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Resistance to drought stress is fundamental to plant survival and development. Abscisic 
acid (ABA) is one of the major hormones involved in different types of abiotic and biotic 
stress responses. ABA intracellular signaling has been extensively explored in Arabidopsis 
thaliana and occurs via a phosphorylation cascade mediated by three related protein 
kinases, denominated SnRK2s (SNF1-related protein kinases). However, the role of 
ABA signaling and the biochemistry of SnRK2 in crop plants remains underexplored. 
Considering the importance of the ABA hormone in abiotic stress tolerance, here we 
investigated the regulatory mechanism of sugarcane SnRK2s—known as stress/ABA-
activated protein kinases (SAPKs). The crystal structure of ScSAPK10 revealed the 
characteristic SnRK2 family architecture, in which the regulatory SnRK2 box interacts 
with the kinase domain αC helix. To study sugarcane SnRK2 regulation, we produced a 
series of mutants for the protein regulatory domains SnRK2 box and ABA box. Mutations 
in ScSAPK8 SnRK2 box aimed at perturbing its interaction with the protein kinase domain 
reduced protein kinase activity in vitro. On the other hand, mutations to ScSAPK ABA 
box did not impact protein kinase activity but did alter the protein autophosphorylation 
pattern. Taken together, our results demonstrate that both SnRK2 and ABA boxes might 
play a role in sugarcane SnRK2 function.

Keywords: abscisic acid, abiotic stress, SnRK2, crop plant, kinase regulation, sugarcane

INTRODUCTION

The phytohormone abscisic acid (ABA) is a central regulator of plant responses to abiotic stress. ABA 
triggers protective plant responses leading to stomatal closure, seed dormancy, inhibition of growth, 
and germination (Mustilli, 2002; Yoshida et al., 2002; Yoshida et al., 2006; Fujii et al., 2007; Fujii and 
Zhu, 2009). ABA’s signaling role is carried out by a protein phosphorylation cascade that depends on 
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the interplay between the activities of SnRK2 kinases and protein 
phosphatase 2C (PP2C) (Fujii et al., 2009; Umezawa et al., 2010).

In eudicotyledons, members of the SnRK2 sub-family of 
serine-threonine kinases (SnRK2.2/2.3/2.6 in Arabidopsis) are 
the positive regulators of ABA signaling and activate downstream 
transcription factors, leading to the expression of stress-responsive 
genes (Fujii and Zhu, 2009; Fujii et al., 2009; Fujita et al., 2009; 
Nakashima et al., 2009). Counterpart kinases in monocots are 
known as stress/ABA-activated protein kinases (SAPK8/9/10) 
(Kobayashi et al., 2004; Yoshida et al., 2006). ABA-responsive 
kinases from both mono- and eudicotyledons are expected to 
have a conserved modular architecture and to be involved in 
environmental sensing and stress response (Kulik et al., 2011).

The C-terminal SnRK2 box is essential for kinase activation 
by hyperosmotic stress and displays high-sequence conservation 
among members of the SnRK2 subfamily (Kobayashi et al., 2004; 
Yoshida et al., 2006). The crystallographic structures of Arabidopsis 
SnRK2.3 and 2.6 have shown that the SnRK2 box folds into a 
helix and packs against the catalytically important αC helix within 
the protein kinase domain (Ng et al., 2011; Yunta et al., 2011). 
Mutational studies have demonstrated that the interaction between 
these two helices is crucial for kinase autoactivation and subsequent 
phosphorylation of the transcription factor ABF2 (Ng et al., 2011).

SnRK2/SAPK activity is modulated by direct interaction 
with PP2C phosphatases, which, in turn, depends on 
intracellular ABA levels. In the presence of the hormone, 
the phosphatase activity is impaired by the interaction with 
the complex formed by ABA and PYL/PYR/RCAR receptors 
(Ma et al., 2009; Melcher et al., 2009; Miyazono et al., 2009; 
Nakashima et al., 2009; Park et al., 2009; Umezawa et al., 2009; 
Yin et al., 2009; Moreno-Alvero et al., 2017). The complex 
blocks PP2C substrate entry and prevents SnRK2 inactivation 
by dephosphorylation. In the absence of ABA, PP2C is 
released from the complex with PYL/PYR/RCAR receptors 
and can interact with the SnRK2 kinases, leading to kinase 
dephosphorylation and repression of ABA-response. The 
interaction between kinase and phosphatase is mediated by 
another C-terminal motif, known as ABA box, only preserved 
in the ABA-responsive members of the SnRK2 subfamily 
(Umezawa et al., 2009; Vlad et al., 2009; Soon et al., 2012).

SnRK2 subfamily members have been identified in several 
crop plants, such as rice, maize, cotton, and wheat (Kobayashi 
et al., 2004; Huai et al., 2008; Zhang et al., 2010; Liu et al., 2017). 
Just like their counterparts from Arabidopsis, these proteins 
have been shown to mediate plant responses to abiotic stress 
and ABA. In Saccharum officinarum L. (So) sugarcane, a recent 
study identified ten SnRK2 subfamily members, three of which 
(SoSAPK8/9/10) have the characteristic ABA box in their 
C-terminus and, accordingly, are responsive to ABA (Li et al., 
2017). Despite these studies, currently, there is no structural and 
biochemical information on SnRK2 subfamily members from 
crop plants. Moreover, the role of the regulatory domains SnRK2 
box and ABA box in protein activity and activation remain 
unclear for sugarcane and other crop plants, in contrast with the 
extensive characterization in Arabidopsis.

In this study, we report the crystal structure of SAPK10 from 
the crop plant sugarcane (Saccharum ssp. hybrids). We also 

investigated how SnRK2 and ABA boxes modulate the activity of 
SAPK8/9/10. These analyses confirmed that, overall, the SnRK2 
box within sugarcane SAPKs preserves its role in protein activity, 
albeit to a lesser extent when compared to the Arabidopsis 
proteins. Finally, we identified several auto-phosphorylated 
sites within SAPK kinase surface that might have a role in their 
interaction with PP2C and/or downstream partners.

