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Fusarium head blight (FHB) is one of the most destructive diseases in wheat worldwide.
Breeding for FHB resistance is hampered by its complex genetic architecture, large
genotype by environment interaction, and high cost of phenotype screening. Genomic
selection (GS) is a powerful tool to enhance improvement of complex traits such
as FHB resistance. The objectives of this study were to (1) investigate the genetic
architecture of FHB resistance in a North Dakota State University (NDSU) hard red
spring wheat breeding population, (2) test if the major QTL Fhb1 and Fhb5 play an
important role in this breeding population; and (3) assess the potential of GS to enhance
breeding efficiency of FHB resistance. A total of 439 elite spring wheat breeding lines
from six breeding cycles were genotyped using genotyping-by-sequencing (GBS) and
102,147 SNP markers were obtained. Evaluation of FHB severity was conducted
in 10 unbalanced field trials across multiple years and locations. One QTL for FHB
resistance was identified and located on chromosome arm 1AL, explaining 5.3% of
total phenotypic variation. The major type II resistance QTL Fhb1 only explained 3.1%
of total phenotypic variation and the QTL Fhb5 was not significantly associated with
FHB resistance in this breeding population. Our results suggest that integration of many
genes with medium/minor effects in this breeding population should provide stable
FHB resistance. Genomic prediction accuracies of 0.22–0.44 were obtained when
predicting over breeding cycles in this study, indicating the potential of GS to enhance
the improvement of FHB resistance.

Keywords: hard red spring wheat, Fusarium head blight, genome wide association study, marker-assisted
selection, genomic selection

Abbreviations: BLUP, best linear unbiased predictor; FHB, Fusarium head blight; GBS, genotyping-by-sequencing; GS,
genomic selection; GWAS, genomic wide association study; HRSW, hard red spring wheat; MAF, minor allele frequency;
MAS, marker-assisted selection; NDSU, North Dakota State University; PCA, principle component analysis; rrBLUP, ridge
regression best linear unbiased prediction; SNP, single nucleotide polymorphism.
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INTRODUCTION

Fusarium head blight (FHB) is one of the most destructive
diseases of wheat worldwide. The disease is caused by Fusarium
species and can lead to severe grain yield and quality loss. HRSW
is a major class of wheat and is used for the finest baked goods
owing to its high protein content and superior gluten quality. In
the United States, HRSW is annually planted on over 13 million
acres, primarily in the Northern Great Plains. FHB epidemics in
HRSW producing areas of the US in the early 1990s resulted in
devastating economic losses (Wilcoxson et al., 1992; McMullen
et al., 1997) and the disease still frequently threatens wheat
production in this region. Controlling FHB through agronomic
practices such as crop rotation is challenging due to the wide
host range of the Fusarium species. Fungicidal control is effective
only in a narrow operative window. Therefore, developing FHB
resistant cultivars is crucial to prevent the destruction caused
by this disease.

Fusarium head blight resistance exhibits quantitative
variation, suggesting complex genetic architecture. Most public
wheat breeding programs in the US rely on phenotypic selection
for FHB resistance using field nurseries to evaluate breeding
materials. However, disease infection and development is
highly dependent on environmental conditions at flowering
and early kernel development stages, making effective
phenotypic evaluation and selection difficult. In addition,
phenotypic evaluation of FHB resistance is time-consuming
and demands extensive labor and resources in multiple
environment trials, limiting the number of breeding lines
that can be evaluated in each breeding cycle. MAS of
major QTL could enhance selection efficiency for FHB
resistance (Anderson, 2007; Buerstmayr et al., 2009). From
previous bi-parental QTL mapping studies, hundreds of
QTL for FHB resistance have been identified on all 21
wheat chromosomes (Buerstmayr et al., 2009; Löffler et al.,
2009). In previous studies, few QTL were identified for type
I resistance (against initial infection of the pathogen) as
most previous studies focused on type II resistance (against
spread of the pathogen) (Buerstmayr et al., 2009). Many
QTL were commonly identified from multiple populations
(Liu et al., 2009; Löffler et al., 2009), of which major QTL
like Fhb1 (Bai et al., 1999; Waldron et al., 1999; Anderson
et al., 2001; Liu et al., 2006; Rawat et al., 2016; Su et al.,
2018), Fhb2 (Cuthbert et al., 2007; Jia et al., 2018), Fhb4
(Xue et al., 2010; Jia et al., 2018), and Fhb5 (Xue et al., 2011;
Jia et al., 2018) were finely mapped and/or characterized.
The most stable type II resistance QTL Fhb1 can reduce
disease severity by 20–25% on average, depending on the
genetic background (Pumphrey et al., 2007), and has been
widely integrated into wheat breeding populations through
MAS (Anderson, 2007; Buerstmayr et al., 2009; Steiner et al.,
2017). However, utilization of other QTL for MAS in wheat
breeding has been scarce, due to lack of diagnostic markers or
pending validation.

