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Grain yield and stay-green drought adaptation trait are important targets of selection
in grain sorghum breeding for broad adaptation to a range of environments.
Genomic prediction for these traits may be enhanced by joint multi-trait analysis.
The objectives of this study were to assess the capacity of multi-trait models to
improve genomic prediction of parental breeding values for grain yield and stay-green
in sorghum by using information from correlated auxiliary traits, and to determine
the combinations of traits that optimize predictive results in specific scenarios.
The dataset included phenotypic performance of 2645 testcross hybrids across 26
environments as well as genomic and pedigree information on their female parental
lines. The traits considered were grain yield (GY), stay-green (SG), plant height (PH),
and flowering time (FT). We evaluated the improvement in predictive performance
of multi-trait G-BLUP models relative to single-trait G-BLUP. The use of a blended
kinship matrix exploiting pedigree and genomic information was also explored to
optimize multi-trait predictions. Predictive ability for GY increased up to 16% when
PH information on the training population was exploited through multi-trait genomic
analysis. For SG prediction, full advantage from multi-trait G-BLUP was obtained
only when GY information was also available on the predicted lines per se, with
predictive ability improvements of up to 19%. Predictive ability, unbiasedness and
accuracy of predictions from conventional multi-trait G-BLUP were further optimized
by using a combined pedigree-genomic relationship matrix. Results of this study
suggest that multi-trait genomic evaluation combining routinely measured traits may
be used to improve prediction of crop productivity and drought adaptability in
grain sorghum.

Keywords: genomic prediction, multi-trait analysis, sorghum, auxiliary trait, grain yield, stay-green, blended
kinship matrix, BLUP
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INTRODUCTION

Water scarcity in rain-fed cropping systems is a major challenge
to a world of increasing food demand (UNCTAD, 2011). In
this context, grain sorghum (Sorghum bicolor L. Moench) is
a cereal crop that can play an important role for sustainable
farming, as it is particularly resilient to stress conditions caused
by drought and erratic rainfall (Paterson et al., 2009). This
crop is a staple food in semi-arid regions of the world and
is used for feed globally (Acquaah, 2012). Grain yield is the
primary trait in sorghum, as it is a key measure of crop
productivity and profitability of farmers. Another important
trait is stay-green; a complex drought-adaptation mechanism
associated with increased yield in environments where post-
flowering drought occurs frequently (Borrell et al., 2000; Jordan
et al., 2003). Accordingly, most efforts for increasing genetic
progress in grain sorghum should concern both characteristics
(Jordan et al., 2012; Borrell et al., 2014). Further improvement in
productivity and drought adaptability requires knowledge-based
selection strategies that efficiently exploit available phenotypic
and genotypic information in sorghum breeding programs.

Selection of complex quantitative traits can be based on
statistical methods that combine phenotypes and high-density
marker data to predict genetic merit. This form of marker-
assisted selection, known as genomic selection (Meuwissen et al.,
2001), has been successfully implemented in animal and plant
breeding (Meuwissen et al., 2016; Crossa et al., 2017). Several
genomic prediction methods have been developed, including
Bayesian regression (Gianola et al., 2009) and semiparametric
approaches (de los Campos et al., 2010). An alternative method
for genomic prediction within the linear mixed model framework
is termed genomic best linear unbiased prediction or G-BLUP
(VanRaden, 2008). This method is usually preferred in practice
because it is simple to implement and computationally less
demanding than competing procedures (Gianola et al., 2014).
Moreover, G-BLUP is expected to perform similar to other
models for prediction of complex agronomic traits such as
grain yield (Heslot et al., 2012; Wimmer et al., 2013), which
are typically affected by a large number of small-effect genes
(Schön et al., 2004). Independent of the model used, one of
the main features of genomic selection is that genetic merit
can be predicted for selection candidates that have not yet
been phenotyped. This application is particularly promising
for reducing evaluation cost and generation interval in the
sorghum breeding pipeline, where parental lines of commercial
hybrids are currently selected on the base of extensive field
progeny testing. Moreover, development of female lines as well
as hybrid seed production is based on the use of cytoplasmic-
genetic male sterility, which requires extra time and human
resources. Despite the potential of genomic selection to increase
rates of genetic gain in sorghum, studies on the application of
genomic models are limited compared to other cereal crops,
such as maize, wheat, and rice (Kulwal, 2016). A first genomic
selection study in grain sorghum was reported by Hunt et al.
(2018) for prediction of test-cross performance in individual
trials. Velazco et al. (2019) investigated different genomic
models including pedigree information for across-environment

prediction of parental breeding values in productivity and
adaptability traits.