MATERIALS AND METHODS

Gene Identification and Bioinformatics 
Analyses
The sequences of ScSAPK8, ScSAPK9, and ScSAPK10 were 
identified using the Sugarcane Expressed Sequence Tag (SUCEST) 
database and the homologous sequences from Sorghum bicolor 
SbSAPK8: Sb01g007120, SbSAPK9: Sb08g019700 and SbSAPK10: 
Sb01g014720) and Arabidopsis thaliana (SnRK2.2: 824214, 
SnRK2.3: 836822, SnRK2.6: 829541) were used as reference 
(Vettore et al., 2003). The coding sequences of the three sugarcane 
SAPKs were isolated from the sugarcane leaf cDNA (cultivar 
SP80-3280) using specific primers (Supplementary Table S1).

For analysis of protein conservation, protein sequences from 
A. thaliana, Zea mays SAPK8 (NP_001149657.1), and Saccharum 
spp. were aligned using BioEdit and Clustal Omega (Hall, 1999; 
Sievers and Higgins, 2014). The sequence similarities, as well as 
the secondary structure elements, were further analyzed using 
the ESPript 3.0 program (Robert and Gouet, 2014). The analysis 
of protein domains was performed using PFAM and SMART 
databases (Schultz et al., 1998; Finn et al., 2016).

For phylogenetic analysis using MEGA7 software (Kumar et al., 
2016), multiple sequence alignment was previously performed 
using MUSCLE server (Madeira et al., 2019). The phylogenetic 
tree was constructed using the Maximum Likelihood method, 
Jones-Taylor-Thornton model with invariant sites (Jones et al., 
1992), 1000 times bootstrapping and gaps elimination.

ScSAPKs Cloning and Recombinant 
Protein Expression in Escherichia coli
The full-length sequences of ScSAPK8/9/10 were cloned 
into pNIC28-Bsa4 using the ligase-independent cloning 
(LIC) method (Savitsky et al., 2010). For large scale protein 
expression, the constructs were transformed into E. coli strain 
BL21(DE3)-R3-pRARE2 (Savitsky et al., 2010) and grown at 
37°C in 20 ml of LB medium with kanamycin (50 µg/ml). After 
overnight growth, the bacterial culture was inoculated into 
1.5  L of Terrific Broth medium with kanamycin (50 µg/  ml), 
which was incubated at 37°C with shaking until an OD600 of 
1.5. The culture was cooled to 18°C before the addition of 
0.2 mM of IPTG (Isopropyl β-d-1-thiogalactopyranoside) for 
overnight expression. Cells were harvested by centrifugation 
at 7,500×g at 4°C and suspended in approximately 20 ml of 
2× lysis buffer (100 mM HEPES pH 7.5; 1 M NaCl, 20 mM 
imidazole, 20% glycerol) with 1 µL per ml protease inhibitor 
cocktail. Suspended cells were placed on ice and sonicated for 
9 min (5 s on; 10 s off; 30% amplitude). Polyethyleneimine 
(pH 7.5) was added to the lysate at 0.15% final concentration, 
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and the lysate was clarified by centrifugation at 53,000 ×g for 
45 min at 4°C. The supernatant was loaded onto an IMAC 
column (5 ml HisTrap FF Crude) and washed with Binding 
Buffer (50 mM HEPES pH 7.4, 500 mM NaCl, 5% glycerol, 10 
mM imidazole pH 7.4, 0.5 mM tris(2-carboxyethyl)phosphine 
(TCEP)) and Wash Buffer (50 mM HEPES pH 7.4, 500 mM 
NaCl, 5% glycerol, 30 mM imidazole pH 7.4, 0.5 mM TCEP). 
The protein was eluted with 10 ml of Elution Buffer (50 mM 
HEPES pH 7.4, 500 mM NaCl, 5% glycerol, 300 mM imidazole 
pH 7.4, 0.5 mM TCEP) in 2-ml fractions. The eluted fractions 
were combined and incubated with TEV protease during 
overnight dialysis against GF Buffer (Binding Buffer without 
imidazole). TEV protease, as well as the cleaved 6xHis-tag, 
were removed using nickel-affinity chromatography resin. 
The protein was concentrated to 5 ml with a 30-kDa MWCO 
spin concentrator and loaded onto a size exclusion HiLoad 
16/600 Superdex 200pg (GE) column equilibrated in GF 
buffer. Fractions of 1.8 ml were collected and verified for 
protein purity on a 12% SDS-PAGE gel. Purified fractions were 
combined, concentrated, and stored at −80°C.

ScSAPK10 Crystallization, Data Collection 
and Structure Determination
For crystallization experiments, the truncated construct  of 
ScSAPK10 corresponding to amino acids 12 to 320 
(ScSAPK10_∆Nterm-∆ABA box) was cloned, and the 
recombinant protein produced as above. Before setting up 
crystallization trials, protein aliquots at 24 mg/ml were thawed 
and centrifuged at 15,000 rpm for 10 min at 4°C. Crystallization 
sitting drops were manually mounted using a 1:1 ratio of protein 
to reservoir solution. Crystals grew in 1.5M ammonium sulfate; 
0.1M bis-tris pH 6.5 and 0.1M sodium chloride (reservoir 
solution) after 2 days at 20°C and were cryoprotected in reservoir 
solution supplemented with 30% glycerol before flash cooling in 
liquid nitrogen. Diffraction data were collected at the Advanced 
Photon Source (Chicago, USA) beamline 19ID. The X-ray 
diffraction data were integrated with XDS (Kabsch, 2010) and 
scaled using AIMLESS from the CCP4 software suite (Winn 
et al., 2011). The structure was solved by molecular replacement 
using Phenix (Adams et al., 2002) and the A. thaliana SnRK2.6 
structure (PDB ID 3ZUT) as the initial model (Yunta et al., 
2011). Refinement was performed using REFMAC5 (Murshudov 
et al., 2011). Coot (Emsley et al., 2010) was used for manual 
model building and local refinement. Structure validation was 
performed using MolProbity (Chen et al., 2010). Structure 
coordinates have been deposited in the Protein Data Bank (PDB 
ID 5WAX) (Table 1).

