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The chemical diversity of plants is very high, and plant-based foods provide almost 
all the nutrients necessary for human health, either directly or indirectly. With 
advancements in plant metabolomics studies, the concept of nutritional metabolites 
has been expanded and updated. Because the concentration of many nutrients is 
usually low in plant-based foods, especially those from crops, metabolome-assisted 
breeding techniques using molecular markers associated with the synthesis of 
nutritional metabolites have been developed and used to improve nutritional quality 
of crops. Here, we review the origins of the diversity of nutrient metabolites from a 
genomic perspective and the role of gene duplication and divergence. In addition, 
we systematically review recent advances in the metabolomic and genetic basis of 
metabolite production in major crops. With the development of genome sequencing 
and metabolic detection technologies, multi-omic integrative analysis of genomes, 
transcriptomes, and metabolomes has greatly facilitated the deciphering of the genetic 
basis of metabolic pathways and the diversity of nutrient metabolites. Finally, we 
summarize the application of nutrient diversity in crop breeding and discuss the future 
development of a viable alternative to metabolome-assisted breeding techniques that 
can be used to improve crop nutrient quality.
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INTRODUCTION

The nutritional metabolites needed for humans to maintain health are mainly derived from plants, 
either directly or indirectly when plants are consumed by animals (Dellapenna, 1999). Plant-
derived foods, especially crops, provide almost all essential human nutrients such as amino acids, 
vitamins (tocopherol, ascorbic acid, folic acid), sugars (sucrose, glucose), as well as other health-
promoting phytochemicals (Hall et al., 2008). Traditionally, nutritional metabolites are generally 
not considered to be directly synthesized in the human body, or the specific factors required in their 
synthetic pathways are lacking or insufficient under certain conditions, and humans must obtain 
these components from exogenous food (e.g., some amino acids, fatty acids, vitamins) (Hounsome 
et al., 2008). Golden rice is an important achievement in the improvement of crop nutritional 
quality through genetically modified technology. Paine et al. developed “Golden rice 2,” introducing 
psy from maize in combination with the Erwinia uredovora carotene desaturase (crtl) from Erwinia 
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uredovora that was used to generate the original golden rice. The 
β-carotene (provitamin A) content in golden rice is significantly 
improved, which is helpful in fighting against vitamin A 
deficiency (Paine et al., 2005). Recently, Zhu et al. introduced 
four synthetic genes in rice endosperm to achieve astaxanthin 
biosynthesis, and these four genes are sZmPSY1, sPaCrtl, 
sCrBKT, and sHpBHY, which encode the enzymes phytoene 
synthase, phytoene desaturase, β-carotene ketolase (BKT), and 
β-carotene hydroxylase, respectively (Figure  1) (Zhu et al., 
2018b). However, many other phytochemicals are also nutrients 
that have a positive effect on human health, such as flavonoids, 
phytosterols, phenolic acids, carotenoids, polyunsaturated fatty 
acids, and glucosinolates, which are effective in preventing the 
occurrence of clinical disease risk (Appleby et al., 2014; Wang 
et al., 2014). In addition to crop yields and stress resistance, more 
researches have begun to focus on nutritional quality and how to 
improve novel nutrients such as anthocyanins, carotenoids, and 
resveratrol in major crops (Fernie et al., 2006). The anthocyanin 

content of purple tomato and purple rice has been significantly 
improved by transgenic technology, and it is considered to be an 
important manifestation of crop nutrient quality improvement, 
achieving the goal of crop nutrient biofortification (Butelli et al., 
2008; Zhu et al., 2017).