Genome wide association studies (GWAS) enable genetic
mapping to be performed in a breeding population, and
the identified markers can be used for MAS directly

(Pozniak et al., 2012; Wang et al., 2012). Advances in genome
sequencing and high-throughput genotyping have facilitated
GWAS in wheat, a polyploid species of large genome size
(Poland et al., 2012; Wang et al., 2014; Allen et al., 2017;
International Wheat Genome Sequencing Consortium
[IWGSC], 2018). Numerous GWAS have been conducted
for FHB resistance in wheat and confirm its complex genetic
architecture (Mirdita et al., 2015b; Arruda et al., 2016a;
Wang et al., 2017). Arruda et al. (2016a) performed GWAS
for FHB resistance using 273 winter wheat breeding lines
from the Midwest and Eastern US, and found that Fhb1
explained only 8% of phenotypic variation. GWAS using
a large panel of elite inbred lines from central European
winter wheat found no QTL with large effect, despite broad
genetic variation (Mirdita et al., 2015b). Taken together,
these observations confirm that many genes with medium or
small effects contribute to FHB resistance along with the few
well-characterized major QTL.

A simulation study suggested that GS was more efficient
for the improvement of complex traits compared to MAS
(Meuwissen et al., 2001). In GS, genome wide markers are used
to predict breeding values, which are consequently used for
selection. Empirical experiments found that prediction ability of
FHB resistance using genome wide markers was better than using
statistically significant markers only (Jiang et al., 2015; Mirdita
et al., 2015a; Arruda et al., 2016b). Several GS studies suggested
that GS is promising to enhance FHB resistance improvement
in wheat (Rutkoski et al., 2012; Mirdita et al., 2015a; Jiang et al.,
2017; Herter et al., 2019a,b).

Diverse resistance donors like Sumai 3, Frontana, etc.
have been used for the improvement of FHB resistance in
wheat breeding programs including the NDSU HRSW breeding
program. Well-characterized major QTL like Fhb1 and Fhb5 have
been integrated into the breeding pools. The objectives of this
study are to (1) investigate genetic architecture of FHB resistance
in this breeding population; (2) test if the major QTL Fhb1 and
Fhb5 play an important role in this population; and (3) assess
potential of GS for FHB resistance enhancement in the NDSU
HRSW breeding program.

MATERIALS AND METHODS

Plant Materials and Evaluation of FHB
Severity
In total, 427 F9 breeding lines from 2011-16 advanced yield trials
(AYTs) of the NDSU HRSW breeding program, representing
six breeding cycles, and 15 check cultivars were evaluated for
FHB resistance from 2011 to 2016 (Supplementary Table S1).
Each year, a subset of breeding lines from one breeding cycle
was evaluated at two locations, Langdon and Prosper, ND.
However, the trials from 2013 Prosper and 2016 Langdon
were not used because of poor quality of the phenotypic
data. Therefore, the 427 breeding lines were actually tested in
an unbalanced experiment including 10 trials across 6 years
(Supplementary Table S1). The 15 check cultivars were ND2398,
ND2710, Barlow, Bolles, Elgin-ND, Faller, Glenn, Howard,

Frontiers in Plant Science | www.frontiersin.org 2 August 2019 | Volume 10 | Article 1007

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-01007 August 6, 2019 Time: 15:36 # 3