ScSAPK10 WT and ScSAPK10_∆Nterm-
∆ABA Box Autophosphorylation Assay
The ScSAPK10 WT and ScSAPK10 ∆Nterm-∆ABA box were 
expressed as previously described. For the in vitro phosphorylation 
assay, the proteins were diluted in kinase buffer (25 mM HEPES 
pH 7.5; 12 mM MgCl2, 1 mM dithiothreitol [DTT]) to a final 
concentration of 30 μg and incubated with or without 5 mM ATP 
(Sigma—catalog A7699). After 1 h incubation at 37°C, 10 μl of 

aliquots were removed, and the reaction stopped by freezing in 
liquid nitrogen. Samples were analyzed by LC-MS.

Site-Directed Mutagenesis and ScSAPK8 
Expression for Phosphorylation Assays
The SnRK2 box and ABA box mutants were produced by site-
directed mutagenesis with specific primers (Supplementary 
Table S1) using as template the full-length construct 
of ScSAPK8 in pNIC28-Bsa4. The mutated constructs 
were confirmed by sequencing and transformed in E. coli 
BL21(DE3)-R3 cells which express rare tRNAs (plasmid 
pACYC-LIC+) and the λ-phosphatase.

All proteins were expressed at the same time using the same 
protocol described previously. After bacterial culture lysis, the 
clarified supernatants were loaded in 4 ml of Ni2+-sepharose 
beads (GE Healthcare, Uppsala), washed with binding buffer 
(4 × 4 ml) and wash buffer (3 × 4 mL). The proteins were eluted 
with elution buffer (4 × 4 ml), and the imidazole was removed 
using Sephadex G-25 PD-10 Desalting Columns (GE Healthcare, 
Uppsala). Protein purity was analyzed by SDS-PAGE gel, and 
protein masses were confirmed by intact mass spectrometry.

ScSAPK8 WT and Mutants 
Autophosphorylation Assay
Each protein (diluted in GF buffer to 20 μM final concentration) 
was incubated with 10 mM MgCl2 and 1 mM ATP (Sigma – 
catalog A7699) at 20°C in a final volume of 200 μl. After every 
time point (1 h, 5 h, and overnight), 20 μl of aliquots were 
removed, and the reaction stopped by the addition of 10 mM 

TABLE 1 | Data collection and refinement statistics.

Protein ScSAPK10

PDB ID 5WAX

Data collection  
X-ray source APS 19-ID
Wavelength (Å) 0.979200
Space group C 2 2 21

Cell dimensions (Å) a, b, c. 75.4, 214.6, 93.8
Cell dimensions (°) α, β, γ. 90, 90, 90
Molecules/asymmetric unit 2
Resolution (Å)* 46.58–2.00 (2.05–2.0)
Unique reflections* 51563 (3763)
Rmerge (%)* 8.3 (98.3)
I/σ (I)* 16.0 (1.6)
CC (1/2)* 0.999 (0.604)
Completeness (%)* 99.6 (99.9)
Redundancy* 5.5 (5.6)
  
Refinement  
Resolution (Å)* 46.58–2.00 (2.05–2.0)
Rcryst/Rfree (%) 19.83/23.7
No. atoms (protein/solvent) 4360/387
Mean B-factor (Å2) 29.9
Root mean square deviation (r.m.s.d.) bond lengths 
(Å), angles (°) 

0.012, 1.49

  
Ramachandran statistics (%)  
Favored/allowed/outliers 96.3/3.7/0

*Values in parentheses represent the highest resolution shell.
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EDTA. Samples were analyzed by LC-MS. For these assays, 
the protein concentration was estimated by Bradford (Sigma-
Aldrich) and SDS-PAGE analysis.

Kinase Activity Assay
The enzymatic activity of ScSAPK8 WT and its SnRK2 box and ABA 
box mutants were measured using a TR-FRET based assay (Cisbio 
Kinease, catalog 62ST1PEB). Prior to testing the activity of wild-
type and mutant proteins, assay conditions were optimized. For the 
enzymatic reaction, proteins were diluted in GF buffer supplemented 
with 10-mM MgCl2 to a 20-μM final concentration and incubated 
overnight at 20°C with or without 1 mM ATP. After 16 h, the activity 
of proteins pre-incubated with Mg2+/ATP and Mg2+ was tested 
using the peptide STK-1 at 1-μM final concentration. Final assay 
concentrations were: 50-nM kinase, 2-mM ATP, 10-mM MgCl2, and 
1-mM DTT. The reaction was allowed to progress for 1 h at room 
temperature before the detection step was performed according to 
the manufacturer’s instructions. Fluorescence resonance energy 
transfer (FRET) signal was acquired using a ClarioStar fluorescence 
plate reader (BMG Labtech) (excitation/emission wavelengths of 
330 and 620/650 nm, respectively). Results reported are from two 
independent experiments performed in triplicates.

The activity data are presented as mean ± SD. The difference of 
three or more groups to the wild type was compared using one-
way analysis of variance (ANOVA) with Dunnett’s correction. 
Two-way ANOVA post-hoc Bonferroni was used to compare 
the mean of each protein with no pre-incubation with ATP 
and 16-h ATP incubation. In all cases, P < 0.05 was considered 
statistically significant. Statistical analyses were performed on 
Prism 8 (GraphPad).