Most of genomic selection studies, including the ones
mentioned above, have been based on separate analysis of
individual traits. However, selection decisions in plant breeding
programs typically rely on several measured characters. The
joint analysis of multiple traits (MT) can increase the accuracy
of genetic evaluations relative to single-trait (ST) analysis by
exploiting information from correlated characters (Henderson
and Quaas, 1976). The potential gain in accuracy depends on
the strength of genetic and environmental correlations between
traits. The benefit is expected to increase for lowly heritable
traits, when analyzed together with strongly correlated traits of
higher heritability (Thompson and Meyer, 1986). Additionally,
MT models are able to reduce selection bias or culling bias
introduced by contemporary or sequential selection on correlated
traits, which are ignored by ST analysis (Mrode, 2005). The
extension of MT analysis into the context of genomic prediction
methods has been studied using real and simulated data (e.g.,
Calus and Veerkamp, 2011; Jia and Jannink, 2012). MT genomic
models can be used to combine information from correlated
traits and from relatives in an efficient way. When the breeder
is interested in response to selection of a single target trait,
other secondary or auxiliary traits can be incorporated in the
prediction model to provide additional information on the
primary character. Consequently, more phenotypes recorded on
the reference population can be potentially exploited to assist
predictions of the target trait in the testing population.

Genome-based MT analysis has been applied for breeding in
hybrid crops of other major cereals like maize, rice and wheat
(e.g., dos Santos et al., 2016; Wang et al., 2017; Schulthess
et al., 2018). In sorghum, MT genomic prediction has been
implemented only in biomass-type genotypes using a pre-
breeding population (Fernandes et al., 2018). Here, we present
a first study on the potential of exploiting trait associations
for genomic prediction in advanced breeding material of grain
sorghum. Our research is developed in the context of prediction
for broad adaptation using testcross performance data across
dryland sorghum production environments in Australia.

The aims of this study were to investigate if multi-trait
analysis improves across-environment genomic predictions for
grain yield and stay-green in sorghum, and to identify the
combinations of traits that optimize results in different prediction
scenarios. To attain these objectives, the optimal combination of
traits was empirically determined for each scenario by evaluating
the gain in prediction quality of alternative MT models relative
to the ST model. In addition, we explored if the performance of
best-predictive MT genomic models can be further enhanced by
incorporating pedigree information.

MATERIALS AND METHODS

Data
The dataset used in this study is part of the sorghum breeding
program of female parental lines conducted by the University
of Queensland and the Department of Agriculture and Fisheries
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in Queensland, Australia. The phenotypic records consisted of
26 testcross performance trials where a total of 646 female
lines were tested in hybrid combinations across 12 locations
between 2008 and 2014. Phenotypes of 2645 testcross hybrids
were used to assess female lines performance across a target
population of environments (TPE) covering the main sorghum
cropping region of Australia. The series of trials belongs to
an advanced stage of yield testing (AYT), where measurements
are taken from relatively large plots. More details on field
layout and structure of the dataset are given in Velazco
et al. (2019). Four productivity and adaptability traits routinely
measured in advanced testing were considered for this study:
grain yield (GY), stay-green (SG), plant height (PH), and
flowering time (FT). GY is the main target trait with direct
economic value driving selection. SG is an integrated drought-
adaptation trait that is expressed as delayed leaf senescence,
which is a consequence of improved water balance in the
plant under post-flowering drought stress (Borrell et al., 2014).
This functional SG phenotype is also considered an important
trait since it is associated with enhanced crop productivity in
water-limited seasons (Jordan et al., 2003, 2012). Given that
SG expression depends on the occurrence of terminal drought
conditions, records of this trait were available at nine trials
and for 603 lines in the present dataset. While PH and FT
are mainly selected in earlier breeding stages to reduce extreme
variation, these traits are considered in advanced testing to
ensure appropriate agronomic type for commercial production
(Jordan et al., 2011).

All the female lines were genotyped using an integrated DArT
and genotyping-by-sequencing (GBS) methodology involving
complexity reduction of the genomic DNA to remove repetitive
sequences using methylation sensitive restriction enzymes
prior to sequencing on Next Generation sequencing platforms
(DArT)1. The sequence data generated were then aligned to the
most recent version (v3.1.1) of the sorghum reference genome
sequence (Paterson et al., 2009; McCormick et al., 2018) to
identify SNP (Single Nucleotide Polymorphism) markers. SNPs
with minor allele frequency lower than 2.5% or more than 20% of
missing values were discarded. Missing genotypes were imputed
based on random sampling from marginal allele distributions
using the synbreed package (Wimmer et al., 2012) in R (R Core
Team, 2018). After quality filtering, 4781 evenly spaced SNPs
remained for analysis.

Inbred parent lines were derived from pedigree breeding
methods resulting in a highly structured breeding population.
Pedigree data was available for the female lines and 499 ancestors
tracing back 28 generations.

