times
independently, and the final survival rate was determined as the
average percentage of recovered seedlings of the total planted of
the three replicates.

For ABA sensitivity test, the germinated seeds of the same
materials used in the drought treatment were moved to half-
strength MS medium containing 3 µmol/L ABA or equal volume
of alcohol (as normal condition) and grown for 10 days. Then,
the phenotype was recorded and the seedling shoot lengths were
measured. For ABA treatment, 100 µmol/L ABA was sprayed to
4-leaf stage seedlings of OE-19, OE-25, and ZH11. After 1 h, the
seedlings were harvested and used for RNA extraction.

Dual Luciferase Assay in Rice
Protoplasts
The amplified SNAC1 full or partial coding sequences were
cloned into yeast GAL4 binging domain vectors (GAL4BD) as
effectors. Primers used for cloning are listed in Supplementary
Table S1. 35S-GAL4-fLUC was used as a reporter to identify the
transcription regulation activity of the effectors. AtUbi-rLUC, a
Renilla luciferase (rLUC) gene driven by the Arabidopsis thaliana
UBIQUITIN3 promoter was used as an internal control (Hao
et al., 2011). All the constructs were extracted by Qiagen Plasmid
Midi Kit and dissolved with ddH2O to a final concentration
of 1 µg/µl. The effectors, reporters, and the internal control
were co-transformed into the rice protoplasts in a ratio of
6:6:1 according to the reported method (Xie and Yang, 2013).
After culturing 12 h in the dark at 25◦C, the protoplasts
were collected and luciferase activities measured using a Dual-
Luciferase Reporter Assay System Kit (Promega) and a Tecan
Infinite M200 Microplate Reader. The ratio of fLUC to rLUC
activity represents the transcriptional activity of the effectors.

RNA Extraction and Real-Time PCR
Analysis
The total RNAs were extracted from the leaves of SNAC1-OE
lines (OE-19 and OE-25) and ZH11 plants using TRIzol reagent
(InvitrogenTM) according to the manufacturer’s instructions.
Then the RNA (3 µg) was reverse-transcribed using the
EasyScript One-Step gDNA Removal and cDNA Synthesis Kit
(TransGenTM). Subsequently, the reverse transcription product
was diluted ten times with ddH2O and 2 µl was taken as the

template for real-time quantitative PCR (q-PCR). q-PCR was
performed using a QuantStudio 6 Flex Real-Time PCR System
(Applied Biosystems) analyzer and each reaction contained
5 µl 2 × PowerUpTMSYBR Green Master Mix (Applied
BiosystemsTM), 0.2 µM of each gene-specific primer (primer
sequences are listed in Supplementary Table S1). The gene
expression level was calculated using the 2−11CT method based
on three independent replicates and a rice Ubiquitin gene
(LOC_Os03g13170) was used as an internal control.

RNA-Seq and Transcriptome Profiling
Analysis
The total RNAs were extracted from the leaves of SNAC1-OE line
OE-19 and ZH11 plants at the 4-leaf stage with three independent
replicates. The RNA libraries were sequenced by Novogene
(Tianjin, China) with Illumina R© Hiseq X Ten, and we used the
BMKCloud cloud server1 to analyze the raw data which was
mapped to the rice MSU 7.0 reference genome2. Gene expression
levels were measured by the FPKM (Fragments Per Kilobase of
exon model per Million mapped reads) method (Florea et al.,
2013). The criterion of differentially expressed genes (DEGs) was
the log2FC ≥ 1 as well as the false discovery rate (FDR) < 0.05.

Chromatin Immunoprecipitation (ChIP)
Assay and ChIP Sequencing
The ChIP assay was performed according to Bowler et al. (2004)
with some modifications. Briefly, 3 g shoot tissues from 4-leaf
stage seedlings were cross-linked in 1% formaldehyde by vacuum
for 30 min. The chromatin was extracted on ice as described
by Bowler and sheared to 200–500 bp fragments for ChIP-
Seq or 200–1000 bps fragments for ChIP-PCR by sonication.
Subsequently, the DNA fragments were immunoprecipitated
by anti-SNAC1 polyclonal antibody from rabbits prepared by
ABclonal (Wuhan, China). The combined DNAs were eluted,
purified, and dissolved in ddH2O. Primers used in ChIP-qPCR
are listed in Supplementary Table S1.