ScSAPK8 WT Phosphosite Identification
Purified ScSAPK8 WT and ∆ABA box mutant (20 μM final 
concentration) were diluted in GF buffer supplemented with 
10 mM MgCl2 and incubated with 1 mM ATP (Sigma – catalog 
A7699) overnight at 20°C. The reaction was stopped by adding 
10-mM EDTA (final concentration) before flash-freezing 
samples in liquid nitrogen. Protein intact mass was determined 
by LC-MS, and phosphosites were identified by LC-MS/MS. 
The sample was buffer-exchanged into 50-mM ammonium 
bicarbonate and treated with 25 µL of RapiGest SF (0.2%; 
Waters Corp. catalog 186001861) for 15 min at 80°C. DTT (100 
mM stock prepared in 50 mM Ammonium Bicarbonate) was 
added to a final concentration of 4 mM, and the mixture was 
incubated for 30 min at 60°C. Iodoacetamide (IAA) (300 mM 
stock prepared in 50 mM Ammonium Bicarbonate) was added 
to the mixture at a final concentration of 12 mM. The mixture 
was protected from light and incubated for 30 min. Trypsin 
(catalog V511A; Promega, Fitchburg, WI, USA) prepared in 50 
mM ammonium bicarbonate was added to the mixture (1:100 
mass ratio of trypsin to protein) and incubated for 16 h at 37°C 
under agitation. To hydrolyze the RapiGest, trifluoroacetic acid 
(TFA) (catalog 53102; Pierce, Waltham, MA, USA) was added, 
and the mixture incubated for 90 min at 37°C. The reaction was 
centrifuged at 14,000 rpm for 30 min at 6°C, and the supernatant 
transferred to a fresh microcentrifuge tube (Axygen, Union City, 

CA, USA) for subsequent LC-MSMS analysis. Data have been 
deposited to the ProteomeXchange Consortium via the PRIDE 
(Perez-Riverol et al., 2019) partner repository with the data set 
identifier PXD014298.

Mass Spectrometry Analysis
For intact mass analysis, samples were analyzed via reverse 
phase HPLC-ESI-MS in positive ion mode using an Acquity 
H-class HPLC system coupled to a XEVO G2 Xs Q-ToF mass 
spectrometer (both from Waters Corp.). A total of 0.5-μl sample 
(~12.5 ng) in mobile phase Solvent A (0.1% formic acid [FA], 
prepared in water) was applied onto a C4 column (ACQUITY 
UPLC Protein BEH C4 300 Å, 1.7 µm, 2.1 mm × 100 mm; Waters 
Corp.) kept at 45°C. Bound protein was eluted by a gradient of 
10-90% Solvent B (0.1% FA in 100% acetonitrile [ACN]) over 4 
min. Between each injection, the column was regenerated with 
90% Solvent B (for 90 s) and re-equilibrated to 10% Solvent B 
(210 s). Flow rates were 0.5-µL/min for sample application and 
0.4 ml/min (wash and elution). For internal calibration, the 
lockspray properties were: scan time of 0.5 s; and a mass window 
of 0.5 Da around Leu-enkephalin (556.2771 Da). The ToF-MS 
acquisition ranged from 100 to 2000 Da with a scan time of 1 s. 
The cone voltage on the ESI source was fixed at 40 V.

For phosphosite identification, samples were analyzed by 
reverse phase nanoLC-ESI-MSMS using an Acquity M-class 
HPLC system coupled to a XEVO G2 Xs Q-ToF (both from 
Waters Corp.). A total of 2-μl sample in mobile Solvent A was 
applied onto a Trap column (V/M, Symmetry C18, 100 Ǻ, 
5 µm, 180 µm × 20 mm) connected to an HSS T3 C18 column 
(75 µm × 150 mm, 1.8 μm), kept at 45°C. LC was performed at a 
flow rate of 400 nL/min, and the elution of bound peptides was 
performed over a 47-min gradient as follows: 0-30.37 min from 
7-40% Solvent B; 30.37-32.03 min from 40% to 85% Solvent B; 
32.34-35.34 min at 85% Solvent B; 35.34-37 min from 85% to 
7% Solvent B and 37-47 min at 7% B. The nano-ESI source was 
set with the following parameters: the capillary voltage was 2.5 
kV, the sampling cone and the source offset was set at 30 V, the 
temperature source was 70°C, the gas flow and the purge gas were 
set at 50 and 150 L/h, and the nano gas flow was maintained at 
0.5 bar. Data were acquired at 0.5 scan/s, over the mass range 
of 50 to 2000 m/z in positive and sensitive mode. The MS data-
independent acquisition mode was used with a low energy 
collision switched off and a high collision energy ramp 15 to 45 eV 
in the second function for fragmentation. For mass accuracy, the 
Glu-Fibrinopeptide (785.84261 Da 2+) was used as lock mass at a 
concentration of 100 fM (in 40:60 ACN/H2O, 0.1% FA) infused at 
a flow rate of 0.5 µL/min via a lock spray interface and an auxiliary 
pump. Lock mass scans were acquired every 30 s at a rate of 0.5 
scan/s. Lockmass was acquired but not applied on the fly.