Single-Trait Analysis
Univariate analysis of each trait was performed within the
REML-based mixed model framework using a stage-wise
approach. In the first stage, adjusted testcross means were
computed per trial after correcting for design factors and
spatial field variation. For this, we used a novel flexible method
for spatial analysis of individual trials based on P-splines

1http://www.diversityarrays.com

(see Velazco et al., 2017; Rodríguez-Álvarez et al., 2018b; for
details). The specific model applied in the first stage is
described in Velazco et al. (2019).

In the second stage, spatially adjusted testcross means from
each trial were jointly analyzed to estimate line means across
testers and environments. The model is as follows:

yijk = µ + Li + Mj + Ek + LMij + LEik + MEjk + LMEijk,

(1)

where yijk represents the best linear unbiased estimation (BLUE)
of the i-th female line crossed with the j-th male tester in the
k-th environment, which was fitted by a random line effect
(Li), a fixed male tester effect (Mj), a fixed environmental
effect (Ek), and all possible interactions between these factors.
Since line effects were considered random, all the interactions
involving Li were random, while MEjk was fixed. Note that
LMEijk includes the error of genotype mean. All random
effects were assumed independent homoscedastic and normally
distributed with zero mean.

Due to shrinkage properties of BLUP (Robinson, 1991),
random line effects are contracted toward the mean of
the line population. Given that not all lines were crossed
with the same number of testers or evaluated in the same
number of trials, the amount of shrinkage is different for
each BLUP of Li. Moreover, using BLUP(Li) as response
variable in the genomic prediction model is problematic
because it would result in double shrinkage of predicted
breeding values. Therefore, to eliminate shrinkage in line
BLUPs before the genomic prediction stage, we applied the
deregression procedure of Garrick et al. (2009). This correction
relies on individual reliabilities of BLUP(Li), as obtained by
inverting the coefficient matrix of the mixed model equation
(Meyer, 1989).

The following G-BLUP model was used to predict parental
breeding values of female lines from progeny performance:

y = 1µ + Zg + e, (2)

where the vector y contains deregressed BLUPs of Li derived
from the second stage; 1 is a vector of ones with associated
general mean µ; Z is a design matrix allocating deregressed
BLUP(Li) to genomic effects; g is the vector of additive genomic
effects with distribution g ∼ N(0, Gσ2

g), where σ2
g is the additive

genomic variance and G is the genomic relationship matrix
as computed with the first method of VanRaden (2008); and
e is the vector of residuals assuming e ∼ N(0, Dσ2

e), where
σ2

e is the residual variance and D is a diagonal weighting
matrix accounting for heterogeneous residual variances due to
differences in individual reliabilities of deregressed BLUP(Li)
(VanRaden, 2008; Garrick et al., 2009).

Given the variance components from the ST prediction
model, the narrow-sense heritabilities (h2) of line means
were obtained as: h2

= σ2
g/

(
σ2

g + σ2
e

)
. Note that σ2

e comprises
non-additive genetic effects and true errors associated with
line mean estimates.
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Multi-Trait Analysis
For joint MT analysis models (1) and (2) were extended using
multivariate mixed models. We present a general formulation for
any combination among traits T = (GY, SG, PH, FT). The multi-
trait case of model (1) can be represented in vector notation as:

yijk = µ + Li + Mj + Ek + LMij + LEik + MEjk + LMEijk,

(3)

where in this case yijk is a vector collecting spatially adjusted
BLUEs of multiple traits T from separate univariate analyses in
stage one; and Li, LMij, LEik, LMEijk are the vectors of multi-
trait random effects with respective assumed distributions Li
∼ MVN(0, IL ⊗ 6L), LMij ∼ MVN(0, ILM ⊗ 6LM), LEik ∼

MVN(0, ILE ⊗ 6LE), LMEijk ∼ MVN(0, ILME ⊗ 6LME), where
6q, for q = L, LM, LE, LME, is a covariance matrix among
traits and ⊗ is the Kronecker product operator. For all random
effects, the matrix 6q was modeled as unstructured, allowing for
unequal variances across traits and specific covariances for each
pair of traits.

The multi-trait G-BLUP model was defined as:

yT = 1TµT + ZTgT + eT,

where the subscript refers to traits T; yT is now a multi-trait
vector of deregressed BLUP(Li), ordered as lines within traits,
obtained from joint multivariate analysis using model (3); gT is
the vector of multi-trait additive genomic effects with distribution
gT ∼ MVN(0, G⊗ 6g); and the multivariate residual effects
were assumed eT ∼ MVN[0, (Ie ⊗ 6e)DT], where matrix DT
has diagonal elements containing weights based on individual
reliabilities of deregressed BLUP(Li) for each trait, as obtained
from the second stage of multi-trait analysis (model 3). The
covariance matrices among traits for additive genomic effects
(6g) and residuals effects (6e) were assumed unstructured.