The diversity of nutrients in crops is very complex and 
difficult to assess. The amount and type of nutritional metabolites 
are strongly affected by genetic and environmental factors, 
which are major contributors to nutrient diversity (Hounsome 
et al., 2008; Ahuja et al., 2010). Because of the inability to 
move during growth, plants must evolve a series of protective 
mechanisms to counter the unfavorable environment in order to 
maintain normal life activities. Environmental factors, including 
light intensity, temperature, drought, UV radiation, salinity, 
toxic heavy metals, and so on, induce plants to produce rich 
metabolic diversity, which provides the possibility of screening 
and utilization of nutrients in plant (Orcutt and Nilsen, 2000; 
Hounsome et al., 2008). For example, UV-B radiation induces 
the accumulation of the multi-functional active flavonoids 
in the corresponding tissues (Treutter, 2006); under drought 
conditions, the metabolites, such as carbohydrate metabolites, 
glycine betaine, proline, ectoine, can be increased to alleviate 
the damage of plant cells caused by water shortage (Mahajan 
and Tuteja, 2005). Both biotic and abiotic stresses induce the 
diversity of metabolites and also affect the nutritional quality 
of crops. Most metabolites such as sugars, organic acids, 
amino acids, vitamins, hormones, flavonoids, phenolics, and 
glucosinolates are essential for plant growth, development, stress 
adaptation, and defense, and the diversity of these metabolites 
also determines the nutritional quality, color, taste, and smell 
as well as antioxidative, anticarcinogenic, anti-inflammatory, 
antimicrobial, and cholesterol-lowering properties of food 
(Hounsome et al., 2008). Therefore, deciphering the metabolic 
diversity and genetic regulation of nutrients makes it possible 
to develop metabolic markers and genetic loci for metabolome-
assisted breeding and biofortification (Luo, 2015; Martin and Li, 
2017). Taking advantage of high-throughput metabolic profiling 
and genome sequencing, a series of advances have been made 
in the structural identification, biochemical characterization, 
genetic basis of synthesis, localization, and health benefits of crop 
nutrient metabolites (Fang et al., 2019).

In the current article, we review the diversity of nutrients 
in crops, ranging from traditional basic types to the novel 
types of nutrients that are currently receiving attention. We 
will summarize the origins of nutrient metabolite diversity 
from the perspective of the genome, focusing on the essential 
factors that determine metabolite diversity, including gene 
duplication and divergence. In addition, we will systematically 
review the latest advances in studies on the genetic basis of 
nutrient diversity, especially the forward genetics approach of 
metabolite-based genome-wide association study (mGWAS), 
which greatly promotes analyses of the genetic basis of 
metabolic pathways and diversity. Finally, we will summarize 
the application of molecular markers related to nutrients and 
their metabolic biosynthesis in crop breeding and discuss the 
future impact of metabolome-assisted breeding techniques on 
crop nutrient quality improvement.

FIGURE 1 | Biofortification of nutrients in rice endosperm. (A) Grains of the 
wild-type (WT), the golden rice (GR), canthaxanthin rice (CR), and astaxanthin 
rice (AR). (B) Simplified carotenoid/canthaxanthin/astaxanthin biosynthesis 
pathways reconstructed in rice endosperm. The enzymes (in blue) expressed 
from different combinations of the transgenes, together with those (in black) 
from the endogenous MEP pathway genes and OsLCYB, catalyze the 
biosynthesis of β-carotene, canthaxanthin, and astaxanthin as the main 
products in the GR, CR, and AR lines, respectively. The rate-limiting enzymes 
of the endogenous genes with no or low levels of expression are shown in 
gray. The figure is modified with permission from Elsevier.
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THE ORIGIN OF THE DIVERSITY OF 
NUTRITIONAL METABOLITES IN THE 
CONTEXT OF GENOME EVOLUTION

Primordial metabolism is generally regarded as chemical 
intermediates interconnected by a smaller number of ancestral 
enzymes with multifunctionality (Croteau et al., 2006; Fani and 
Fondi, 2009). Necessary metabolic processes became established 
since the appearance of plants in the land (Austin et al., 2004). 
Currently, plants produce a repository of structurally diverse 
compounds, including those vital for growth and development 
and for interactions of plants with environment (Weng et al., 
2012). With the development of cross-species metabolic profiling 
strategies, convergent and divergent evolution of metabolites 
have been identified in several species (Chen et al., 2016; Tohge 
et al., 2016; Zhou et al., 2016).