MS Data Analysis
MS raw data were analyzed using MassLynx v4.1 and processed by 
MaxEnt 1 (both from Waters Corp.) to deconvolute multi-charged 
combined ion spectra for intact mass analysis. Phosphoproteomic 
raw data were processed using the Protein Lynx Global Server 
(PLGS, Waters Corp.) against the sugarcane protein database 
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(UniProt release 2017_12). Data processing was performed in two 
steps. First, PLGS extracted all acquired spectra using the following 
parameters: lock mass (charge 2 = 785.84261 Da/e) window set to 
0.4 Da; low energy threshold fixed at 500 counts; elevated energy 
threshold at 50 counts; chromatographic peak width and MS ToF 
resolution were set to automatic. Then, a database search was 
performed with the following parameters: peptide and fragment 
tolerance were set to automatic; two fragments ion matches per 
peptide and five fragments ion matches per protein were fixed, as 
well as a minimum of one peptide match per protein; one missed 
cleavage was allowed; trypsin was set as the primary digestion; 
carbamidomethylation of cysteine was set as a fixed modification, 
oxidation of methionine, and phosphorylation of Ser/Thr/Tyr 
residues were set as a variable modification.

RESULTS

ABA-Responsive SnRK2s in Sugarcane
Three ABA-responsive SnRK2s were identified within the sugarcane 
genome (S. spontaneum × S. officinarum hybrid cultivar) using 
homologous protein sequences from A. thaliana and Sorghum 
bicolor. Based on previous studies in monocots and eudicots, these 
were designated ScSAPK8, ScSAPK9, and ScSAPK10 (Boudsocq 
et al., 2004; Kobayashi et al., 2004; Fujii et al., 2009; Fujita et al., 
2009; Li et al., 2010; Cai et al., 2014; Li et al., 2017).

Phylogenetic analysis revealed that sugarcane SnRK2s 
present higher homology to Z. mays SAPK8 compared to A. 
thaliana proteins (Supplementary Figure S1). The ZmSAPK8 
protein is homologous to Arabidopsis SnRK2.6 and preserves 
a fundamental role in the coordination of stomatal movements 
and drought stress response (Vilela et al., 2013; Wu et al., 
2019). At the amino acid level, sugarcane SAPKs share high-
sequence identity with ZmSAPK8 (≥78%) and A. thaliana 
proteins (≥71%) (Figure 1). Moreover, Arabidopsis ABA-
responsive SnRK2s and their sugarcane counterparts display 
an identical modular architecture, in which the N-terminal 
kinase domain (KD; ~260 amino acids) is followed by two 
highly conserved motifs—the SnRK2 box (16 amino acids) 
and ABA box (27 amino acids) (Supplementary Figure S2). 
The function of the N-terminal regions of each protein (about 
20 residues) remains to be elucidated.

Sugarcane and A. thaliana ABA-Responsive 
SnRK2s Share a Conserved Kinase Fold
To better understand the mechanism of sugarcane ABA-responsive 
SnRK2s, we pursued crystallization of all three ScSAPK proteins. 
Despite our best efforts, we could not obtain diffraction quality 
crystals of ScSAPK8 or ScSAPK9. To improve the diffraction 
quality of initial ScSAPK10 crystals, we used a truncated version 
of the protein (residues 12 to 320) in which residues at both N- 
and C-terminal regions were removed, including the ABA box. 
The protein structure was solved at 2.0 Å resolution by molecular 
replacement using the AtSnRK2.6 structure (PDB ID: 3ZUT) 
(Yunta et al., 2011) as a model (Table 1).

ScSAPK10 has a canonical kinase fold: a bilobal structure 
formed by a smaller N-terminal lobe and a larger C-terminal 

lobe connected by a short hinge region (Figure 2A). The protein 
N-terminal lobe is composed of five antiparallel β-strands, 
including the ATP-binding loop (P-loop) between β1 and β2, and 
the αC helix (Pearce et al., 2010). The C-terminal lobe contains 
the activation loop and several α-helices. Residues within the 
ScSAPK10 SnRK2 box (Met304-Pro320) are folded into an 
α-helix and packed against αC from the protein kinase domain 
(Figure 2B). No electron density was observed for residues in the 
activation loop (residues 165 to 181) or the region of the protein 
connecting the kinase domain and the SnRK2 box (residues 279 
to 294), likely due to flexibility. These regions were omitted from 
the final model.

Superposition of ScSAPK10 onto the structures of AtSnRK2.3 
and 2.6 (Ng et al., 2011; Yunta et al., 2011) confirmed our 
expectation that ABA-responsive SnRK2s from mono and eudicot 
plants are structurally similar—ScSAPK10 and AtSnRK2.3 
root mean square deviation (r.m.s.d.): 2.32 Å; ScSAPK10 and 
AtSnRK2.6 r.m.s.d: 1.35 Å (Figure 2D). In the crystal, ScSAPK10 
adopted an inactive conformation in which the side chain of 
Phe153 within the conserved kinase motif DFG points toward 
the ATP-binding site. In this inactive conformation, structurally 
conserved regions of the kinase domain important for phosphate 
transfer are kept apart. Moreover, the protein P-loop was found 
folded toward the kinase hinge region, an orientation that is 
likely to prevent binding of ATP (Figure 2C).

SnRK2s Box Structure and Function 
Are Conserved Between ScSAPK 
and AtSnRKs
As seen for other SnRK2 family members, ScSAPK10 SnRK2 
box is packed against the αC helix, within the protein kinase 
domain (Figure 2). Contacts between αC and the SnRK2 box 
are facilitated by conserved amino acids bearing aliphatic side 
chains (Figures 3A–C). Previous studies have shown that single-
point mutations disturbing hydrophobic interactions between 
αC and SnRK2 box decreased kinase activity of AtSnRK2s (Ng 
et al., 2011). Considering the high levels of conservation between 
ScSAPKs and their A. thaliana counterparts, we decided to 
investigate if a similar mechanism could regulate the activity of 
the sugarcane proteins.

To measure the activity of recombinantly expressed 
ScSAPKs, we employed a commercially available enzymatic 
assay (KinEASE, Cisbio) and a generic peptide substrate (STK1 
from the same vendor). As can be seen in Supplementary 
Figure S3, phosphorylation of the peptide substrate increased 
with increasing concentrations of ScSAPK8. Pre-incubation of 
the enzyme with ATP also increased ScSAPK8 kinase activity. 
We, thus, employed this assay to study the impact of perturbing 
the interaction between the protein SnRK2 box and αC helix on 
the activity of ScSAPK8.