We also considered multi-trait prediction models fitting a
kinship matrix that combines pedigree and genomic information.
For this, we extended the BLUP method advocated by Velazco
et al. (2019) to the multi-trait context. The method, referred as
K-BLUP, uses a combined kinship matrix formed as K = wA +
(1 − w)Gs, where A is the numerator relationship matrix among
lines computed from the full pedigree data and Gs is a scaled
matrix G that is compatible with A in reference to the base
breeding population (Vitezica et al., 2011; Christensen, 2012).
The weighting term w can be interpreted as the fraction of
additive genetic variance that is not captured by SNPs and is
explained by familial relationships. In this case, the vector gT
has distribution MVN(0, K⊗ 6g), and collects additive genomic
effects as well as residual polygenic effects. Under our approach,
the optimal w is empirically determined in order to maximize
predictive ability after evaluating a sequence of candidate weights
within the range 0 < w < 1. To assess the benefits of including
additional pedigree information, the best-predictive multi-trait
model using conventional G-BLUP (i.e., setting w = 0) was
compared to the equivalent optimized multi-trait K-BLUP model.

Model Fitting
Spatial analyses in the first stage were performed with the
R package SpATS (Rodríguez-Álvarez et al., 2018a), which is
publicly available from CRAN2. Uni- and multivariate models
in the second and the genomic prediction stages were fitted by
REML using the average information algorithm as implemented
in ASReml-R (Butler et al., 2017). We used the correlation form
parameterization of the unstructured covariance matrix available
in ASReml-R to obtain direct estimates of trait correlations and
corresponding standard errors.

Prediction Scenarios
To assess the value of multi-trait genomic analysis in sorghum,
we considered the general predictive strategy where a single
trait is the primary target of prediction (selection) and other
auxiliary characters are used to potentially improve predictions
of the target trait. Predictive performance of MT models was
evaluated through fivefold cross-validation, where 80% of lines
were randomly assigned to the training lines set (TLS) and
the remaining 20% formed the validation lines set (VLS). We
explored two potential scenarios for MT prediction (Figure 1).
One scenario assuming that (new) lines in the VLS have not
been evaluated in the field for any trait; therefore, phenotypes
of auxiliary traits (and the target trait) were available only for
the TLS (Aux@TL). A second MT prediction scenario assumes
that lines of the VLS have been evaluated in the field, but for
traits other than the target; therefore, phenotypes of auxiliary
traits were available for both TLS and VLS (Aux@TL + VL).
For comparison, we also considered ST prediction, where only
records of the target trait in VLS are used for prediction.

The first MT prediction scenario was studied for two cases:
when GY or SG were the traits of interest. However, the
Aux@TL + VL scenario was considered only for SG as target
trait. Given that one of the main purposes of the trial series used
in this study is to obtain representative measurements of GY
productivity, the fact that lines are field-tested for other traits,

2https://cran.r-project.org/package=SpATS

FIGURE 1 | Fivefold cross-validation schemes representing three prediction
scenarios: ST, where only data of the target trait in the training lines set (TLS)
are used for prediction in the validation lines set (VLS); Aux@TL, where data of
auxiliary traits in TLS are included for prediction of the target trait in VLS; and
Aux@TL + VL, where data of auxiliary traits in both TLS and VLS are included
for prediction of the target trait in VLS.
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but not for GY, would imply atypical circumstances seriously
affecting GY during an experiment. Moreover, extremely reduced
or aborted grain production affects normal canopy development;
hence, data of traits such as PH or SG should be discarded
or considered with extreme caution. For these reasons, the
Aux@TL + VL scenario was not considered when GY was
the target of prediction, as it would represent an unrealistic
or exceptional situation in the context of an advanced stage of
sorghum testing.

Validation of Genomic Prediction
In each prediction scenario, the performances of all possible MT
models combining two, three, and the four traits were compared
to that of the ST model, with the latter taken as benchmark.
The response variables used for validation of genomic predictions
were consistent with the models applied for analysis: yT and y
were used to validate g̃T and g̃, respectively. Model validation
was evaluated by considering the predictive ability, unbiasedness,
and accuracy of predictions in the VLS. Predictive ability was
measured as the Pearson’s correlation (rPA) between g̃T (g̃)
and yT (y). Unbiasedness of genomic predictions was measured
by the regression coefficient (b) of yT (y) on g̃T (g̃), where
b = 1 indicates an empirically unbiased predictor. Accuracy
of predictions was assessed by computing the mean squared
error of prediction (MSEP) from the linear regression. The
evaluation of prediction models was based on average values over
20 replicates of each cross-validation scenario using the same
random seed for all models.