Among the demonstrated mechanisms of the evolution 
of metabolism, gene duplication and divergence have been 
documented to be vital sources of the raw material for such 
evolution (Moghe et al., 2017). There are at least four mechanistic 
categories of gene duplication, including i) tandem duplication, ii) 
polyploidy, iii) chromosomal segment duplication, and iv) single-
gene transposition–duplication (Freeling, 2009). The cytochrome 
P450 monooxygenase (P450) family is found to catalyze NADPH- 
and O2-dependent hydroxylation reactions, generally located at 
the cytoplasmic surface of the endoplasmic reticulum (Werck-
Reichhart and Feyereisen, 2000). P450 proteins are involved in 
the biosynthesis of various primary and secondary metabolites. 
In plants, P450s are generally categorized into the plant-specific 
A type and non-plant-specific non-A type, according to the 
evolutionary relationship (Durst and Nelson, 1995). There were 
three rounds (i.e., γ, β, and α) of polyploidization in A. thaliana 
and all other Brassicaceae taxa (Bowers et al., 2003). The level of 
the cytochrome P450 gene evolutionary group was highly enriched 
throughout evolutionary history. In addition, tandem duplication 
is also important for the evolution of the cytochrome P450 
supergene family (Yu et al., 2017). Furthermore, the evolution of 
genes encoding homospermidine synthase is also identified to be 
important for the biosynthesis of pyrrolizidine alkaloid (Ober et al., 
2003). Family of plant transcription factors, such as the MADS-
box family, and the diterpene synthases, such as isopimaradiene 
synthase and levopimaradiene/abietadiene synthase, undergo 
multiple gene duplications that increase secondary metabolites 
diversity (Keeling et al., 2008; Flagel and Wendel, 2009).

Gene duplications immediately lead to the presence of two 
identical gene copies. Both copies may remain almost unchanged or 
diverge functionally. Alternatively, one of the duplicates serves as a 
pseudogene. To explain the development of new enzymatic functions, 
at least two hypotheses have been proposed: the neofunctionalization 
hypothesis and the subfunctionalization hypothesis. According 
to the first hypothesis, one duplicate’s function resembles that of 
the ancestral gene, while mutations accumulate in the other gene 
during evolution, leading to a loss (nonfunctionalization) or a gain 
(neofunctionalization) of function (Ono, 1973; Rodin and Riggs, 
2003). In the latter hypothesis, the functions of the ancestral gene are 
divided between the daughter genes (Hughes, 1994). Alternatively, 

duplicated genes may also undergo intraspecific partitioning of 
functions. Because the divergent evolution of genes involved in plant 
metabolite synthesis and regulation is too large to be fully reviewed, 
we will mainly focus on the variation in expression. The subdivision 
of functions across duplicate genes may manifest as differential 
expression patterns across multiple genotypes or as differential 
expression patterns within a single genotype.

Kliebenstein found that duplicated genes have more variable 
transcript accumulation than the average gene. In addition, the 
expression of tandem duplicated genes are significantly variable 
than that of segmentally duplications (Kliebenstein, 2008). 
Moreover, epigenetic alleles are also critical for the determination 
of nutritional compounds accumulation.

Vitamin E consisted of tocopherol and its derivates. The first 
step of tocopherol synthesis is catalyzed by homogentisate phytyl 
transferase, producing 2-methyl-6-phytylquinol. This precursor 
is further catalyzed by dimethyl-phytylquinol methyl transferase 
to synthesize γ- and a-tocopherol (Almeida et al., 2011). 
Quadrana et al. identified an expression quantitative trait locus 
(QTL) for vitamin E content in tomato fruits. A retrotransposon 
was found to be located in the promoter of the methyltransferase-
encoded VTE3(1), whose methylation affects the expression of 
VTE3(1) (Quadrana et al., 2014).