We used site-directed mutagenesis to substitute conserved 
SnRK2 box residues (Met312, Ile315, or Leu319) with an alanine. 
All proteins were expressed and purified side by side and had 
their purity and concentration evaluated spectroscopically and 
by SDS-PAGE (Supplementary Figure S4). We first performed 
enzymatic assays to compare the overall activity of wild-type 
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FIGURE 1 | Multiple-sequence alignment of ABA-related SnRK2s shows high similarity and identity between Arabidopsis, maize and sugarcane sequences. Black 
boxes highlight identical residues, residues in black font have similar chemical properties. Sequences corresponding to the P-loop, activation loop and the regulatory 
domains SnRK2 box and ABA box are marked based on previous studies (Ng et al., 2011).
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and mutant ScSAPK8. Our results showed that the activities of 
ScSAPK8 mutants M312A and I315A were lower than that of 
the wild-type enzyme (one-way ANOVA post hoc Dunnett’s, 
n = 6, p = 0.0416 comparing WT to M312A and p = 0.0114 for 
WT and I315A; ANOVA p = 0.0011), whereas the activity of the 
L319A mutant was comparable to that of the wild-type protein 
(p = 0.7021) (Figure 3D).

AtSnRK2s are known to be activated by autophosphorylation 
(Fujii et al., 2009; Ng et al., 2011). We then investigated the 

impact of pre-incubating wild-type and mutant ScSAPK8s with 
ATP (16 h at 25°C) before assaying their activity. Pre-incubation 
with ATP increased the activity of the wild-type protein and that 
of the L319A mutant (two-way ANOVA post hoc Bonferroni’s, 
p  <  0.0001, n = 6), whereas the activity of mutant M312A 
remained unaltered (p > 0.9999). Surprisingly, the overall activity 
of I315A was reduced (p = 0.0034) (Figure 3D).

To verify if the reduced activity observed for ScSAPK8 
mutants M312A and I315A resulted from the inability of these 

FIGURE 2 | Sugarcane SAPK10 has a canonical kinase fold and a conserved SnRK2 regulatory domain. (A and B) Cartoon representation of the ScSAPK10 
structure. Highlighted regions represent some of the key regions for kinase activity and/or regulation: ATP binding loop (red), αC (purple), activation loop (orange), 
and SnRK2 box (green). The hinge region that connects the N- and C-terminal lobes of the kinase domain is colored in yellow. Residues Y165-T181 and 
D289-M304 were not resolved in the electron density. (C) Cartoon representation of ScSAPK10 ATP-binding site. The ATP-binding loop (red), the activation loop 
residues D162 (pink) and F163 (orange), as well as the residues K52 (grey) and E67 (purple) related to phosphate transfer, are highlighted. (D) Structural alignment 
of ScSAPK10 (gray), Arabidopsis SnRK2.3 (PDB ID: 3UC3—dark blue), and SnRK2.6 (PDB ID: 3ZUT—light blue).
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FIGURE 3 | Key residues for SnRK2 box and αC helix interaction are conserved in ScSAPK10 and affect protein activity. (A) Alignment of SnRK2 box residues 
from sugarcane SAPKs, SnRK2.3, and SnRK2.6. Red stars represent the residues chosen for site-directed mutagenesis. The residue I315 is conserved in 
sugarcane and Arabidopsis SnRK2s while the residues M312 and Leu319 are conservatively substituted. (B) Cartoon representation of SnRK2 box (green) from 
ScSAPK10_∆nterm-∆ABA-box structure. ScSAPK10 SnRK2 box residues M307, I310, and L314 (homologous to ScSAPK8 M312, I315, and L319) are displayed 
as sticks and make close contact with the αC helix surface. The electrostatic potential analysis shows the negative potential (in red) of the αC surface. The positive 
potential is represented in blue. (C) Cartoon representation of SnRK2 box (green) and the αC helix (purple) from ScSAPK10_∆nterm-∆ABA-box structure. The 
electrostatic potential of αC surface was hidden to show the helix position. (D) Box plot of the enzymatic activity of ScSAPK8 WT and the mutants M312A, I315A 
and L319A after ATP incubation. The data show the quantity of phosphorylated peptide produced, measured by the ratio of fluorescence intensity at 665 nm 
(streptavidin-XL665 emission excited by phospho-specific Eu-cryptate conjugated antibody) and 620 nm (Eu-cryptate emission). In both assay conditions, the 
observed activity for ScSAPK8 WT was significantly higher than the mutants M312A (*p = 0.0416 for no ATP pre-incubation and *p < 0.0001 for 16 h ATP pre-
incubation) and I315A (*p = 0.0114 for no ATP pre-incubation and *p < 0.0001 for 16 h ATP pre-incubation). The L319A activity was similar to WT in both conditions 
but significantly increased with 16 h of ATP pre-incubation (*p < 0.0001).
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proteins to self-activate, we used LC-MS to obtain the intact 
masses of wild-type and mutant proteins. The total number 
of phosphosites observed after 16-h incubation with ATP 
remained the same for wild-type and mutant proteins M312A 
and I315A (Supplementary Figures S5–S7). Thus, the reduced 
activities observed for these two mutant proteins were not due 
to a defect in their auto-phosphorylation abilities. Surprisingly, 
mutant L319A displayed three additional phosphosites 
compared with the wild-type and the other two mutants 
investigated (Table 2; Supplementary Figures S5 and S8).

Taken together, our results indicate that mutations on 
Met312 and Ile315 designed to perturb the interaction between 
the αC helix and SnRK2s box in ScSAPK8 reduced overall 
protein activity.