The materials used for ChIP-Seq were the same as with
RNA-Seq (also with three independent replicates), notably, three
kinds of samples were analyzed by ChIP-Seq, except for OE-
19 plants under drought stress conditions. The ChIP libraries
were sequenced by Novogene (Tianjin, China) and preliminary
analysis of the raw data was performed on the BMKCloud cloud
server as well. We compared the clean data to the rice MSU
7.0 reference genome using bowtie2 (Langmead et al., 2009).
The MACS2 software (Zhang et al., 2008) was used to find the
potential interaction regions between DNA and proteins. The
conserved motifs that SNAC1 can bind to were analyzed by
MEME-ChIP (Machanick and Bailey, 2011).

Statistical Analysis
All experiments were repeated independently three times.
The Student’s t-test and the Least Significant Difference were
calculated using SPSS3.

1http://www.biocloud.net/
2http://rice.plantbiology.msu.edu
3https://www.ibm.com/analytics/spss-statistics-software
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Accession Numbers
The RNA-Seq and ChIP-Seq data in this article were
deposited in the Gene Expression Omnibus under accession
number GSE128495.

RESULTS

SNAC1 Transcriptional Activation Assay
In a previous study, the SNAC1 cDNA isolated from a
cDNA library for overexpression (Hu et al., 2006) actually
encoded a protein with an incomplete C-terminus, which lacked
251–316 AA of the complete reference sequence (SNAC1-
Type40S, Figure 1). Even though the SNAC1-Type40S is
incomplete, it showed strong transactivation activity in yeast,
and overexpression of this form in rice resulted in a significant
increase in drought resistance (Hu et al., 2006). We tested the
transactivation activity of the full-length SNAC1 (SNAC1-FL)
using a dual luciferase assay and found that SNAC1-FL had
stronger transactivation activity than SNAC1-Type40S in rice
protoplasts (Figure 1). A NAC repression domain (NARD),
which has been found in other NACs such as GmNAC20 (Hao
et al., 2010), was also identified in the middle of the SNAC1
protein sequence (the 114–142 AA, Figure 1). We then tested the
effect of the NARD on transactivation activity in rice protoplasts.
To our surprise, the truncated SNAC1 without the NARD
(SNAC1-1NARD) showed weaker activity than the SNAC1-FL
(Figure 1), suggesting that the NARD in SNAC1 may not act

as a repression domain. Besides, deletion of the first 31 AAs
of SNAC1-FL reduced its activity to a level similar to SNAC1-
1NARD, indicating that the SNAC1 N-terminus accounted for
part of the transcriptional activity. In addition, the incomplete
version with deletion of the C-terminal region (lacking the
176–316 AA, SNAC1-1C) showed the least activity among the
vectors tested (Figure 1), suggesting that the SNAC1 C-terminus
was indispensable for maintaining the activity of SNAC1. These
results indicated that the intact SNAC1 coding sequence is
essential for its full activity.

Overexpression of SNAC1-FL Resulted in
Improved Drought Resistance and ABA
Sensitivity
Since overexpression of SNAC1-Type40S in rice variety
Nipponbare resulted in significantly increased drought resistance
(Hu et al., 2006), and SNAC1-FL showed stronger transactivation
activity, we assumed that SNAC1-FL may also confer drought
resistance. To confirm this, we overexpressed SNAC1-FL in
rice ZH11, a genotype showing more drought tolerance than
Nipponbare (Guo et al., 2018), and the independent transgenic
lines were tested for drought resistance and ABA sensitivity.
For drought testing at the seedling stage, germinated seeds of
three SNAC1-FL overexpression (SNAC1-OE) lines (OE-14,
OE-19, and OE-25) and ZH11 control were transplanted into
blue barrels filled with a mixture of sand/paddy (1:3) soil.
The SNAC1-OE lines and ZH11 seedlings were subjected to