RESULTS

The narrow-sense heritability estimates using ST G-BLUP
are given in Table 1 along with the additive genetic and
residual correlations between traits estimated by MT G-BLUP.
Heritability estimates ranged from 0.36 to 0.76, with GY
presenting the lowest h2. The heritability of SG was higher than
that of GY, but lower than those of PH and FT. Additive genetic
correlations were significant only for GY with SG and PH, while
FT was statistically uncorrelated with the other traits. Significant
residual correlations were estimated between GY and the rest of
the traits as well as between PH and FT.

Figure 2 shows measures of predictive performance from MT
G-BLUP when additional information from auxiliary traits in

TABLE 1 | Heritabilities (diagonal; in parentheses), additive genetic (above
diagonal), and residual (below diagonal) correlationsa for grain yield (GY),
stay-green (SG), plant height (PH), and flowering time (FT).

Trait GY SG PH FT

GY (0.36) 0.52 0.66 −0.01

SG 0.36 (0.50) 0.03 −0.02

PH 0.71 0.04 (0.76) −0.07

FT −0.48 0.04 −0.29 (0.65)

aBoldfaced correlations are significant based on approximate 95% confidence
interval (Holland, 2006).

the TLS was used to predict GY or SG (Aux@TL scenario). MT
models that included PH data alone or combined with other
auxiliary traits increased predictive ability for GY, compared with
the ST model. The highest predictive ability represented a 16%
increase and it was achieved by combining GY, SG and PH
information. Regression coefficients (b) for all models were below
1 for GY, which indicates overestimation of genomic predictions.
The average empirical bias of GY predictions from the ST model
was slightly reduced only by the MT model including PH alone
as auxiliary trait. The relative decrease (%) in MSEP by MT
models was consistent with their increases in predictive ability;
MT G-BLUP exploiting PH information had a greater impact
on improving accuracy of genomic prediction for GY. When
SG was the target of prediction, ST G-BLUP outperformed MT
G-BLUP models in predictive ability. Even though prediction
models incorporating GY data in the TLS reduced the absolute
deviation of b from 1, these models tended to over-predict
additive genetic values for SG (b < 1). The inclusion of auxiliary
traits in TLS produced higher MSEP relative to using only SG
data for prediction.

Different results were found for SG predictions when MT
G-BLUP models used auxiliary trait records on both TLS and
VLS (Figure 3). Under this prediction scenario, all MT models
including GY as auxiliary trait improved predictive abilities for
SG. Relative increases of up to 19% in predictive ability were
observed for MT models adding combined GY-PH or GY-PH-
FT information from TLS and VLS. Moreover, predictions from
these models tended to be less biased than those from ST
G-BLUP and over-prediction was eliminated. Finally, MSEP for
SG was consistently reduced when GY information on VLS was
incorporated by MT G-BLUP models.

After evaluating predictive performance of G-BLUP method,
we explored the use of a combined pedigree-genomic matrix
K for optimization of multi-trait genomic prediction. Table 2
presents results from the best-predictive MT G-BLUP models and
from the optimized MT K-BLUP models for the scenarios where
MT analysis outperformed ST analysis (Aux@TL for GY and
Aux@TL+VL for SG). In these prediction scenarios, the optimal
use of combined trait information, from a predictive perspective,
resulted from exploiting genetic correlations among GY, SG, and
PH (Figures 2, 3). When GY was the target trait, validation
results of MT G-BLUP were improved by MT K-BLUP (with K
using w = 0.25) for all evaluation criteria to a marginal extent.
Under the prediction scenario for SG, bias and MSEP from multi-
trait models were slightly higher when K (using w = 0.30) was
used instead of G. However, an additional 10% gain in predictive
ability was obtained by MT K-BLUP in this scenario.

DISCUSSION

This study intended to establish the value of using multi-trait
analysis to improve across-environment genomic predictions for
grain yield and stay-green in sorghum by exploiting information
from auxiliary traits. Our approach to predict is consistent
with selection for broad adaptation, where the set of trials is
considered to be representative of the TPE. To determine the
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FIGURE 2 | Mean values (and SD of 20 replicates) for predictive ability, regression coefficient, and relative MSEP from single- and multi-trait G-BLUP models using
different combinations of grain yield (GY), stay-green (SG), plant height (PH), and flowering time (FT) data in the training lines set for prediction of GY (left) or SG (right).