Liu et al. Genetic Prediction of FHB Resistance

ND817, Prosper, RB07, Steele-ND, SY Soren, and Velva. The
checks ND2398, ND2710, Barlow, Faller, Glenn, and Prosper
were evaluated at all 10 trials at the two locations from
2011 to 2016. In each trial, the experimental design was a
randomized complete block design with two replicates. In the
field experiment, each line was planted in a hill plot with 15
seeds. Spawn corn kernels were prepared as inoculum. To prepare
inoculum, autoclaved corn kernels were infected with a mixture
of spores produced separately from 20 F. graminearum strains,
including ten 3ADON (3-acetyl deoxynivalenol) producers and
ten 15ADON (15-acetyl deoxynivalenol) producers, collected
from fields in North Dakota (Puri and Zhong, 2010), according
to the procedure described by Zhang et al. (2008). The spawn
corn kernels were applied to the FHB nurseries at a rate
of approximately 0.20 kg/m2 starting at the boot stage, and
repeated every 2 weeks until all wheat accessions completed
anthesis. The nurseries were overhead misted for 5 min in 15-
min intervals for 12 h daily (4:00 p.m. to 4:00 a.m.), until
14 days after anthesis of the latest lines. Eight to twenty
spikes from each hill plot were visually scored at 21 days
post anthesis using a visual scale (0, 7, 14, 21, 33, 50, 66, 75,
90, and 100, all in percentage) (Stack and McMullen, 1995).
Disease severity was calculated as the average percentage of
infected spikelets.

Molecular Marker Genotyping
The 427 elite breeding lines and 12 of the 15 check cultivars
were genotyped using GBS. DNA was isolated with the Wizard
Genomic DNA Purification Kit (A1125; Promega) per the
manufacturer’s instructions and quantified with a Quant-iT
PicoGreen dsDNA assay kit (P7589; Thermo Fisher Scientific).
GBS libraries were constructed based on the protocol of Poland
et al. (2012) with minor modifications. Briefly, 200 ng of
DNA for each line was digested with PstI and MseI, and
then ligated to a common adapter and a barcoded adapter
unique to each sample. Equal volumes of the ligated products
were pooled and purified with the QIAquick PCR purification
kit (28104; QIAGEN) for PCR amplification. For the PCR
amplification, 50 ng of template DNA was mixed with NEB
2X Taq Master Mix and two primers (5 nmol each) in
200 µL total reaction volume and PCR amplified for 18
cycles with 10 s of denaturation at 98◦C, followed by 30 s
of annealing at 65◦C, and finally 30 s extension at 72◦C. The
PCR product was cleaned using a QIAquick PCR purification
kit. The library was sequenced on an Illumina HiSeq 2500 to
generate single-end, 100-bp reads at the Genomic Sequencing
and Analysis Facility at the University of Texas Southwestern
Medical Center at Dallas, Texas. All sequences were submitted
to the National Center for Biotechnology Information Short
Read Archive (experiment #SRP144046). SNP discovery and
genotype calling was performed using the TASSEL-GBS pipeline
(Glaubitz et al., 2014) with the Triticum aestivum IWGSC
RefSeq v1.0 as the reference genome (International Wheat
Genome Sequencing Consortium [IWGSC], 2018). SNP markers
were filtered with an individual read depth greater than 1,
MAF greater than 0.05, and missing data less than 50%.
Filtering SNPs yielded 102,147 SNP markers (Supplementary

Table S1). Missing values were imputed with LD-KNNi
method (Money et al., 2015) implemented in TASSEL v.5
(Bradbury et al., 2007).

Additionally, one SNP marker (IFA-FM227, Schweiger
et al., 2016) linked to the major QTL Fhb1 and one SNP
marker (barc186-80018, unpublished) linked to the major
QTL Fhb5 were genotyped for the spring wheat breeding
lines and check cultivars. Primer sequences for IFA-FM227
were as follows: FAM: GGCGTCGGCGATCCTGCTTA;
HEX: GGCGTCGGCGATCCTGCTTAT; Common: CGTCGT
CGGCCGCGGGTT. Primer sequences for barc186-80018 were
as follows: FAM: GTAGTGATCCAAAGAAATAAAGGAGAT;
HEX: GTAGTGATCCAAAGAAATAAAGGAGAG; Common:
GTGACAAGTTATAGGTAAGGTCTCCAT. Each SNP
was assayed using the KBiosciences Competitive Allele-
Specific PCR genotyping system (KASP). Briefly, genotyping
reactions were performed in 384-well plates on a Procycle
thermocycler (Life) in 4 µL reactions containing two
allele-specific primers, one common reverse primer, 1 x
KASPaR v4.0 SNP Mastermix (LGC Genomics), and 36 ng
of gDNA. After an initial denaturation step of 15 min at
94◦C, PCR amplification reactions consisted of 10 cycles of
20 s denaturation at 94◦C, followed by 60 s at a touchdown
annealing/elongation at 65-57◦C (decreasing 0.8◦C each
cycle), then 29 cycles at 20 s denaturation at 94◦C, followed
by annealing/elongation 60 s at 57◦C. Fluorescence of PCR
products was measured on a Roche Light Cycler R©480 and
accompanying software (v 1.51) was used to distinguish clusters
and call genotypes.