FIGURE 1 | Full (SNAC1-FL) or partial (SNAC1-1C, SNAC1-1NARD Type 40S, SNAC1-Type 40S, SNAC1-1N1, SNAC1-1NARD) length of the SNAC1 fragments
fused with the firefly luciferase reporter were tested for transactivation activity. The deletions are shown in lines. The left panel in the figure shows the structure of
each vector, and the right panel shows the fLUC/rLUC activity ratio in the protoplasts. The ratio obtained from the transfection of the blank vectors (Blank) was set
arbitrarily as 1. Error bar indicates the standard deviation (SD) of three independent replicates. Different letter(s) beside each column indicates the significant
difference calculated via the Least Significant Difference (LSD) method (α = 0.05).
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FIGURE 2 | SNAC1-OE plant phenotypes under drought stress and ABA
treatment. (A) Drought resistance testing of SNAC1-OE lines. The survival
rates of the SNAC1-OE and ZH11 plants after recovery are expressed as
mean ± SD of three independent replicates. (B) Performance of SNAC1-OE
(OE-19 and OE-25) and ZH11 in half-strength MS medium containing 0
(normal) or 3 µmol/L ABA. The measurement of seedling length after 10 days’
treatment is shown by the histogram. Error bar represents the SD of three
independent replicates. Asterisk(s) in the figure represents the significant
difference (OE versus ZH11) determined by the paired Student’s t-test
(∗∗p < 0.01, ∗0.01 ≤ p < 0.05, ns: p ≥ 0.05).

drought stress treatment at the 4-leaf stage. The water content
of the soil was maintained at 8–10% for 2–3 days, and then
recovered with saturated watering for 7 days. All three SNAC1-
OE lines showed significantly increased drought resistance
compared to ZH11 in terms of survival rate after recovery
(Figure 2A). We then tested the growth performance of two
OE lines (OE-19 and OE-25) on ABA (3 µmol/L) containing
MS medium. The growth of both OE lines was significantly
slower than that of ZH11, while in normal medium without
ABA no difference was observed between the OE lines and
ZH11 (Figure 2B). These results suggested that the full length
SNAC1 also confers drought resistance and ABA sensitivity, with
similar performance to the SNAC1-Type40S overexpression lines
(Hu et al., 2006).

Transcriptome Analyses of SNAC1-FL
Overexpression Lines
Since SNAC1 confers drought resistance as a transcription factor,
identification of the genes regulated by SNAC1 under drought
stress conditions would help reveal the molecular mechanisms of
drought resistance. For this purpose, we compared the genome-
wide transcript profiles of SNAC1-OE line OE-19 and ZH11 at

the seedling stage under normal and moderate drought stress
conditions by using RNA-Seq. The FPKM method (Florea et al.,
2013) was used to evaluate the relative gene expression level, and
a threshold of twofold change (log2FC > 1) between samples
with FDR between repeats less than 0.05 was used to claim
differentially expressed genes (DEGs). Using these criteria, a
total of 6698 and 6645 MSU 7.0 annotated DEGs were called
in OE-19 and ZH11, respectively, in response to drought stress
treatment. In the OE-19 line, 2641 and 4057 genes were up and
down-regulated, respectively, while in the ZH11, 2653 and 3992
genes were up and down-regulated, respectively (Figure 3A).
To identify drought-regulated genes that were also regulated by
SNAC1, we selected 980 candidate genes, whose log2FC value
in each sample varied more than 0.5, from all 5874 overlapping
DEGs. These 980 genes were considered as the SNAC1-regulated
genes under drought stress conditions (SRGDs, Figure 3B and
Supplementary Table S2). To evaluate the reliability of the RNA-
Seq data, 15 DEGs were randomly chosen for qPCR analyses,
and the results showed that the relative expression levels of these
genes examined by q-PCR and RNA-Seq were highly correlated
(Supplementary Figure S1).

To further elucidate the putative function of the SRGDs,
we performed a gene ontology (GO) enrichment analysis on
these 980 genes. As is shown in Figure 3C, several biological
processes in relation to stress response were enriched, whereas
most enriched terms contained more down-regulated genes than
up-regulated genes. Although we characterized SNAC1 as a
transcription activator, the result was still acceptable since there
were more drought down-regulated genes than up-regulated
genes in both group (3562 versus 2313, Figure 3A). We
then focused on two GO terms related to water regulation,
and among the 85 enriched genes, several reported drought
responsive genes were observed. For example, drought resistance
contributing genes OsNAC10 (LOC_OS11g03300) (Jeong et al.,
2010), OsCIPK15 (LOC_OS11g02240) (Xiang et al., 2007), and
OsRCI2-5 (LOC_OS03g17790) (Li et al., 2014) were found in the
up-regulated genes and drought resistance negative-regulating
NAC transcription factor gene OMTN6 (LOC_OS08g10080)
(Fang et al., 2014) was involved in the down regulated genes. The
transcriptional altering of such crucial drought responsive genes
in the SNAC1-OE line indicated the status of SNAC1 in drought
response regulation.