Deletion of SAPK8 ABA Box Does Not 
Directly Affect Its Activity
In addition to the SnRK2 box, another conserved C-terminal 
region is involved in SnRK2 regulation in eudicot plants: 
the ABA box (Belin et al., 2006; Boudsocq et al., 2007; 
Soon et al., 2012). This region mediates the interaction 
between SnRK2s and PP2C phosphatases, leading to kinase 
inactivation via dephosphorylation of an essential activation 
loop serine residue and preventing substrate access to the 
kinase catalytic site (Belin et al., 2006; Soon et al., 2012). Here, 
we investigated ScSAPK8 ABA box contribution to kinase 
activity in the absence of a PP2C phosphatase. For that, we 
used the enzymatic assay described above to assess the activity 
of several ScSAPK8 C-terminal mutants designed to either 
completely remove the protein ABA box or to disrupt the 
region’s acidic character via replacement of conserved acidic 
residues with alanine residues (Figure 4A).

All ScSAPK8 mutants displayed similar overall activity to the 
wild-type protein. Likewise, pre-treatment with ATP (16 h 
at 25°C) significantly increased enzyme activity for all proteins 
tested (two- way ANOVA post hoc Bonferroni’s, p < 0.0001, n = 6) 
(Figure 4B). We also used LC-MS to assess the impact of ScSAPK8 
ABA box on protein auto-phosphorylation. Interestingly, more 
phosphosites could be detected for ScSAPK8 point mutants than for 
the wild-type protein (seven versus four phosphosites, respectively) 
(Table 2; Supplementary Figures S5 and S10–S13). On the other 
hand, a single phosphorylation was detected in the truncated 
version of ScSAPK8 completely lacking the ABA box (Table 2 and 
Supplementary Figure S9). Similar results were observed for the 
ScSAPK10 ΔABA box protein (Supplementary Figure S14).

Previously, phosphorylation of a serine residue (Ser175) within 
AtSnRK2.6 activation loop was described as important for protein 
activity (Ng et al., 2011). We then used LC-MS/MS to identify 
phosphosites within wild-type and ΔABA box ScSAPK8 proteins 
(Table 3). We identified five phosphorylation sites within the wild-
type protein, including serine 182 located in the protein activation 
loop and structurally equivalent to AtSnRK2.6 Ser175. Other 
phosphorylation sites are located to the protein P-loop (Ser36), 
C-lobe (Ser120), activation loop (Thr186), and SnRK2 box (Thr320).

Likewise, we identified Ser182 as a phosphosite within the 
ΔABA box ScSAPK8 mutant, indicating that this key activation 

loop residue is autophosphorylated in the mutant protein. 
Surprisingly, a second phosphosite was also identified within the 
mutated protein—Ser36.

Taken together, the data above suggest that ScSAPK8 ABA box is 
important for protein overall phosphorylation pattern, but, by itself, 
this conserved motif does not seem to regulate enzyme activity.

Structure of SAPK10 Suggests a 
Conserved Interaction Mechanism With 
PP2C-Type Phosphatases
Structural studies revealed that AtSnRK2.6 and PP2C-type 
phosphatases display complementary electrostatic surfaces at 
the complex interface (Soon et al., 2012). Superposition of our 
ScSAPK10 structure to that of AtRK2.6 bound to a PP2C-type 
phosphatase (AtHAB1), revealed that both kinases display 
similar electrostatic surfaces within the SnRK2.6 region known 
to interact with PP2C-type phosphatases (Figure 5A).

We also mapped the identified phosphosites in wild-type 
ScSAPK8 onto our ScSAPK10 crystal structure. Three (Ser36, 
Ser182, and Thr186) of the five identified phosphosites in wild-
type ScSAPK8 have structural equivalents in the Arabidopsis 
protein that are within the kinase:phosphatase complex interface 
(Figure 5B) (Soon et al., 2012).

These analyses suggest that the overall mechanism regulating the 
interaction of ABA-responsive kinases and PP2C-type phosphatases 
might be conserved between Arabidopsis and sugarcane proteins.

DISCUSSION

ABA is a key hormone in both mono- and eudicotyledon plants. 
In eudicots, members of the SnRK2 family of protein kinases play 
a central role in ABA signaling and act as positive regulators of 
this stress hormone (Fujii and Zhu, 2009; Fujii et al., 2009; Fujita et 
al., 2009; Nakashima et al., 2009). It is expected that the signaling 
pathway relaying ABA stimuli is also conserved in monocot plants. 
Supporting this hypothesis, recent studies have shown that ABA 
strongly activates expression of SnRK2 counterparts in sugarcane 
(Li et al., 2017). Here we confirmed that three functional SnRK2 
proteins—ScSAPK8, ScSAPK9, and ScSAPK10—are encoded by 
the sugarcane genome, further suggesting that the ABA-response 
pathway is conserved in both mono- and eudicotyledons.

Our analyses of the ScSAPK structure and biochemistry 
strongly suggest that ABA-responsive kinases in sugarcane are 
functionally equivalent to their counterparts in Arabidopsis. The 
structure of ScSAPK10 revealed that the C-terminal SnRK2 box 
folds into an α-helix and interacts with the structurally conserved 
αC from the protein kinase domain. A similar interaction has 
been reported for AtSnRK2 proteins and is thought important 
for kinase activity, akin to the activation mechanism of 
human cyclin-dependent kinases (Jeffrey et al., 1995; Ng et al., 
2011). Nevertheless, the ScSAPK structure determined here 
and previously determined SnRK2 structures have captured 
the protein in its inactive kinase state, despite the observed 
interaction between αC and SnRK2 box. Obtaining the structure 
of an SnRK2 family member in a fully active conformation would 
shed light on how SnRK2 box contributes to protein activity.
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Biochemical assays have shown that disrupting key hydrophobic 
contacts between αC and SnRK2 box via point mutations in 
AtSnRK2 can nearly abolish protein activity (Ng et  al., 2011). 
Likewise, ScSAPK8 kinase activity was reduced, albeit not 
dramatically, by replacement of Met312 or Ile315 within the 

protein SnRK2 box with alanine residues. In Arabidopsis SnRK2.6, 
two mutations within the protein SnRK box were particularly 
important for nearly abolishing protein activity: I308R and I312A. 
Here, the equivalent ScSAPK8 mutants were I315A and L319A, 
respectively. In ScSAPK8, the L319A mutant displayed similar 
activity levels to the wild-type enzyme, whereas the I315A mutant 
displayed decreased activity. Discrepancies between our results 

