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Genomic selection (GS), a tool developed for molecular breeding, is used by plant breeders 
to improve breeding efficacy by shortening the breeding cycle and to facilitate the selection 
of candidate lines for creating hybrids without phenotyping in various environments. 
Association and linkage mapping have been widely used to explore and detect candidate 
genes in order to understand the genetic mechanisms of quantitative traits. In the current 
study, phenotypic and genotypic data from three experimental populations, including 
data on six agronomic traits (e.g., plant height, ear height, ear length, ear diameter, grain 
yield per plant, and hundred-kernel weight), were used to evaluate the effect of trait-
relevant markers (TRMs) on prediction accuracy estimation. Integrating information from 
mapping into a statistical model can efficiently improve prediction performance compared 
with using stochastically selected markers to perform GS. The prediction accuracy can 
reach plateau when a total of 500–1,000 TRMs are utilized in GS. The prediction accuracy 
can be significantly enhanced by including nonadditive effects and TRMs in the GS 
model when genotypic data with high proportions of heterozygous alleles and complex 
agronomic traits with high proportion of nonadditive variancein phenotypic variance are 
used to perform GS. In addition, taking information on population structure into account 
can slightly improve prediction performance when the genetic relationship between the 
training and testing sets is influenced by population stratification due to different allele 
frequencies. In conclusion, GS is a useful approach for prescreening candidate lines, and 
the empirical evidence provided by the current study for TRMs and nonadditive effects 
can inform plant breeding and in turn contribute to the improvement of selection efficiency 
in practical GS-assisted breeding programs.
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INTRODUCTION

Genomic selection (GS) has been widely implemented to 
powerfully assist in modern animal and plant breeding (Xu 
et  al., 2016; Nirea and Meuwissen, 2017; Raoul et al., 2017; 
Zhang et al., 2017b; Robledo et al., 2018; Brandariz and 
Bernardo, 2019; Rezende et al., 2019; Sarinelli et al., 2019; Yuan 
et al., 2019) and has the ability to utilize genome-wide markers 
(e.g., single nucleotide polymorphisms, SNPs) to accelerate the 
selection procedure, with the assumption that each marker is 
associated with minor genetic effects originally proposed by 
Meuwissen in 2001 in a discussion of several statistical models 
(Meuwissen et al., 2001). Several factors, including marker 
density, population size, genetic relationships, statistical 
models, and breeding platforms, have an impact on the 
estimation of marker effects that are generally recognized as 
random effects in the models and thus can impact prediction 
accuracy (Crossa et al., 2017; Hickey et al., 2017; Schopp 
et al., 2017; Zhang et al., 2017a; Liu et al., 2018; Wang et al., 
2018; Zhang et al., 2019). In general, the estimated effects of 
each marker follow a normal distribution with the same or 
different variances under a priori assumptions in a model 
based on penalized (e.g., ridge regression best linear unbiased 
prediction, RR-BLUP; genomic BLUP, GBLUP) (Whittaker 
et al., 2000; VanRaden, 2008; Endelman, 2011) or Bayesian 
approaches (e.g., BayesA, BayesB, and BayesC) (Meuwissen 
et al., 2001; Habier et al., 2011). However, some polymorphic 
markers should be virtually evaluated as having stronger 
genetic effects and other markers are estimated to have weaker 
genetic effects because these markers do not have biological 
functions for the target agronomic traits (Bernardo, 2014; 
Arruda et al., 2016; Boeven et al., 2016; Spindel et al., 2016; 
Bian and Holland, 2017). In fact, conventional approaches in 
quantitative genetics, such as genome-wide association studies 
(GWASs) and quantitative trait locus (QTL) mapping, can 
efficiently dissect the genetic architecture of target traits and 
aid in the exploration of candidate genes for the development 
of functional markers (Li et al., 2013; Wang et al., 2016; Xiao 
et al., 2016; Pan et al., 2017; Zhang et al., 2017c). In addition, 
these functional or trait-relevant markers (TRMs) can explain 
a large fraction of the genetic variance, which may improve the 
predictive ability of GS models in plant and animal breeding 
(Su et al., 2014; Zhang et al., 2014; Ober et al., 2015; Zhang 
et al., 2015; Arruda et al., 2016; Boeven et al., 2016; Bian and 
Holland, 2017; Kemper et al., 2018). Several previous studies 
discussed the advantages of combining GWASs and GS, which 
usually take TRMs as fixed effects in statistical models (Spindel 
et al., 2016; Herter et al., 2019; Rice and Lipka, 2019).