Phenotypic Data Analysis
The number of breeding lines per trial ranged from 31 to 112
(Supplementary Table S1). Two-stage analysis of phenotypic
data was performed. In the first stage, best linear unbiased
estimators (BLUEs) were estimated for all breeding lines within
each individual trial using R package lme4 (Bates et al., 2014;
R Development Core Team, 2018). The model was

y = µ+ gi + rj + εij[1]

where y is the vector of unadjusted phenotypes, µ is the overall
mean, gi is the fixed effect of the ith genotype and rj is the random
effect of the jth block. To identify outlier trial, we estimated broad-
sense heritability (H2) for each individual trial. All factors were
considered as random. The variance components of error (σ2)
and genotype (σ2

g) were estimated. The broad-sense heritability
was estimated as σ2/(σ2

+ σ2
g) and was used to eliminate trials

with a H2 score< 0.1.
In the second analysis stage, we estimated BLUEs of

breeding lines across all 10 trials using the R package lme4
(Bates et al., 2014). The model was

y∗ = µ+ gi + tj + εij[2]

where y∗ represents the estimated BLUEs of breeding lines within
each individual trial calculated in the first stage, µ is the overall
mean, gi is the random effect of the ith genotype and tj is
the random effect of the jth trial. The estimated BLUEs were
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further used in GWAS to identify major QTL and in genomic
prediction analysis.

A relationship matrix was calculated using the 102,147
SNP markers with the R package rrBLUP (Endelman, 2011).
Then, additive variance components (Va) and error variance
component (Ve) were calculated with the mixed.solve function
in the package rrBLUP (Endelman, 2011). Genomic heritability
(h2) was calculated as Va/(Va+ Ve).

Marker-Trait Association Analysis
Principal component analysis (PCA) was conducted with the
102,147 SNPs to assess population structure using TASSEL v.5
(Bradbury et al., 2007). SNP-based GWAS was performed using
TASSEL v.5 (Bradbury et al., 2007). Based on the Scree plot
(Supplementary Figure S1), the first three PCs were chosen
as covariates to capture population structure in association
analysis. A centered kinship (K) matrix was calculated based
on the 102,147 SNPs using TASSEL. A linear mixed model
including population structure and kinship matrix was used
to test marker-trait association. False discovery rate (FDR)
was calculated from p-values using the R function p.adjust
(method = fdr) (Benjamini and Hochberg, 1995). Significance
of marker-trait association is defined by FDR as a q value
smaller than 0.1.

Development and Validation of Genomic
Prediction Models
Genomic prediction was evaluated with the statistical
model rrBLUP. The rrBLUP model was constructed using
R package rrBLUP (Endelman, 2011). Prediction accuracies
were first validated using five-fold cross-validation, in
which 80% of individuals were randomly selected as the
training population and the remaining 20% of individuals
were used to validate the genomic prediction accuracy.
Genomic prediction accuracy was estimated as the Pearson
correlation (r) between genomic estimated breeding values
(GEBVs) and BLUPs of phenotypic values. Random
sampling of training and validation sets was repeated
100 times and the mean of r divided by the square root
of the estimated heritability was defined as the genomic
prediction accuracy.

To test prediction accuracy across breeding cycles, we
developed prediction models using a training population that
includes five breeding cycles to predict breeding lines from the
remaining breeding cycles, e.g., to predict 2012 breeding lines, the
five breeding cycles tested in the other 5 years (2011, 2013–2016)
were used as training population.