DISSECTION OF THE GENETIC BASES OF 
NUTRITIONAL QUALITY IN CROPS

Plants produce structurally diverse chemicals in order to maintain 
normal life activities and adapt to ecological environments. 
Plant metabolites generally consist of primary and secondary 
metabolites (Luo, 2015). Primary metabolites are thought to be 
essential for growth and development and play an important role 
in maintaining the normal life activities of plants, while secondary 
metabolites are regarded as more closely related to stress responses, 
helping plants cope with biotic and abiotic stresses in a constantly 
changing environment (Weng et al., 2012; Wurtzel and Kutchan, 
2016). The considerable chemical diversity of plants is the source 
of nutrients required for human health, and the nutritional status 
of crops is ultimately dependent on their metabolic composition 
and content (Memelink, 2005). Metabolomic approaches 
enable parallel assessment of the levels of a broad range of plant 
metabolites, providing the possibility to study the diversity of 
crop nutrient metabolites (Fernie and Schauer, 2009; Samota 
et al., 2017). The recently developed widely targeted metabolomic 
approach based on liquid chromatography–mass spectrometry 
enables high-throughput detection of metabolite content (Chen 
et al., 2013) and has been used in several species, including rice 
(Chen et al., 2014; Chen et al., 2016), maize (Wen et al., 2014), 
citrus (Wang et al., 2016; Wang et al., 2017), and tomato (Zhu 
et al., 2018a). Comprehensive metabolic profiling and natural 
variation analysis of flavonoids were carried out in rice, and a total 
of 91 flavonoids were identified and quantified (Dong et al., 2014). 
Many advances have been made in the study of plant nutrient 
biosynthesis, such as vitamin A and oil in maize (Harjes et al., 2008; 
Li et al., 2013), carotenoids, sugars, and organic acids in tomato 
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(Lu and Li, 2008; Bursac et al., 2017; Tieman et al., 2017), and 
isoflavones in soybeans (Bursac et al., 2017).

In the process of studying the diversity of crop nutrients, it is 
critical to clarify how each metabolite is synthesized, transported, and 
degraded and how the metabolic pathway is regulated (Fang et al., 
2019). Advances in different omic technologies, such as genomics, 
transcriptomics, and metabolomics, have facilitated the qualitative 
and quantitative analysis of plant metabolites, as well as the detection 
of candidate genes involved in metabolic synthesis and regulation, 
which contribute to the diversity of plant metabolite modifications 
(Oksman-Caldentey and Saito, 2005; Urano et al., 2010; Wang et al., 
2019). This strategy to decipher the genetic basis of nutrients is 
further facilitated by recent advances in next-generation sequencing 
technology. For example, Sadre et al. recently identified two key 
genes for camptothecin biosynthesis, namely, TDC1 and TDC2, 
by analyzing transcriptome and metabolome data. They also found 
that CYCLASE1 (CYC1) is coexpressed with TDC1, suggesting that 
it may also be involved in camptothecin biosynthesis (Sadre et al., 
2016). Polturak et al. performed multi-species transcriptomic and 
metabolomic analyses in Mirabilis jalapa and additional betalain-
producing species to identify candidate genes possibly involved in 
betalain biosynthesis. Among the identified candidate genes, the 
betalain-related cytochrome P450 and glucosyltransferase-type 
genes that catalyze tyrosine hydroxylation and cinnamoyl-glucose 
formation were further functionally characterized (Polturak 
and Aharoni, 2018; Polturak et  al., 2018). Integration analysis 
of transcriptome and metabolome data is a powerful tool for 
deciphering the genetic determinants of metabolic pathways, yet it 
lacks the ability to unravel the genetic basis of natural variation in 
the plant metabolome (Fang et al., 2019).

To explore the genetic basis of the crop metabolome, forward 
genetics based on genomics and metabolomics is being widely 
used, for example, using the biparental populations to determine 
QTL mapping and using natural populations for genome-wide 
association studies (GWASs) (Kliebenstein, 2009; Zhao et al., 2011; 
Riedelsheimer et al., 2012a; Routaboul et al., 2012; Chen et al., 
2014; Chen et al., 2016; Wang et al., 2019). A number of advances 
have been made in the identification of metabolic quantitative 
trait locus (mQTL) using ultra-high density maps constructed 
using next-generation sequencing technologies, for example, 
integrating ultra-high-density maps of rice and metabolic profiles 
of seeds for mQTL mapping to analyze the genetic basis of the rice 
metabolomes and identifying hundreds of mQTLs in flag leaves 
or germinating seeds (Gong et al., 2013). QTL analysis in tomato 
seeds revealed colocalization of six amino acids on chromosomes 
2, 4, and 10, of which 10 candidate genes related to amino acid 
metabolism were screened on chromosome 2 (Toubiana et al., 
2015). To gain insight into the genetic factors controlling seed 
metabolism, QTL mapping was performed using the relative 
content of 311 primary metabolites. A total of 786 mQTLs were 
unevenly distributed in the genome, forming multiple hotspots. 
A series of candidate genes, including bZIP10, were identified 
to provide a basis for further study of the natural variation of 
Arabidopsis seed metabolism-related genes (Knoch et al., 2017).