With the improvement of statistical models, predication 
accuracy has increased due to the consideration of supplementary 
effects, such as nonadditive, fixed, and genotype-by-environment 
interaction effects (Lopez-Cruz et al., 2015; Zhao et al., 2015; 
Boeven et al., 2016; Lado et al., 2016; Alves et al., 2019; Herter 
et al., 2019). Integrating nonadditive effects into statistical 
models can significantly improve prediction accuracy when the 
nonadditive variance possesses a relatively large proportion of 
genetic variance (Su et al., 2012; Azevedo et al., 2015; Liu et al., 

2018; Varona et al., 2018). Furthermore, models including 
nonadditive effects have been widely applied to evaluate 
genomic estimated breeding values (GEBVs) of individuals 
in the process of hybrid selection (Xu et al., 2014; Miedaner 
et al., 2017; Fristche-Neto et al., 2018; Werner et  al., 2018). 
Compared to a model that considers only additive effects, the 
improved model can explain more fraction of genetic variance, 
which can further explore and dissect genetic effects of genomic 
markers (Da et al., 2014; Bouvet et al., 2016; Morais Júnior et al., 
2017; Alves et al., 2019). On the other hand, several previous 
studies evaluated the effects of population structure with an 
experimental design in which the genetic distance changed 
from lessrelevant to morerelevant between training and testing 
sets (Guo et al., 2014; Isidro et al., 2015; Zhang et  al., 2017a; 
Rio et al., 2019). In fact, population structure that is mainly 
attributed to different allele frequencies between groups can 
further impact the construction of genomic relationships and 
estimation of GEBVs and then affect the predictive ability of GS 
models (Liu et al., 2018). Information on population structure 
can be explicitly considered as fixed effects in the models, but 
significant enhancement of prediction accuracy does not occur 
(Rio et al., 2019). Furthermore, population structure has less 
effects on prediction performance when GS is performed with 
only a specific group or within a subpopulation (Guo et al., 
2014). For the description of population structure, principal 
component analysis (PCA) is an efficient approach based on 
genomic information (Price et al., 2006). Generally, a PC matrix 
is used to explicitly illustrate population stratification in GWASs 
(Price et al., 2006; Huang et al., 2010; Slavov et al., 2014; Huang 
et al., 2015; Chang et al., 2018) but is rarely applied to correct 
the effect of population structure in GS models. Hence, taking 
information on population structure into account will have 
the benefit of adjusting the bias of estimated marker effects 
generated by population stratification, likely making great 
progress in improving prediction performance.

With respect to the application of TRMs in GS, many 
studies have argued in favor of including TRMs as fixed 
effects in statistical models to enhance prediction accuracy. 
However, few reports directly integrating TRMs into GS 
models have been published (Ober et al., 2015; Yuan et al., 
2019). In this study, we primarily aimed to discuss the effect of 
TRMs and the integration of TRMs and other effects in order 
to provide recommendations that can assist plant breeders 
in the design of GS-assisted breeding programs. Phenotypic 
and genotypic data from three experimental populations, 
including one natural and two biparental populations, which 
included six agronomic traits and a 55 K SNP array, were 
collected. Our objectives were to (1) assess the accuracy and 
quality of association and linkage mapping, (2) evaluate the 
effect of TRMs identified by association and linkage mapping 
performed using data from training sets, (3) investigate the 
degree to which nonadditive effects in combination with TRMs 
influence prediction accuracy, and (4) integrate information 
on population structure into a mixed model as a fixed effect 
to improve predictive ability. Finally, these results were used 
to provide pertinent advice for improving GS schemes in 
commercial breeding programs.
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MATERIALS AND METHODS

Plant Materials and Experimental 
Management
The plant materials were described in detail by Liu et al. (2018). 
In total, three experimental populations, which included one 
natural and two biparental populations, were used in this study.
More specifically, a total of 435 elite maize inbred lines were 
used to construct the natural population, and the two biparental 
populations, which were derived from one single-cross maize 
hybrid with the elite inbred lines Zheng58 and HD568 as 
parents that included in the natural population, consisted of 
212 recombinant inbred lines (RILs) and 304 F2:3 families, 
respectively. The natural population was grown in Henan 
Province in 2014 and 2015. The two biparental populations were 
evaluated in the same location in 2015 and 2016. A field trial 
with a randomized incomplete block design was performed with 
two replicates. Six yield-related agronomic traits constituted the 
phenotypic data: plant height (PH, cm), ear height (EH, cm), ear 
length (EL, mm), ear diameter (ED, mm), grain yield per plant 
(GYP, kg), and hundred-kernel weight (HKW, g). Furthermore, 
phenotypic values of HKW and GYP were adjusted to 140 g/kg 
grain moisture.