Because genetic relationship between training population
and validation population can affect prediction accuracy, we
calculated genetic relationships between training population
and validation population based on identity-by-state similarity
(proportion of shared alleles) between all individuals using R
package “snpRelate” (Zheng et al., 2012).

To evaluate the effect of marker number on prediction
accuracy, we randomly sampled 100, 500, 1000, 1500, 2000,
2500, 3000, 3500, 4000, 4500, and 5000 markers to develop

prediction models and validate their prediction accuracies.
Random sampling for each subset was repeated 500 times and
the mean of the Pearson correlations between GEBVs and BLUPs
was defined as the genomic prediction accuracy.

RESULTS

Genetic Diversity of the Elite Spring
Wheat Lines and Their Reaction to FHB
Broad-sense heritability was estimated for each individual trial
and ranged from 0.21 to 0.67. No outlier trials were identified
at threshold of H2 < 0.1. BLUEs of FHB severity were
estimated for the 427 elite spring wheat lines and 15 check
cultivars using the unbalanced phenotypic data collected from
all 10 field trials at two locations across 6 years. Among
the 15 checks, the resistant check variety ND2710 showed
the lowest FHB severity (15.9%) while the susceptible check
variety ND2398 had the highest disease severity (75.8%).
Among the 427 breeding lines, FHB severity ranged from
6.0% to 83.1% and broad variation was found in all six
breeding cycles (Table 1). In total, 102,147 markers were
obtained with missing values less than 50%. MAF of the
102,147 markers averaged 0.19, ranging from 0.05 to 0.5
(Supplementary Figure S2). PCA was performed and the
PC1 and PC2 explained 6.9 and 6.0% of total variation,
respectively. Scatter plots of PC1 against PC2 for the 427
lines indicated there was no clear population structure and
breeding lines from different breeding cycles were intermixed
(Supplementary Figure S3).

Marker-Trait Association
Marker-trait association was conducted with a linear mixed
model including population structure and kinship matrix.
Significant marker-trait association was determined by FDR as
a q value smaller than 0.1. The Manhattan plot is shown in
Figure 1. In total, six SNPs significantly associated with FHB
resistance were identified on chromosome arms 1AL (Figure 1
and Table 2). The most significant markers (S1A_477852878
and S1A_477852881) explained 5.3% of the total phenotypic
variation (Table 2). Over 81% of the 439 tested lines had the
favorable allele for the two most significant markers at this locus

TABLE 1 | Means and ranges of FHB severity for the breeding lines from six
breeding cycles and 15 checks.

FHB severity (%)

Breeding cycle Number of lines Mean Range

2011 112 36.3 21.1∼83.1

2012 72 37.0 17.8∼55.0

2013 31 32.6 17.7∼47.9

2014 66 36.7 20.1∼52.2

2015 65 33.5 10.3∼56.5

2016 81 29.4 6.0∼54.1

Check 15 39.5 15.9∼75.8
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FIGURE 1 | Manhattan plot that displays genomic regions associated with FHB severity.

TABLE 2 | Information of the SNP markers significantly associated with FHB severity and the SNP markers linked to the major QTL Fhb1 and Fhb5.

Marker Chra Positionb p-value FDR R2 (%)c Allele Effect (%)d Obse

S1A_471476097 1A 471476097 2.47E-06 0.06 5.3 A/g −7.49 348/83

S1A_471476711 1A 471476711 2.52E-06 0.06 5.3 G/t −7.48 349/83

S1A_471700659 1A 471700659 4.32E-06 0.07 5.0 C/t −7.36 350/81

S1A_471719877 1A 471719877 2.94E-06 0.06 5.2 G/a −7.45 348/82

S1A_477852878 1A 477852878 2.63E-06 0.06 5.3 C/t −7.52 353/78

S1A_477852881 1A 477852881 2.63E-06 0.06 5.3 A/g −7.52 353/78

IFA-FM227 3B 8848534 0.0003 0.49 3.1 A/g −5.25 140/289

barc186-80018 5A 350267183 0.1463 0.99 0.5 A/g −2.27 111/324

aChromosome. bPhysical position of SNP marker on wheat reference genome. cThe percentage of total variation explained by the marker. dThe estimated additive effect
of the favorable allele. eNumber of breeding lines observed for each marker allele.

(Table 2). The favorable allele alone could reduce 7.5% of FHB
severity (Table 2).