Metabolic GWAS (mGWAS), which is used to decipher the 
genetic basis of plant metabolite biosynthesis and regulation, has 
made many advances in Arabidopsis (Chan et al., 2010; Wu et al., 

2018), maize (Wen et al., 2014; Jin et al., 2017), rice (Luo, 2015; 
Chen et al., 2016), tomato (Bauchet et al., 2017; Ye et al., 2017), and 
wheat (Peng et al., 2018). Angelovici et al. performed a non-targeted 
liquid chromatography–mass spectrometry-based metabolome 
profiling of 309 Arabidopsis germplasms grown in two separate 
environments and performed mGWAS analysis to determine 70 
significant associations between candidated genes and metabolites 
(Angelovici et al., 2013). Riedelsheimer et al. performed mGWAS 
analysis with 56,110 single nucleotide polymorphisms (SNPs) 
and 118 metabolites in maize inbred lines, identifying 26 different 
metabolites closely related to maize SNPs, of which p-coumaric 
acid and caffeic acid are closely related to the chromosome 9 region, 
which contains a gene encoding the key enzyme cinnamoyl-CoA 
reductase in the synthesis of lignin monomers (Riedelsheimer et 
al., 2012b). In rice, mGWAS analysis using 175 rice germplasms 
successfully identified 323 associations between 143 SNPs and 89 
secondary metabolites, revealing the genetic mechanism of natural 
variation in rice secondary metabolite composition (Matsuda et al., 
2015). Futhermore, Chen et al. performed quantitative analysis of 
840 metabolites on 524 natural rice populations and used mGWAS 
to identify many important genetic loci associated with different 
metabolites (Chen et al., 2014). A systematic study of the genetic and 
biochemical bases of natural variation in flavonoids and polyamines 
in rice led to the identification of candidate genes related to their 
biosynthesis by mQTL and mGWAS methods (Peng et al., 2016; 
Peng et al., 2017). mGWAS can also identify genetic loci that affect 
most of the target flavor chemicals in tomato. Tieman et al. identified 
2,014,488 common SNPs in 398 tomato germplasm genomes and 
identified 251 flavor-related signals using mGWAS (Tieman et al., 
2017). Peng et al., based on six multi-locus GWAS models of 14,646 
SNPs, found that 15 candidate genes are involved in free amino acid 
biosynthesis in wheat and functionally identified the candidate gene 
TraesCS1D01G052500 encoding tryptophan decarboxylase, which 
provides new insights into understanding the biosynthesis of free 
amino acid in wheat (Peng et al., 2018).