Statistical Analysis of Phenotypic Data
Thebest linear unbiased estimates (BLUEs) of genetic effects 
were estimated using the R package lme4 version 1.1-21 with the 
following mixed linear model (MLM) (Yang et al., 2017):

yijl = μ + gi + el + geil + rjl + εijl

where yijl is the phenotypic value of the ith genotype evaluated 
in the lth environment with the jth replicate, μ is the overall 
mean, gi is the fixed genetic effect of the ith individual, el is the 
fixed effect of the lth environment, geil is the random interaction 
effect between the ith individual and the lth environment, rjl is 
the random effect of the jth replicate within the lth environment, 
and εijl is the model residuals. The BLUE values of individuals 
in each experimental population were used as phenotypic data 
to perform the subsequent analyses, including a GWAS, QTL 
mapping, and GS.

Genotyping and Data Analysis
All inbred lines from the natural and biparental populations 
were used for genotyping, which was performed with the 
novel developed maize 55 K SNP array (Xu et al., 2017a). As 
for F2:3 population, the DNA extracted from leaves of F2 plants 
was assayed for obtaining genotypic data. Markers with a 
proportion of missing values >0.10 were removed from the three 
experimental populations. Finally, a total of 38,299 SNPs with 
minor allele frequencies (MAFs) > 0.05 were used for further 
analysis of the natural population. A total of 14,544 and 10,444 
SNPs were retained based on chi-square tests (P > 0.01) for the 
RIL and F2:3 populations, respectively. The aim of chi-square 
test is to screen out markers without segregation distortion in 
biparental populations.

Genome-Wide Association Study
Marker–trait association mapping was implemented in 
the R package GAPIT version 3.0 with an MLM procedure 
considering population structure and relative kinship (Q + K 
model)(Price et al., 2006; Yu et al., 2006; Lipka et al., 2012). 
PCA was conducted with the GAPIT.PCA function in the R 
package GAPIT. The determination of PC number was based 
on a scree test (Cattell, 1966), and the first seven PCs were 
selected to construct a covariance matrix to avoid the effect of 
population structure. A significance threshold of –log10 (P) > 4 
for each trait was employed to identify significant association 
signals for determining the accuracy and quality of association 
mapping. The R package CMplot version 3.3.3 was used to draw 
a Manhattan plot (https://github.com/YinLiLin/R-CMplot). The 
description of candidate genes based on association mapping was 
based on the maize genetics and genomics database (MaizeGDB, 
https://www.maizegdb.org/).

Bin Map Construction and QTL Analysis
The bin maps of the RIL and F2:3 populations were aligned and 
constructed with the sliding-window approach to investigate 
variant calling errors and calculate the ratio of SNP alleles 
derived from Zheng58 and HD568. A criterion with a window 
size of 15 adjacent SNPs and a step size of one SNP was applied 
to scan the genotypic data. Windows with 11 or more continuous 
SNPs derived from either parent were regarded as homozygous, 
and those with fewer SNPs from one parent were recognized 
as heterozygous. Adjacent windows with the same genotype 
were combined into one block, and these blocks with different 
genotypes were inferred to be at or near a recombination 
breakpoint, allowing bin markers to be designated when 
consecutive blocks lacked a recombination event across all 
RILs or F2:3 families (Huang et al., 2009; Zhou et al., 2016). A 
linkage map was constructed using the Kosambi mapping 
function and the mstmap function in the R package ASMap 
version 1.0-4 (Taylor and Butler, 2017). Identification of QTLs 
for yield-related agronomic traits was performed by the cim 
function in the R package R/qtl version 1.44-9 with composite 
interval mapping (Arends et al., 2010). Then, 1,000 permutation 
tests with a significance level of P < 0.05 were used to determine 
the threshold likelihood of odds (LOD) ratio for evaluating the 
significance of each QTL–trait association and for assessing the 
accuracy and quality of linkage mapping. A 1.5-LOD decrease 
corresponding to the peak value of the LOD for each bin was 
defined as the confidence interval for each QTL. Candidate 
genes identified by linkage mapping were described according to 
MaizeGDB. In addition, the bin markers were eventually used to 
perform further GS analysis.