To find a possible biological link between the DEGs and the
increased drought resistance and ABA sensitivity in the SNAC1-
OE rice, KEGG (Kyoto Encyclopedia of Genes and Genomes)
annotation and enrichment were conducted for the SRGDs.
The results indicated that the SRGDs were enriched in several
metabolism pathways, which may contribute to the maintenance
of cell function under drought stress conditions (Figure 3D).
Notably, many auxin responsive genes were enriched in “Plant
hormone signaling transduction”, and some of theseOsIAA genes
were also reported as ABA responsive genes and participated
in drought response and the crosstalk between ABA and IAA
signaling (Song et al., 2009; Zhao et al., 2015; Wang M. et al.,
2018). These results suggested that SNAC1 may play a role in the
regulation of ABA-IAA signal interaction, and partially explained
the ABA hyper-sensitivity of SNAC1-OE seedlings.
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FIGURE 3 | Transcriptome profiling of SNAC1-OE (OE-19) plants. (A) Numbers of drought-responsive DEGs in the ZH11 and OE-19 plants. (B) Heatmap showing
the expression pattern of the 980 SRDGs in the OE-19 and ZH11 plants in response to drought. (C) Top 10 significantly enriched GO biological processes of the
SRDGs. Red and blue dots indicate up-regulated DEGs and down-regulated DEGs enriched in the term respectively, and a z-score indicated in the inner quadrangle

(Continued)
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FIGURE 3 | Continued
represents the overall log2FC trends of the DEGs within the enriched term. Proportion of the inner quadrangle is in accordance with the –log10(p-value),
demonstrating the significance of the enrichment. Genes involve in the GO term “response to water deprivation” and “water transport” are shown in the circular plot
(right). The log2FC of each gene in OE-19 plants in response to the drought stress condition is marked by a colored rectangle. Genes mentioned in the article are
highlighted in bold. (D) KEGG pathway enrichment of the SRDGs. Genes involved in “MAPK signaling pathway” and “Plant hormone signal transduction” are
exhibited with a circular network plot (right). All DEGs were determined by the threshold of log2FC > 1 and p-adjust < 0.05 with three independent replicates.

Genome-Wide Identification of
SNAC1-Binding Sequences
Since SNAC1 is a typical transcription factor with a DNA binding
domain, we tried to identify all the genes with their promoters
potentially bound by SNAC1. For this purpose, a SNAC1-specific
antibody was generated to conduct ChIP-Seq using leaf samples
from OE-19 and ZH11 plants at the seedling stage. The summited
peaks resulting from ChIP-Seq were annotated by correlated
genes and proximal genomic features. We found that more than
75% of the peaks are located in the promoters (−2000 to 0 bp
region in relation to the TSS, Figure 4A), which agrees with the
role of SNAC1 as a DNA-binding transcription factor. This result
also reflected the high quality of the ChIP-Seq data for further
identification of SNAC1-targeted genes.

In Arabidopsis, the NAC recognition sequence (NACRS) with
CACG as a core motif has been identified in the promoters of
several NAC-targeted genes (Fujita et al., 2004), and such NACRS
could be bound by SNAC1 (Hu et al., 2006). We analyzed all
the promoter-located peak sequences from the ChIP-Seq using
MEME-ChIP to identify the enriched motif, and detected the
three most enriched motifs, CACGT, CACGTA, and ACGTGG
in SNAC1-N (OE-19 under normal growth conditions), ZH11-
N (ZH11 under normal growth conditions), and ZH11-D (ZH11
under drought stress conditions), respectively (Figure 4B).
Obviously, both the CACGT and CACGTA motifs contain
CACG, suggesting that the NACRS may be conserved in plants.
Although the most enriched motif in ZH11-D does not contain
a complete CACG, the sequence is highly similar to the motifs
under normal growth conditions. Interestingly, all three enriched
motifs contain ACGT, which is the core motif of ABA responsive
element (ABRE). It is possible that SNAC1 prefers to bind to the
CACG-containing sequences under normal growth conditions,
but under drought stress conditions, it prefers to bind the
ACGTGG motif, which is more closely related to ABA response
and thus regulate ABA-responsive genes.