Multi-omics integration analysis and multiple stages of 
development and different organizational analyses have been 
increasingly used to provide insight into biological mechanisms 
since combining multiple different types of datasets can 
compensate for missing or unreliable information in any single 
data type (Fang et al., 2019). Metabolic profiling combined 
with transcriptome analysis has been used to identify new gene 
clusters and GAME9 transcription factors involved in steroidal 
glycoalkaloid biosynthesis (Itkin et al., 2013; Cardenas et al., 
2016). Joint metabolomic and genomic data subsequently allowed 
comprehensive refinement of steroidal glycoalkaloid biosynthesis 
(Schwahn et al., 2014). We recently performed multi-omics analysis 
of 610 tomato varieties, including genomes, transcriptomes, and 
metabolomes, to explore changes in fruit metabolomes during 
human-directed breeding (Zhu et al., 2018a). A total of 13,361 triple 
relationships (metabolite–SNP–gene), including 371 metabolites, 
970 SNPs, and 535 genes, were constructed by mGWAS and eQTL 
analysis, which facilitated the identification of candidate genes and 
the clarification of metabolic pathways. For example, the SNP of 
SlMYB12 (SNPy) discovered by excavating the abovementioned 
triple relationships was correlated with 69 metabolites and 69 
genes in the mGWAS and eQTL analysis, and mutation of the 
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SNP resulted in a decrease in nutrient flavonoid content, resulting 
in the formation of pink tomato (Zhu et al., 2018a). Multi-omics 
integrative analysis has also made breakthroughs in the study of 
tomato flavor and cucumber bitterness. Thirty-seven metabolites, 
including total soluble solids, glucose, fructose, citric acid, and 
malic acids, were found to affect tomato flavor, and a total of 
251 association signals were detected for 20 traits, including 
four nonvolatile and 15 volatile flavor chemicals (Tieman et al., 
2017). Shang et al. discovered that two TFs regulate nine genes in 
the cucurbitacin C biosynthetic pathway and proposed a model 
for how extremely bitter wild cucumber was domesticated into 
nonbitter cultivars (Shang et al., 2014). These examples show that 
exploring the biochemical and genetic bases of nutrient diversity 
can provide new opportunities to increase the level of nutrient 
biofortification or to change the flavor characteristics that are 
beneficial to human health (Dixon, 1999).

THE APPLICATION OF METABOLIC 
DIVERSITY IN CROP BREEDING

As described by the adage “health comes from the farm, not 
the pharmacy,” crops serve as sources of metabolites essential 
for the nutrition and health of humans. Ongoing international 
biofortification research and breeding programs strive to 
improve life and well-being (Riezzo et al., 2005). Vitamins and 
anthocyanins are important targets for biofortification because 
they are sourced primarily from food.

Vitamins
Structural genes and their origination are essential for 
biofortification. A group of fat-soluble C20 carotenoid derivatives 
are denoted as vitamin A, including retinal, retinol and its esters, 
and retinoic acid. Certain carotenoids, referred to as provitamin 
A, are cleaved to form vitamin A within the body (Yeum and 
Russell, 2002). Vitamin A is essential for human health and 
development (West et al., 2002). Golden rice was developed to 
deliver provitamin A to ease the global deficiency of vitamin A; in 
this rice, the carotenoid biosynthetic pathway is reconstituted in 
the endosperm. Although the endosperm of rice cultivars does not 
accumulate provitamin A, the earlier intermediate geranylgeranyl 
diphosphate is present in rice endosperm, which can produce the 
phytoene under the catalization of plant phytoene synthase (PSY). 
A transgenic approach was adopted to accumulate provitamin 
A in the endosperm of rice by expressing a PSY and a bacterial 
phytoene desaturase (CrtI) (Ye et al., 2000). Genetically modified 
golden rice produces as much as 1.6 mg/g total carotenoids in 
the endosperm, leading to its characteristic yellow color. The 
limiting and major regulatory step for carotenoid biosynthesis is 
thought to be phytoene synthase (Fraser et al., 1994; Ronen et al., 
1999; Fraser et al., 2002). To increase the carotenoid content of 
golden rice, systematic tests of psy genes from different plant 
species were carried out. Hence, “Golden Rice 2” was created by 
expressing the maize-originated psy gene and the CrtI gene from 
Erwinia uredovora, leading to the accumulation of up to 37 ug/g 
total carotenoids in the endosperm and preferential production of 
β-carotene (Paine et al., 2005).