Genomic Selection
The TRMs detected by association and linkage mapping were 
used to perform GS for each agronomic trait, and a fivefold 
cross-validation scheme with 100 replicates was implemented 
to partition the dataset of each experimental population 
into training and testing sets and then to calculate the mean 
correlation coefficient between GEBVs and BLUE values, which 

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org
https://github.com/YinLiLin/R-CMplot
https://www.maizegdb.org/


Genomic Selection in MaizeLiu et al.

4 September 2019 | Volume 10 | Article 1129Frontiers in Plant Science | www.frontiersin.org

represented the prediction accuracy (rMG). Furthermore, the 
number of selected markers, including TRMs and randomly 
selected markers, was set using seven to eight levels (i.e., 20, 
50, 100, 500, 1,000, 5,000, 10,000, 30,000, and all markers in the 
natural population; 20, 50, 100, 500, 1,000, 1,500, 2,000, and all 
bin markers in the biparental population) to test for a difference 
in prediction accuracy. As for the TRMs and randomly selected 
markers, the former was selected according to rank of −log10(P - 
value) in association mapping or LOD scores in linkage mapping, 
the latter was stochastically sampled from whole genome.

TRM-Based GBLUP Model: Association 
and Linkage Mapping for the Training Set
Each experimental population was initially partitioned into 
training and testing sets based on the scheme of fivefold cross-
validation, and the training set was used to perform a GWAS 
or QTL mapping in each cross-validation to identify the TRMs. 
Subsequently, the GEBVs of individuals in the testing set were 
estimated by the GBLUP model with different numbers of TRMs, 
which were compared to the rMG based on randomly selected 
markers to assess prediction accuracy. The GBLUP model was 
fitted using the R package BGLR version 1.0.8 (Pérez and de 
los Campos, 2014). The hyperparameter settings were based on 
the default choices in R package, andGibbs sampler was run for 
10,000 iterations with the first 5,000 samples discarded as burn 
in. The general GBLUP model can be described as follows:

y = 1nμ + u + ε

where y is the vector of phenotypic data, 1n is the n-dimensional 
vector of ones, μ is the overall mean, u is the random effects 
sampled from the normal distribution N(0,G σ u

2 ), G is the 
genomic relationship matrix, and ε is the n-dimensional vector 
of independent random residuals with the normal distribution 
N(0,I σ ε

2 ), in which I is an identity matrix. The G matrix was 
calculated as follows: let Z = {zij} be the n × m matrix of markers, 
where n is the number of individuals in each population, m is 
the number of markers, zij = 0, 1, or 2 for the jth locus in the ith 
individual, and pj is the allele frequency of the jth marker. The G 
matrix is WW’/2 Σ k=1

m pk(1 − pk), where W = (wij) with wij = zij − 
2pj (VanRaden, 2008).

Extended GBLUP Model Including 
Additive, Dominance, and Epistatic Effects
The TRMs (mentioned above) were used to fit GS models, and the 
extended GBLUP model can be described as (Zhao et al., 2015):

y = 1nμ + ua + ud +uaa + ε

where ua, ud, and uaa are the vectors of random effects for additive 
genetic effects (A), dominance effects (D), and additive-by-
additive interaction (AA) effects and are assumed to obey the 
normal distributions N(0,Ga σa

2 ), N(0,Gd σd
2 ), and N(0,Gaa σaa

2 ), 
respectively, where Ga, Gd, and Gaa are the genomic relationship 
matrixes corresponding to additive, dominance, and epistatic 
genotypic values, respectively. The form of Ga is identical to that 

in the general GBLUP model. In addition, the n × m dominance 
design matrix D is defined as follows (Pérez and de los Campos, 
2014; Zhao et al., 2015):