FIGURE 4 | ScSAPK8 ABA box mutations do not affect protein activity. (A) Alignment of ABA box residues from sugarcane SAPKs and SnRK2.6. Mutations 
performed in ScSAPK8 ABA box are displayed in red and were distributed in four different groups, named group 1 to group 4. In the mutants from group 1 to group 
3 all aspartic acid residues (D, in red) were replaced by alanine residues. In group 4, the residues of glutamic acid, isoleucine, tyrosine and methionine (respectively, 
E, I, Y and M, in red) were mutated to alanine (B) Box plot of ScSAPK8 WT and ABA box mutant enzymatic activity after ATP incubation. The data show the quantity 
of phosphorylated peptide produced, measured by the ratio of fluorescence intensity at 665 nm (streptavidin-XL665 emission excited by phospho-specific Eu-cryptate 
conjugated antibody) and 620 nm (Eu-cryptate emission). The analysis shows no statistically significant difference between the activity of WT and all the mutants 
tested. All the proteins presented significantly increased activity after 16 h of ATP pre-incubation compared to the condition with no pre-incubation (p < 0.0001).

TABLE 2 | Intact mass analysis of ScSAPK8 proteins after overnight incubation 
with Mg2+/ATP.

Construct Total number of phosphorylations

ScSAPK8-WT 4
ScSAPK8-M312A 4
ScSAPK8-I315A 4
ScSAPK8-L319A 7
ScSAPK8 ABA box group 1 7
ScSAPK8 ABA box group 2 7
ScSAPK8 ABA box group 3 7
ScSAPK8 ABA box group 4 7
ScSAPK8 ∆ABA box 1

TABLE 3 | ScSAPK8 phosphopeptides identification by mass spectrometry.

Kinase Phosphorylated 
residue

Residue 
location

Total number of 
phosphorylations

ScSAPK8-WT S36 P-loop 5
S120 C-lobe
S182 activation loop
T186 activation loop
T320 SnRK2 box

ScSAPK8 
∆ABA box

S36 P-loop 2
S182 activation loop
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and those obtained previously for AtSnRK2s might be due to 
differences in enzyme preparation and assay conditions. Further, 
we cannot discard the possibility that the introduced mutations did 
not completely disrupt the SnRK2 box αC interaction in ScSAPK8. 
Nevertheless, our results here corroborate previous findings that 
showed that perturbing the interaction between SnRK2 box and 
the kinase domain impact SnRK2 protein activity.

A second region important for regulating SnRK2 activity is the 
ABA box. This region is a stretch of mostly acidic residues that 
mediate the direct interaction between SnRK2 proteins and basic 
patches on the surface of PP2C-type phosphatases (Soon et  al., 
2012). This interaction prevents the phosphorylation activity of 
SnRK2s. In vitro, total deletion of AtSnRK2.6 ABA box did not 
affect protein activity. However, ectopic expression of this truncated 
protein in Arabidopsis snrk2.6 mutants could not restore stomatal 
closure response. These same studies revealed that phosphorylation 
of sites within the kinase domain was important for promoting 
wild-type response to ABA (Belin et al., 2006; Yoshida et al., 2006).

Our data indicated that deleting ABA box from ScSAPK8 
reduced the overall number of autophosphorylation sites within 
this protein—from five in the wild-type protein to two in the 
ΔABA box mutant. Nevertheless, deletion of ScSAPK8 ABA 
box did not alter kinase activity on a generic peptide substrate, 
suggesting that autophosphorylation of residues located in the 
P-loop (Ser36) and activation loop (Ser182) might be sufficient 
for full kinase activity in vitro. However, the lack of activity of the 
ΔABA box SnRK2 mutant in Arabidopsis might indicate a role for 
the additional phosphorylation events in kinase activity in vivo.

Interestingly, our analysis of wild-type ScSAPK8 and its ΔABA 
box mutant identified two phosphosites (Table 3), in contrast to 
our results of protein intact mass, which revealed a single phospho-
state for these proteins (Table 2). The intact mass analysis captures 
the overall phospho-state of a protein mixture while the peptide 
analysis allows the precise identification of phosphosite position. 
Combined, these results might indicate that Ser36 and Ser182 
phosphorylation do not co-exist in the same protein molecule. In 

FIGURE 5 | Structure of ScSAPK10 suggests a conserved interaction surface with PP2C-type phosphatases. (A) Cartoon representation of ScSAPK10, AtSnRK2.6, and 
AtHAB1 protein surfaces. The electrostatic potential analysis shows the positive potential (in blue) of the protein surfaces around the activation segment and P-loop. (B) 
Cartoon representation of ScSAPK10 (dark gray) aligned with AtSnRK2.6 (light gray) and AtHAB1 (represented as electrostatic surface). The orange spheres represent, 
in the ScSAPK10 structure, the homologous phosphosites identified to ScSAPK8 by mass spectrometry. The ScSAPK10 residues S31, S115, S177, T181, and A315 
correspond to S36, S120, S182, T186, and T320 in ScSAPK8 sequence, respectively.
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