Frequencies and Effects of the Molecular
Markers Linked to Fhb1 and Fhb5
We genotyped one SNP marker linked to the major QTL Fhb1
and one SNP marker linked to the major QTL Fhb5. The
marker linked to Fhb1, IFA-FM227, was significantly associated
with FHB severity at p-value less than 0.001 and explained
3.1% of total phenotypic variation (Table 2). In total, 140
(33%) of the 429 lines contained the favorable allele of the
major QTL Fhb1. The marker linked to Fhb5, barc186-80018,
was segregated in this population with the favorable allele
frequency at 26% (Table 2). However, this marker was not
significantly associated with FHB severity at p value smaller than
0.05 (Table 2).

Genomic Prediction
Based on the marker and phenotypic data, genomic heritability
(h2) for the FHB severity was estimated to be 0.43 in this HRSW
breeding population. We evaluated genomic prediction for FHB

severity with statistical model rrBLUP. Prediction accuracy using
fivefold cross validation was 0.35.

One potential application of GS is to predict breeding
lines from a new breeding cycle and perform pre-selection.
To test such prediction ability, we used breeding lines from
five of the six breeding cycles as training population to
predict breeding lines from the remaining breeding cycle.
The prediction accuracies ranged from 0.22 when predicting
2012 breeding lines to 0.44 for predicting 2015 breeding lines
(Figure 2). The identity-by-state similarity between all pairs
of breeding lines were calculated using the 102,147 markers.
The genetic relationships between one breeding cycle and other
breeding cycles were calculated based on the identity-by-state
similarities between pairs of breeding lines. We found that the
genetic relationships between the breeding cycles were similar
to the average genetic relationship of all pairs of breeding
lines (Supplementary Figure S4) and pairs of breeding lines
within a breeding cycle (data not shown). Therefore, genetic
relationships between training and validation population did not
impact the prediction accuracies, which varied between different
breeding cycles. We also evaluated effect of marker number on
prediction accuracy. The prediction accuracies increased from
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FIGURE 2 | Prediction accuracies for FHB severity across different breeding cycles using varied number of markers. E.g., to predict 2012 breeding lines, the
breeding lines evaluated in the other five breeding cycles (2011, 2013–2016) were used as training population. The x-axis shows the number of markers in each
subset (100, 500, 1000, 1500, 2000, 2500, 3000, 4000, 5000, and 102147 markers).

100 markers to 1000 markers but attained a plateau after 1000
markers (Figure 2).

DISCUSSION

Genetic Architecture of FHB Resistance
in the NDSU HRSW Population
The major QTL Fhb1 is the most stable type II resistant QTL
identified, with a large genetic effect consistently presented in
previous bi-parental mapping studies (Anderson et al., 2001;
Pumphrey et al., 2007; Buerstmayr et al., 2009; Zhao et al., 2018b).
In this study, we evaluated FHB reactions of 427 breeding lines
from the NDSU HRSW breeding program, but the marker linked
to Fhb1 showed a relatively small effect, explaining approximately
3.1% of the total phenotypic variation. The varied effects of
Fhb1 have to do with differences in genetic background, tested
environments, and/or resistance types evaluated. For example,
Bokore et al. (2017) evaluated Sumai 3-derived North American
spring wheat breeding lines at two field nurseries in Canada
and found that Fhb1 was more effective at one location than
the other and that Fhb1 was more effective in some families
than others. In this study, FHB resistance – measured as
severity – was conducted in field nurseries, where FHB resistance
assessment is confounded by natural infection in addition to
manual inoculation. Different from single-spikelet inoculation,
high levels of natural Fusarium inoculum can increase infection

incidences, mitigating the effectiveness of Fhb1 and the type II
resistance it confers. Zhao et al. (2018b) studied type II FHB
resistance using a population derived from a cross between
ND2710 and Bobwhite with single-spikelet inoculation, and
detected Fhb1 as major QTL in both greenhouse and field
evaluations in North Dakota, however, with Fhb1 explaining
much less phenotypic variation under field conditions. Failing
to detect the QTL Fhb1 for FHB severity under field inoculation
was also reported in winter wheat (Herter et al., 2019b). Some
studies found that the QTL Fhb5, providing type I resistance,
was of higher effect than Fhb1 under field inoculation (Von
der Ohe et al., 2010; Miedaner et al., 2019). However, the
QTL Fhb5 was not significantly associated with FHB severity in
this study. The discrepancy between this study and the other
two studies (Von der Ohe et al., 2010; Miedaner et al., 2019)
remains unclear.