D d

p p if x
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where p11 is the allele frequency of xij = 0 at the jth locus, p12 is the 
allele frequency of xij = 1 at the jth locus, p22 is the allele frequency 
of xij = 2 at the jth locus, and θ = p11 + p22 − (p11 − p22)2. Thus, the 
dominance relationship matrix is Gd = nDD’/trace(DD’), where 
the trace is the sum of all diagonal elements. Then, the epistatic 
relationship matrix can be calculated by Gaa = Ga # Ga, where 
the octothorpe denotes the Hadamard product of matrixes.
The extended GBLUP models were implemented only for F2:3 
population. Four models were used to perform GS, namely, the 
A, A + AA, A + D, and A + D + AA models, and the A model 
was equivalent to the general GBLUP model. These extended 
GBLUP models were fitted using the R package BGLR version 
1.0.8 (Pérez and de los Campos, 2014).

Fixed-Effects Model Containing the 
Principal Component Matrix
The TRMs (mentioned above) were used to fit the GS models. 
A PC matrix was constructed by the GAPIT.PCA function in 
GAPIT with TRMs (Lipka et al., 2012) and then added to the 
BayesC and GBLUP models as a fixed effect. These fixed-effects 
models were implemented only for natural population. Hence, 
these models can be described as follows:

y = Xβ + Zu + ε for the BayesC + fixed effects model (BC + PC);

y = Xβ + u + ε for the GBLUP + fixed effects model (G + PC)

where X is the design matrix for fixed effects consisting of PCs, 
β is the vector of fixed effect estimates, Z is the design matrix 
for random effects in the BC + PC model, and u is the vector of 
random effects in both models. Finally, the prediction accuracy 
assessed by fixed-effect models was compared with the rMG 
estimated by the general GBLUP model with TRMs. The fixed-
effects models were fitted using the R package BGLR version 
1.0.8 (Pérez and de los Campos, 2014).

RESULTS

The Quality and Accuracy of Association 
and Linkage Mapping
The BLUE values of individuals in each experimental population 
were used to perform association and linkage mapping, and 
frequency distribution diagrams were drawn (Supplementary 
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Figure 1, 2, and 3). A total of 11 associated SNPs were identified 
in the natural population by a GWAS using filtered genotype and 
phenotypic data, and the number of significant SNPs (i.e., those 
for which the P value surpassed the threshold) for each agronomic 
trait ranged from 1 to 4 (Supplementary Figure 4). For linkage 
mapping, there were 2,450 and 2,826 recombination bins with an 
average length of 840 and 727 kb for the RIL and F2:3 populations, 
respectively. Moreover, 79.5 and 86.2% of these bins were <1.0 
Mb in segment length for each biparental population. Two high-
density genetic maps were constructed using recombination bins 
as markers based on a chi-square test. The entire genetic distance 
of each linkage map was 1,811.3 and 1,205.4 cM, and the average 
and greatest distances between adjacent markers in the respective 
biparental population were 0.7 and 4.5 cM for the RIL population 
and 0.4 and 7.8 cM for the F2:3 population, respectively (Table 1, 
Supplementary Figure 5). With 1,000 permutation tests, the 
LOD score thresholds for each agronomic trait were ascertained 
to indicate the presence of a QTL in a particular genomic region 
(Supplementary Table 1). In the RIL population, a total of 16 
QTL were identified for six agronomic traits, and the amount of 
phenotypic variation explained by each QTL ranged from 3.21 to 
12.77%. However, a total of eight QTL with negative genetic effects 
decreased the phenotypic values of agronomic traits when the alleles 
were identical to the parent conferred a low phenotypic value. In the 
F2:3 population, 38 QTL were detected for the yield-related traits, 
and each QTL with a LOD value from 5.17 to 26.7 explained 2.49–
21.75% of the phenotypic variation. Furthermore, in addition to 
estimating the additive genetic effects in the F2:3 population by QTL 
mapping, the dominance effects were derived depending on the 

heterozygous genotypes (Supplementary Table 2). In addition, a 
total of five pleiotropic QTL (pQTL) were detected by integrating the 
information for 53 QTL obtained from the RIL and F2:3 populations, 
which were distributed on chromosomes 1, 3, 4, 8, and 9 (Table 2).