Biofortification can be carried out by ectopic expression of 
metabolic pathways in crops. Astaxanthin, a red ketocarotenoid 
synthesized from β-carotene, is used in feedstuffs as a supplement. 
BKT and β-carotene hydroxylase are essential for the producing 
of astaxanthin (Higuera-Ciapara et al., 2006). Although different 
hydroxylated carotenoids pile up in the majority of higher plants, 
the biosynthesis of ketocarotenoids is impaired due to the absence 
of BKT genes (Cunningham and Gantt, 2005; Zhu et al., 2009). 
Astaxanthin has been successfully ectopically expressed in several 
species with the presence of native β-carotene by introducing two 
(β-carotene hydroxylase and BKT) transgenes or a single (BKT) 
transgene (Hasunuma et al., 2008; Jayaraj et al., 2008; Huang et al., 
2013; Harada et al., 2014; Campbell et al., 2015; Farre et al., 2016). 
However, rice endosperm does not accumulate β-carotene, which 
can be preferentially produced by overexpressing ZmPSY1 and PaCrtl 
(Paine et al., 2005). Zhu et al. developed canthaxanthin rice, which 
has a high ketocarotenoid content, by expressing ZmPSY1, PaCrtl, 
and CrBKT in the rice endosperm (Figure 1) (Zhu et al., 2018b).

Folate, only synthesized de novo in plants and microorganisms, 
decreases the risk of several diseases (Iyer and Tomar, 2009). Folate 
biofortification was performed in both tomato fruits and rice 
seeds (Diaz De La Garza et al., 2007; Storozhenko et al., 2007). To 
increase the folate content in tomato and rice, two genes encoding 

FIGURE 2 | Contributions of metabolomics for metabolome-assisted breeding. 
This flow chart shows how the metabolome can be used to guide the improved 
quality of crops. Multi-omics integration analysis is used to analyze the genetic 
basis of crop nutrients, to explore molecular markers that determine the content 
of nutrient metabolites, and to establish an interaction network of metabolites, 
markers, genes, and important agronomic traits to guide the precise breeding 
of metabolome assisted. The figure is modified with permission from Elsevier 
(Al-Babili and Beyer, 2005).
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Anthocyanins
Transcriptional regulation of the genes in entire metabolic 
pathways provide effective tools for metabolic engineering. 
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health, which decrease the risk of certain cancers and other 
diseases (Wang and Stoner, 2008; Deng et al., 2013; Zhang et al., 
2014). Butelli et al. overexpressed the Delila (Del) and Rosea1 
(Ros1) genes from the snapdragon Antirrhinum majus in tomato, 
which encode a basic helix-loop-helix transcription factor and 
a MYB-related transcription factor, respectively. The transgenic 
tomatoes exhibited significantly activated transcription levels of key 
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biosynthesis and genes essential for side-chain modification. 
Consequently, overexpression of Del/Ros1 activated the production 
of anthocyanins in tomatoes, resulting in a purple color (Butelli 
et al., 2008). AtMYB12 driven by the fruit-specific E8 promoter 
increases the expression levels of genes in primary metabolism and 
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acids. Indigo tomato was developed by crossing AtMYB12 tomato 
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(Zhang et al., 2015). Although anthocyanins accumulate in several 
tissues of plants, the endosperm of cereals lacks anthocyanins. The 
pericarp of some special varieties of rice accumulates anthocyanins 
and proanthocyanidins. Many efforts have been made to decode 

the sophisticated anthocyanin biosynthesis pathway in plants, 
leading to the identification of conserved enzymes, as well as several 
regulatory proteins (Hichri et al., 2011; Dixon et al., 2013; Zhang 
et al., 2014; Yuan and Grotewold, 2015). To develop rice with a high 
anthocyanin content in the endosperm, eight anthocyanin pathway 
genes were transferred into rice calli, including six structural genes 
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genes. The transgenic plants displayed purple endosperm due to 
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FUTURE PERSPECTIVES

Past research has focused largely on annotating more metabolites 
and decoding metabolic pathways. However, a far more exciting 
research front in crop breeding has been produced by the multi-
omics studies. Here, we have reviewed recent advances, focusing on 
the diversity of phytonutrients and its genetic bases. Our knowledge 
on the biosynthesis and the diversity of plant metabolites will be 
enhanced by studies with multi-omics data. The metabolome-
assistant breeding will contribute greatly to the improvement of 
crops with additional nutritional value (Figure 2) and that natural 
and artificial populations of crops will provide vast gene resources 
and parental materials.
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