efficiency of this predictive method, multi-trait BLUP models
were evaluated in terms of prediction quality measures for two
cases: when the target trait and auxiliary traits were recorded only
on relatives of the predicted lines; and when records of auxiliary
traits were also available for the predicted lines per se. Multi-trait
BLUP can be seen as a generalized (linear) selection index, with
the additional abilities to account for unbalanced information

from any set of relatives while properly adjusting for fixed effects
in the data (Lynch and Walsh, 1998; Mrode, 2005). In our
index, and from mixed model theory, data of several traits were
optimally weighted based on the multi-trait genetic and residual
covariance matrices in order to maximize accuracy of predicted
genetic merit by BLUP estimation. An important decision is
which auxiliary traits to include in a multi-trait model. In this
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FIGURE 3 | Mean values (and SD of 20 replicates) for predictive ability, regression coefficient, and relative MSEP for SG predictions from single- and multi-trait
G-BLUP models using different combinations of grain yield (GY), stay-green (SG), plant height (PH), and flowering time (FT) data only in the training lines set
(Aux@TL), and in both the training and validation lines sets (Aux@TL + VL).
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TABLE 2 | Predictive abilities (rPA), regression coefficients (Bias), and relative MSEP from single-trait G-BLUP and K-BLUP, and from the best-predictive multi-trait
G-BLUP and K-BLUP models for GY prediction using auxiliary traits data on training lines (Aux@TL) and for SG prediction using auxiliary traits data on both training and
validation lines (Aux@TL + VL).

Prediction scenario Quality criterion Single-trait Multi-traita

G-BLUP K-BLUP G-BLUP K-BLUPb

GY: (Aux@TL) rPA 0.363 (0.013) 0.373 (0.014) 0.420 (0.013) 0.429 (0.015)

Bias (b) 0.958 (0.037) 0.965 (0.037) 0.951 (0.034) 0.967 (0.039)

MSEP (%) 0 (1.1) −0.7 (1.1) −6.0 (1.3) −6.6 (1.6)

SG: (Aux@TL + VL) rPA 0.482 (0.013) 0.508 (0.015) 0.574 (0.008) 0.630 (0.009)

Bias (b) 1.052 (0.035) 1.074 (0.036) 1.017 (0.019) 1.038 (0.022)

MSEP (%) 0 (1.6) 2.7 (1.6) −13.7 (1.2) −12.0 (1.2)

The best value for each evaluation criterion is boldfaced. aMulti-trait models combining GY, SG, and PH information, bUsing K = wA + (1 − w)Gs with optimal weights
w = 0.25 and w = 0.30 for GY and SG prediction, respectively.

article, we examined all possible combinations of available traits,
and the optimal multi-trait BLUP model for each prediction
scenario was empirically determined on the base of predictive
outcomes. The present study considered the general situation
where the breeding objective is to improve a single character with
economic value (GY or SG), while other traits would contribute
to that genetic goal. This is equivalent to assigning a relative
economic weight of 1 to the target trait and 0 weights to auxiliary
traits in a selection index. It is worth mentioning that, in a
real breeding program, SG is unlikely to be considered as an
independent target of selection since its economic value is linked
to its positive effect on GY and reduced lodging under stressing
conditions. Our research could be easily extended to the case
of simultaneous improvement for GY and SG by constructing
an index with non-zero economic weights for both traits. This
would give predictive results that are intermediate of those
presented in our research, with variations depending on the
relative economic weights assigned (not shown). Given that
defining the appropriate relative economic value of GY and SG
is beyond the scope of the present study, here we presented the
evaluation of multi-trait prediction for a target trait at a time
without losing generality of results.

Multi-Trait Genomic Prediction for Grain
Yield
Genetic correlations between traits estimated in this research
are consistent with previous results showing strong associations
of GY with SG, PH, and FT in sorghum hybrids (Jordan
et al., 2003). In our case, additive parental effects of GY were
only correlated with additive effect of SG and PH, whereas
associations between GY and FT were basically explained by
residual effects. In addition, the estimated heritability for GY
in our study was lower than for the rest of the traits. Based
on these findings, and according to multivariate BLUP and
selection index theories, prediction of breeding values for GY
should mainly benefit by utilizing additional information from
SG and PH, while introducing an uncorrelated trait, such as
FT, would reduce prediction efficiency due to incorporation of
sampling error. These expectations were corroborated by our
predictive results from cross-validation when records of auxiliary