We identified one QTL on chromosome arm 1AL in
this breeding population through association mapping. A few
previous mapping studies also detected FHB resistance QTL
on chromosome arms 1AL (Lin et al., 2004; Petersen et al.,
2017; Yi et al., 2018). Petersen et al. (2017) identified a
QTL related to Type I resistance between 90K-SNP markers
IWB29758 and IWB73950 on chromosome arm 1AL using
a double haploid population derived from two US soft red
winter wheat cultivars. The physical locations of the two
markers were 539895992–541895688 bp, determined by BLASTn
searches of the primer sequences against the Triticum aestivum
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IWGSC RefSeq v1.0 (International Wheat Genome Sequencing
Consortium [IWGSC], 2018). Yi et al. (2018) found a QTL related
to FHB severity on chromosome arm 1AL, where the closest
90K-SNP markers were RAC875_c6338_1887 under single-
spikelet inoculation and wsnp_CAP12_c2438_1180601 under
spay inoculation, respectively. The two markers were located
at 350007881 and 39649561 bp on chromosome arm 1AL. The
QTL found from our study are distant from those identified
from previous studies, suggesting it is a possible novel locus
for FHB resistance.

Glenn is a HRSW cultivar with good grain yield and high
protein content (Mergoum et al., 2006). Glenn showed high
resistance to FHB despite of lacking the favorable allele of Fhb1
(Mergoum et al., 2006; Bokore et al., 2017); our results confirmed
this observation (data not shown). The cultivar Glenn and its
derived lines have been widely used as parents in the NDSU
HRSW breeding program. A Chinese landrace Haiyanzhong has
shown high level of resistance to FHB, and a mapping study
using a population derived from Haiyanzhong found that it
carried Fhb2, Fhb4, Fhb5, and four other minor QTL (Cai et al.,
2016). The accumulation of QTL with medium/minor effects
conferring high FHB resistance have been identified in other
wheat lines such as PI277012 (Chu et al., 2011; Zhao et al., 2018a),
Wanshuibai (Lin et al., 2006), and Frontana (Steiner et al., 2004).
Therefore, the high level of FHB resistance observed in Glenn
and other breeding lines in this HRSW breeding population is
likely a result of numerous genes. The identified QTL explained
5.3% of total phenotypic variation and the genomic heritability
estimated with genome wide markers was 0.43, suggesting that
there are unidentified genes with small additive effects that
also contribute to the FHB resistance. Integrating QTL with
major, medium, and minor effects for both type I and type
II resistance seems crucial to developing stable FHB resistance
under field conditions.

GS for FHB Resistance Improvement
MAS of major QTL like Fhb1 has contributed to the development
of FHB resistant cultivars in several wheat breeding programs
(Anderson, 2007; Steiner et al., 2017). However, phenotypic
selection is still routinely utilized in wheat breeding programs
due to the complex genetic architecture of FHB resistance.
Phenotypic selection of FHB resistance is generally conducted in
later generations with replicates because of strong genotype by
environment interactions (Anderson, 2007). The 427 breeding
lines used in this study were F9 breeding lines from 2011 to
2016 AYTs, which is a 3-year experiment. Most of the breeding
lines had been evaluated for FHB resistance in at least two
prior years using F7 or F8 generations. Some breeding lines with
good grain yield and/or quality traits could have been selected
into AYTs even if possessing only moderate FHB resistance.
Additionally, it is likely that many F5 or F6 breeding lines with
good FHB resistance and grain yield potential were missed during
generational selection due to limited resources for FHB and grain
yield evaluation.