Identification of SNAC1-Targeted Genes
Under Drought Stress Conditions
According to the genomic locations of the ChIP-Seq peaks, a
total of 5064, 7857, and 4754 genes with peak(s) in the promoter
region were identified in SNAC1-N, ZH11-D, and ZH11-N,
respectively, and 2609 genes were present in all three samples.
To evaluate the reliability of the ChIP-Seq data, we randomly
chose six SNAC1-bound genes and two non-SNAC1-bound genes
for ChIP-qPCR analysis, and the result was consistent with the
ChIP-Seq data (Supplementary Figure S2). In this study, we were
more interested in the SNAC1-bound genes under drought stress
conditions. Therefore, we chose the overlapping genes between
SNAC1-N and ZH11-D, plus the overlapping genes between

ZH11-D and ZH11-N, which resulted in 4339 genes, and these
genes were defined as SNAC1-bound genes involved in drought
stress (SNAC1BGD) (Figure 5A).

Gene ontology analysis of the SNAC1BGD genes revealed
significant enrichment in transcriptional regulation, response
to diverse stresses including water deficit, salinity, cold, and
ABA (Figure 5B). Among these genes, 504 were reported and
could be classified into different categories according to their
putative functions, and the genes involved in stress responses and
developmental regulation were obviously more numerous than
the other categories (Figure 5C and Supplementary Table S3).
Notably, several reported genes functioning in stress tolerance,
such as OsbZIP72 (Lu et al., 2009), COLD1 (Ma et al., 2015),
OsbZIP23 (Zong et al., 2016), and DHS (Wang Z. et al., 2018),
were in the SNAC1BGD.

Next, we combined the 980 SRDGs from the RNA-Seq
analysis with the 4339 SNAC1BGD genes, and found that
only 93 genes were overlapping between these two datasets.
These 93 genes represent the genes that are not only directly
bound by SNAC1 in their promoters, but are also regulated by
SNAC1 under drought stress conditions, and therefore defined as
SNAC1 target genes involved in drought response (SNAC1TGDs)
(Figure 6A and Supplementary Table S4). Among these 93
genes, 55 were up-regulated and 38 were down-regulated by
the drought stress treatment according to the ZH11 RNA-Seq
results (Figure 6B). GO analysis of the SNAC1TGDs revealed
significant enrichment in several abiotic stress related biological
processes such as “response to water deprivation”, “response
to oxygen-containing compound”, and “response to salt/cold
stress” (Figure 6C and Supplementary Table S5). Moreover,
11 out of the top 12 enriched GO terms involved a greater
number of up-regulated genes than down-regulated genes, and
showed strong trends of up-regulation (with z-scores > 1),
suggesting the transcriptional activation character of SNAC1. Of
special note, although most of the GO enriched genes have not
been experimentally characterized, a previously identified SNAC1
targeted gene OsSRO1c (LOC_Os03g12820) was involved in the
“cellular response to oxygen-containing compound” GO term
of SNAC1TGD, and up-regulated by drought stress conditions
(Figure 6D). It has been reported that elevated expression of
OsSRO1c conferred enhanced drought resistance by conducting
the accumulation of cellular H2O2 (You et al., 2014a). These
results emphasized the importance of SNAC1 in H2O2 mediated
drought response regulation.

SNAC1 Positively Regulates ABA
Pathway Genes
The SNAC1-OE transgenic rice plants were hypersensitive to
ABA (Figure 2B), and among the SNAC1BGD, there were several

Frontiers in Plant Science | www.frontiersin.org 7 July 2019 | Volume 10 | Article 982

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00982 July 25, 2019 Time: 15:26 # 8

Li et al. SNAC1 Regulates Drought Response

FIGURE 4 | Genome-wide distribution of SNAC1 binding sites in the rice genome identified by ChIP-Seq. (A) Distribution of SNAC1 binding sites within rice genic
regions in SNAC1-N, ZH11-D, and ZH11-N. (B) Motif enrichment analysis of SNAC1-bound sites. All binding profiles were determined with three independent
replicates.