traits were available for the training lines (Figure 2). Multi-trait
models combining GY-SG-PH information produced the highest
improvements in predictive ability for GY, representing up to
18% increase relative to ST G-BLUP (Table 2). These results
are somewhat more promising than those previously reported
for GY prediction in wheat (Rutkoski et al., 2016; Sun et al.,
2017), maize (Lyra et al., 2017), and rye (Schulthess et al.,
2016), which found null increases in predictive ability under
equivalent prediction scenarios. The differences in response from
using MT analysis are highly dependent of the experimental
data and the genetic target of prediction. In our research, the
inclusion of PH information in multi-trait models appeared to
be essential for improving predictive ability, unbiasedness and
accuracy of GY predictions. This may be attributed to the fact
that PH presented the strongest additive genetic correlation and
the largest difference in heritability with GY. The key role of these
two factors for benefiting from multi-trait prediction of low-
heritability traits has been demonstrated by simulation studies
in plant and animal breeding contexts (Jia and Jannink, 2012;
Guo et al., 2014). In addition, the present study assumes that the
genetic target of selection is across-environment breeding value,
which depends on overall heritabilities and trait correlations
across the TPE. It should be considered, however, that the levels of
heritability and correlations are variable among experiments due
to the influence genotype-by-environment interaction, inducing
variability of predictive results in specific trials.

Multi-Trait Genomic Prediction for
Stay-Green
Our validation results were different for SG prediction when only
MT information on the training set was used. As expected from
considering heritabilities and additive genetic trait correlations,
predictive performance of the ST model was generally better than
those of MT models. This may be explained because SG was
genetically correlated only with GY, but this trait had the lowest
heritability (Table 1). Under these circumstances, information
from PH and FT could not be borrowed to predict SG, while GY
data would be genetically less informative than the target trait
itself. On the other hand, predictive results favored multi-trait
genomic models when GY information was available for both the
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training lines and the predicted lines per se, which was reflected
by increases in predictive ability and reductions in bias and
MSEP of SG predictions (Figure 3). The comparison of both
prediction scenarios for SG allowed an empirical assessment of
the value of two different sources of information from correlated
traits. When auxiliary traits are only available for the training
set, the estimates of covariance parameters among traits in
6g , which are then used for prediction, contain information
from the training lines exclusively. Alternatively, if records of
auxiliary traits are also available for the validation set, better
parameter estimates in 6g can be obtained for prediction of
the target trait. This is not only because more data is used for
parameter estimation, but mainly because the extra information
contained in estimated trait correlations is directly sourced
from the predicted lines. Our results for SG suggest that, when
this extra information is exploited, the strength of correlations
among traits is more important than the relative levels of
trait heritability. This would explain why SG predictions were
improved by multi-trait G-BLUP using GY data, even when
this trait had lower heritability than the target trait. Moreover,
predictive performance of the MT model combining SG, GY,
and PH indicates that, despite SG and PH were uncorrelated,
additional information from PH could be transmitted via GY to
further enhance predictions of SG (Figure 3). Similar benefits of
exploiting information from secondary traits in the validation
set have been reported in crops for other traits, but not for
SG (Rutkoski et al., 2016; Fernandes et al., 2018; Lado et al.,
2018). Even though the link between stay-green trait and yield
stability has been demonstrated in sorghum, maize and wheat
(Christopher et al., 2008; Jordan et al., 2012; Gregersen et al.,
2013), the predictive use of SG-GY association in cereals had not
been studied yet in the context of genomic selection.

Combining Pedigree and Genomic
Information for Multi-Trait Prediction
This study explored if additional genealogical information from
pedigree could further improve multi-trait genomic prediction.
Merging pedigree and marker-based relationships has been
shown to be beneficial for ST prediction in animals (e.g.,
Rodríguez-Ramilo et al., 2014; Ilska et al., 2017) and more
recently in plant breeding (Velazco et al., 2019). In the context
of multi-trait analysis, models relying exclusively on SNP
information may give distorted estimates of genetic variances
and correlations between traits, mainly due to incomplete linkage
disequilibrium (LD) of markers with causal loci (de los Campos
et al., 2015; Gianola et al., 2015). Pedigree information can
be used to account for residual polygenic effects not traced
by SNPs, capturing LD patterns between loci that are due
to common ancestral identity. Our study showed that better
predictions of GY and SG were obtained by multi-trait models
using a weighted combination of A and G instead of G alone
(Table 2). Multi-trait K-BLUP produced the highest increase in
predictive ability (of about 30%) for the SG prediction scenario,
where trait correlations seemed to play a more important role
in model performance. This result suggests that the K matrix
optimized estimates of genetic correlation between traits, from
a predictive perspective. The same approach has been applied

to infer trait correlations from multi-trait prediction models in
chicken (Momen et al., 2017).