In GS, selection is based on the predicted breeding values
from genome wide markers. One potential application of GS
is to select promising lines from a large number of newly

developed early generation breeding lines (i.e., F5 or F6) into
expensive yield trials and therefore improve selection efficiency.
For example, GS pre-selection of end-use quality traits in wheat
has successfully reduced the number of poor performing lines
advanced to expensive yield trials (Guzman et al., 2016). In
this study, we found medium prediction accuracy of 0.35 using
cross-validation within population. Higher prediction accuracies
were observed for FHB resistance from some previous studies
(Mirdita et al., 2015a; Arruda et al., 2016b; Galiano-Carneiro
et al., 2019). In most of the previous studies, balanced phenotypic
data was used where all lines were phenotyped at same set
of environments. In this study, phenotypic data for the 439
breeding lines collected from different years and locations were
unbalanced, and the estimated BLUEs were adjusted by common
checks. Because genotype by environment interaction could not
be integrated in the statistics models, bias of the estimated BLUEs
was inevitable, which could further lower the prediction accuracy
in this study. Large training population and/or high heritability
of FHB resistance derived from multiple locations’ phenotypic
evaluation could also contribute to the high prediction accuracy
observed from previous studies (Mirdita et al., 2015a).

Prediction accuracy of between-crosses or families is generally
low because of distant relationship between training population
and validation population (Crossa et al., 2014; Herter et al.,
2019b). In this study, we found that accuracies of 0.22–
0.44 for predicting FHB severity over breeding cycles was
not dramatically decreased compared to cross-validation. This
could be thanks to the high level of genetic relationships
between different breeding cycles, where some elite cultivars
and their derived lines were commonly used as parents
for crossing blocks. This study aimed to develop an initial
prediction model, and will frequently update it by adding
newly phenotyped and genotyped breeding lines. In the NDSU
HRSW breeding program during the period of this study, over
1,300 inbred breeding lines were evaluated for FHB resistance
each year in the FHB field nurseries at two locations in hill
plots. This includes around 750 F7 lines being tested for
the first time, 350 second year F8 lines, 150 F9 advanced
lines, and 75 F10 elite lines. Yield tests, quality screening,
and selection for other economically important diseases were
conducted in each generation. It was reported that genomic
assisted selection by combining phenotypic data and predicted
values from GS model provided higher selection accuracy
than phenotypic selection alone for grain yield and protein
content at preliminary yield trial, where phenotypic data is
collected from few environments with few or no replications
(Michel et al., 2017). We plan to perform genomic assisted
selection for FHB resistance at F7 generation, where FHB
severity will be estimated using both phenotypic data and
predicted values from the initial GS model. GS model will be
updated by adding the F7 lines in the training population.
Implementing GS pre-selection of FHB resistance on untested
early generation lines like F6 lines can be carried out
once high prediction accuracy is obtained from the updated
prediction model.

One limiting factor to utilize GS in pre-selection of promising
lines is high genotyping cost for a large number of selection
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lines. Similar to other GS studies in wheat breeding populations
(Jiang et al., 2015; Haile et al., 2018), we also found that a
relatively small number of markers (e.g., 1000 markers) can
achieve high prediction accuracy, owing to the high level of
linkage disequilibrium. Simulation and empirical studies proved
that a panel of low-density markers (50 to 100s of markers)
genotyped for inbred progenies and imputed to high-density
markers could maintain high prediction accuracies (Hickey
et al., 2015; Jacobson et al., 2015; Gorjanc et al., 2017).
Such a panel of low-density markers could be genotyped with
a SNP array or amplicon GBS at a low cost, potentially
enabling the utility of GS on larger populations (Campbell
et al., 2015; Pembleton et al., 2016). Together with advances
in low-cost genotyping and imputation methods, the high
prediction accuracy found in this work pave the way to
implement GS for FHB resistance in the NDSU HRSW
breeding program.

The 427 breeding lines from the NDSU HRSW breeding
program represent the current breeding pool. Few of the new
breeding lines showed better FHB resistance than ND2710, one
of the first experimental lines released by the NDSU HRSW
breeding program from efforts to introduce FHB resistance
from Sumai 3 into elite wheat lines adapted to the Northern
Great Plains (Frohberg et al., 2004). Multiple target traits
including grain yield, end-use quality traits, disease resistance,
etc. are selected simultaneously in the NDSU HRSW breeding
program, which can partially explain the relatively static FHB
resistance development observed in these new breeding lines.
The potential to utilize GS pre-selection for multiple traits like
FHB resistance, grain yield, and other end-use quality traits
at early generations further enhances the advantage conferred
by GS compared to traditional phenotypic selection in HRSW
variety development.
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