genes related to ABA signaling such as OsPP2C49 (Zong et al.,
2016), OsNCED3 (Bang et al., 2013), OsbZIP23 (Xiang et al., 2008;
Zong et al., 2016), and OsHOX24 (Bhattacharjee et al., 2016).
Yeast-one-hybrid assay showed that SNAC1 was able to bind
to the OsbZIP23 promoter (Figure 7A). We further examined
whether SNAC1 was involved in the regulation of ABA signaling
related genes. qPCR assay on the 100 µmol/L ABA treated 4-
leaf stage seedlings of the two SNAC1-OE lines (OE-19 and
OE-25) and ZH11 revealed that the relative expression levels of
OsPP2C49, OsHOX24, and OsbZIP23 were significantly greater
in both OE lines than that in the ZH11 control (Figure 7B).
The result suggested that SNAC1 may positively regulate the
expression of these genes in response to ABA.

DISCUSSION

The NAC family are plant specific transcription factors playing
important roles in the regulation of plant development and
stress responses. However, limited studies have been reported
for genome-wide identification of genes regulated by specific

NAC proteins. SNAC1 has been reported as a key drought
resistance regulator in rice (Hu et al., 2006), but the mechanism
remains largely unclear. By combining the ChIP-Seq and RNA-
Seq techniques, we obtained profiles for both the SNAC1-bound
genes and the genes regulated by SNAC1. These data provide
information to further elucidate the molecular mechanisms of
SNAC1 in regulating drought resistance.

SNAC1 Regulates Numerous Genes
Related to Stress Responses and
Development
Although SNAC1 is strongly induced by drought stress, it has a
relative high expression level under normal growth conditions
(Hu et al., 2006). Since SNAC1-OE lines showed increased
drought resistance, we were more interested in the genes
that are regulated by SNAC1 under drought stress conditions.
Among these genes, more than 30% have been annotated
with putative functions involved in response to diverse stresses
or phytohormones. Notably, there are several enriched GO
categories related to stress tolerance. For example, OsJAZ7 and
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FIGURE 5 | ChIP-Seq analysis of putative SNAC1-binding sites (genes). (A) Overlapping numbers of SNAC1-binding genes among the three samples: SNAC1-N,
ZH11-D, and ZH11-N. The numbers in red triangle collectively represent the putative SNAC1-binding genes involved in drought response (SNAC1BGDs). (B) GO
enrichment analysis on SNAC1BGDs. Top 10 significantly enriched GO terms in the biological processes category are shown. (C) SNAC1BGDs with known
functions in various cellular processes and responses.

OsJAZ12, which belong to the OsTIFY family, are enriched in the
SNAC1BGD and are annotated in “responses to abiotic stimulus”
(GO:0009628). Both OsJAZ7 and OsJAZ12 contain the Jas motif
and were actually induced by JA, suggesting their functions in
promoting plant defense against abiotic stresses (Ye et al., 2009;
Verma et al., 2016). OsDREB1B and OsPYL, well-known genes
related to abiotic stress and ABA response, were detected in

“response to stress” (GO:0006950). OsDREB1B was induced not
only by low temperature, but also by drought and mechanical
stress, and overexpression of OsDREB1B in tobacco showed
improved water retention and stress tolerance (Dubouzet et al.,
2003; Gutha and Reddy, 2008; Figueiredo et al., 2012). OsPYL,
a rice homolog of PYL that encodes an ABA receptor in
Arabidopsis, has been considered as an important gene for
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FIGURE 6 | Continued
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FIGURE 6 | Characterization of the 93 SNAC1TGDs. (A) Overlapped number of genes between the 4339 SNAC1BGDs from ChIP-Seq analysis and the 980 SRDGs
from RNA-Seq analysis. (B) Expression patterns of the SNAC1TGDs in ZH11 in response to drought stress. (C) First 12 GO enrichments in the biological process
category of the SNAC1TGDs. (D) Circular plot exhibiting genes involved in stress response related GO terms enriched in (C).

FIGURE 7 | SNAC1 function may partially depend on the ABA signaling pathway. (A) Yeast-one-hybrid assays indicate the direct interaction between SNAC1 and
the OsbZIP23 promoter. CK–, negative control; CK+, positive control. (B) The expression level of SNAC1, OsPP2C49, OsbZIP23, and OsHOX24 in the SNAC1-OE
lines OE-19 and OE-25 and ZH11 treated with 100 µmol/L ABA for 1 h at the seedling stage. Error bar indicates the SD of three independent replicates. Asterisks
indicate the significant difference (OE versus ZH11) in the ddCt values used to calculate the relative expression levels (∗∗p < 0.01, by Student’s t-test).

regulating ABA-dependent gene expression in rice (Kim et al.,
2012, 2014). The improved drought resistance of the SNAC1-OE
rice might be the result of the integrated effect of these genes.