Here, we used a different optimal weight w to construct K
according to the trait of interest for prediction (w = 0.25 and
w = 0.30 to predict GY and SG, respectively). This is in line
with the idea that genetic (genomic) similarities between relatives
are actually trait-specific (Fernando and Gianola, 2018), which
contrasts with the assumption of a common relationship matrix
used in standard multi-trait G-BLUP. A more elaborate multi-
trait G-BLUP model using trait-dependent weights has been
recently proposed by Karaman et al. (2018) as a computationally
less demanding alternative to multi-trait Bayesian methods. In
this BLUP model, weights used to compute G are derived from
posterior trait-specific (co)variance estimates of SNP effects,
which are obtained from a previous Bayesian analysis. The
authors found, based on simulations, that the benefits of their
weighting method were generally not significant for the low-
heritability trait that more closely fitted an infinitesimal model
(using 500 QTLs). Alternatively, our multi-trait K-BLUP uses
a more straightforward approach that assumes a common
weight across the genome, while still relaxing the assumptions
of conventional multi-trait G-BLUP by allowing the similarity
matrix to vary across traits in order to optimize prediction of the
target. Given the complexity of traits and the highly structured
breeding population used for this study, genomic predictions
are likely to rely more on familial relationships and less on
information from specific SNPs in LD with QTL (Habier et al.,
2007). In this context, the BLUP-based multi-trait models applied
here are expected to perform well compared to more refined
alternatives (Jia and Jannink, 2012; Haile et al., 2018).

Implications of Multi-Trait Genomic
Prediction for Grain Sorghum Breeding
While genotyping costs are being constantly reduced, the
efficient use of phenotypic data becomes more relevant for
plant breeding programs, since field phenotyping is still costly
and labor-intensive. This work has shown for the first time
how phenotypes of several traits routinely measured in grain
sorghum breeding can be efficiently utilized through multi-trait
analysis to assist genome-based selection of a target trait. We
demonstrated empirically that genomic prediction of parental
breeding values for GY benefits mainly from using PH as
auxiliary trait. This trait is particularly promising in practice,
since PH phenotype can be potentially measured in all trials, as
opposed to SG, which can only be phenotyped under specific
environmental conditions. In addition, high throughput field
phenotyping technologies are expected to increase accuracy of
PH measurement in sorghum (Wang et al., 2018), which could
favor GY selection indirectly through multi-trait prediction.
The potential of exploiting genetic association between GY and
PH predictively brings a new perspective regarding selection
strategies in advanced sorghum testing. Our results imply that,
despite strong selection for appropriate height is generally
imposed in early stages of breeding, multi-trait evaluation could
be implemented for increasing the capacity to use remaining
genetic variation in PH when selecting for GY. That is, selection
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based on multi-trait models is able to directly use the variation
in GY that is not associated with PH, and can simultaneously
exploit GY variability indirectly through the available variation
in PH (within the acceptable range).

Based on findings from this study, when SG is the target of
prediction, most advantage from multi-trait genomic analysis
can be obtained only if predicted lines have been phenotyped
for GY. This may be beneficial when the interest is to
predict the genetic aptitude for drought-adaptation in lines
that have been field-tested for GY performance but could not
yet experience post-flowering water stress. Such scenario is
compatible with selection for broad adaptation across the TPE,
which is generally the best approach to deal with the largely
unpredictable occurrence of drought in the Australian sorghum
region (Chapman et al., 2000). Expression of functional SG
can also be a consequence of reduced sink demand relative
to source, due to low grain production at plant level (Henzell
and Gillieron, 1973; Duncan et al., 1981). For this reason,
Borrell et al. (2014) pointed out that simultaneous selection
for SG and GY should be applied in sorghum breeding
programs to correct for functional SG that is actually driven
by low sink demand. This correction can be automatically
performed by joint analysis of both traits using multi-trait
genomic models. For instance, in our case, selection of parental
lines for broad adaptation would be based on a predicted
genetic score that is optimally derived by combining three
sources of information: direct information from own GY
breeding value in well-watered environments, and indirect
information from SG and GY breeding value of relatives in
water-limited environments.

CONCLUSION

This study demonstrates, based on extensive breeding data, that
there is potential to improve genome-based predictions of grain
yield and stay-green traits in grain sorghum by using multi-
trait genomic analysis. Results suggest that better predictive
abilities and accuracies for GY prediction are obtained when
PH information on the training lines is included in multi-trait

genomic models. When SG is the target, the quality of predictions
is likely to improve only if GY performance data is available for
both the training and the predicted lines per se since, in this case,
direct information from SG-GY genetic correlations is exploited
predictively through multi-trait analysis. This article also shows,
for the first time in plant breeding, how a similarity matrix
using trait-specific combinations of pedigree and marker-based
relatedness can further enhance multi-trait genomic prediction.
Collectively, our results imply useful properties of multi-trait
BLUP to evaluate alternative prediction schemes for genetic
improvement of crop productivity and drought adaptability in
grain sorghum. Given that the traits considered in this study
are commonly measured in cereal breeding programs, findings
presented here can be also relevant for practical implementation
in other major crops.
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