Despite the genome-wide identification of SNAC1-regulated
genes, we aimed to discover the genes that are directly regulated
by SNAC1 under drought stress conditions. The results suggest
that, among the 4339 SNAC1BGD genes, there are also numerous
genes related to stress responses and phytohormone signaling.
Although some of the SNAC1BGD genes were actually regulated
by SNAC1 at the transcript level, some SNAC1BGD genes showed
no significant changes in transcript level under drought stress
conditions. We assume that other transcription factors may be
required to jointly regulate the expression of these genes. We
noticed that some drought resistance-related regulatory genes
were up-regulated by SNAC1, such as ONAC095 (Huang et al.,
2016), ARAG1 (Zhao et al., 2010), OsbZIP23 (Zong et al., 2016),
OsSKIPa (Hou et al., 2009), OsMYB55 (El-Kereamy et al., 2012),
and OsMYC2 (Cai et al., 2014). This may partially explain
that there are numerous genes that are not directly bound
by SNAC1 but can also be regulated though SNAC1-targeted
transcription factors.

In addition to the stress-related genes, some of the
SNAC1BGD genes have been reported or annotated with

putative functions in development. For example, OsMADS6
directly targets FACTOR OF DNA METHYLATION LIKE 1
(OsFDML1) and controls flower development (Tao et al., 2018).
OsDOS is down-regulated during natural leaf senescence, panicle
development, and pollination, and it delays leaf senescence by
partly integrating developmental cues to the JA pathway (Kong
et al., 2006). HOX12 is predominantly expressed in panicles
and plays an important role in panicle exertion from the flag
leaf sheath in rice (Gao et al., 2016). Therefore, SNAC1 may
also function in developmental processes through the regulation
of these genes. We generated a SNAC1-knockout mutant,
and the mutant showed abnormal morphology and defects in
spikelet fertility, further confirming that SNAC1 is involved in
development regulation.

SNAC1 Participates in Regulation of
ABA-Dependent Pathways
ChIP-Seq results suggest that SNAC1 could bind not only to
the NACRS, which was first identified in Arabidopsis (Tran
et al., 2004) and confirmed as a NAC-binding site in other
species such as Brassica napus (Yan et al., 2018) and rice
(Sun et al., 2012), but also to the ABRE-like elements especially
under drought stress conditions (Figure 4B). The relevance of
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the NAC transcription factor to ABRE has also been reported
in other species. For example, a wheat NAC transcription factor
TaNAC47 was reported with ABRE-binding activity in yeast
(Zhang et al., 2015). In the RD29A promoter, a marker gene for
drought-response in Arabidopsis, an ABRE is located between
two NACRS and the two types of cis-elements can be bound
by ABF2/4 and ANAC096, respectively, to jointly regulate ABA-
responsive genes involved in dehydration and osmotic stress
tolerance (Xu et al., 2013).

The binding of ABRE-like elements by SNAC1 suggested that
SNAC1 may regulate drought resistance partially through ABA-
dependent pathways. In fact, several important ABA signaling
genes such as OsbZIP23 and OsPP2C49 were up-regulated in the
SNAC1-OE rice (Figure 7), and numerous ABA-responsive genes
were differentially expressed in the overexpression rice under
drought conditions (Supplementary Table S4). Interestingly, our
previous study suggested that OsbZIP23, a key transcription
factor mediating ABA signaling, could bind to the SNAC1
promoter and activate its expression (Zong et al., 2016). These
results imply that OsbZIP23 and SNAC1 can directly regulate
each other to amplify the ABA signaling. Since SNAC1 can
regulate ABA signaling, it is not surprising to see the phenotype
that the SNAC1-OE rice showed increased ABA sensitivity
(Figure 2B). Considering the important roles of OsbZIP23 and
SNAC1 in drought resistance, and the direct regulation by each
other, it is promising to engineer these genes simultaneously
using suitable promoters to improve drought resistance in crops.
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