Effects of Trait-Relevant Markers on 
Genomic Selection
As for TRM-based GS, the TRMs were initially identified by 
association and linkage mapping using phenotypic and genotypic 
data of training set, and the rMG based on TRMs was improved 
compared with that obtained using stochastic markers to perform 
cross-validation(Figure 1). In particular, rMG showed significant 
enhancement when the number of markers was <5,000 in the 
natural population and 500 in the biparental populations. The 
degree of improvement in rMG estimated by TRMs compared to 
randomly selected markers for the agronomic traits with low broad-
sense heritability was not greater than that for the traits with high 
broad-sense heritability (the result of broad-sense heritability for 
each agronomic trait was based on Liu et al., 2018). For instance, 
the rMG based on 20 markers in the RIL population increased 
from 0.395 to 0.526 for PH and from 0.137 to 0.242 for GYP. In 
addition, the rMG obtained by the TRM-based GBLUP model was 
the same as that obtained by stochastic markers when the number 
of markers reached 10,000 for the natural population and 1,000 for 
the biparental populations (Figure 1). In addition, parallel results 
were obtained for other agronomic traits, including EH, EL, ED, and 
HKW, when using empirical data to perform cross-validation by 
TRM-based GBLUP model (Supplementary Figures 6–8).

TABLE 1 | Summary of the high-density genetic map derived from the RIL and F2:3 populations.

Pop.a Chr.b No. of binsc Physical length of map 
(Mb)

Map length (cM) Average genetic 
length (cM)

Maximal genetic 
length (cM)

RIL 1 436 301.0 309.9 0.7 3.6
2 301 237.0 240.6 0.8 3.0
3 292 232.1 224.4 0.8 3.4
4 233 246.9 156.8 0.7 4.5
5 298 217.6 276.6 0.9 3.1
6 202 169.2 128.3 0.6 3.8
7 204 176.1 141.0 0.7 3.5
8 209 175.5 150.7 0.7 3.0
9 132 156.0 93.2 0.7 3.1
10 143 149.9 89.6 0.6 4.5

Total 2,450 2,061.3 1,811.3 0.7 4.5
F2:3 1 507 301.0 169.3 0.3 1.7

2 296 237.0 127.7 0.4 3.9
3 279 232.1 128.1 0.5 3.6
4 271 246.9 130.8 0.5 7.8
5 336 217.6 125.3 0.4 2.9
6 308 169.2 110.8 0.4 2.2
7 233 176.1 95.4 0.4 3.0
8 231 175.5 110.2 0.5 2.3
9 181 156.0 111.6 0.6 7.1
10 184 149.9 96.0 0.5 2.8

Total 2,826 2,061.3 1,205.4 0.4 7.8

aPop.: the experimental populations.
bChr.: the number of chromosomes.
cNo. of bins: the number of bin markers on the chromosome.
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Effects of Nonadditive Effects in the 
Extended GBLUP Model
To evaluate the influence of nonadditive effects on rMG, a total 
of four statistical models were used to perform fivefold cross-
validation in the F2:3 population: the A, A + AA, A + D, and  
A + D + AA models. There two agronomic traits, including PH 
with high broad-sense heritability and GYP with low broad-
sense heritability, were selected to elucidate and demonstrate the 
utility of including multiple effects in GS models (the broad-sense 
heritabilityestimated by Liu et al., 2018, 0.83 for PH and 0.65 for 
GYP). There was no remarkable improvement when integrating 
dominance and epistatic effects in the GBLUP model, which a target 
trait with high broad-sense heritability was used for GS (Figure 2). 
However, compared to the GBLUP model that considered only 
additive effects, the GS model with nonadditive effects significantly 
enhanced the rMG for the traits with low broad-sense heritability.  
On the other hand, for GYP, statistical models including additive 
and dominance effects were clearly superior to the additive and 
epistatic model, and this superiority was consistent across various 
situations with diverse marker densities. In addition, a slight 
improvement in rMG was observed between the A + D + AA and 
A + D models in each situation except that in which 20 TRMs were 
used to fit extended GBLUP models, but the rMG was highest for 
the GBLUP model considering additive, dominance, and epistatic 
effects. Furthermore, the improvement in rMG between the A + D 
and A + D + AA models became increasingly large as more TRMs 
were used to construct the genomic relationship matrix. For 
example, the enhancement of rMG increased from 0.003 to 0.010 
as the number of TRMs increased from 50 to 2,000 (Figure  2). 
In addition, the proportion of genetic variance explained by 
dominance effects in the A + D and A + D + AA models was 0.205 
and 0.173, respectively. However, the proportion of genetic variance 
explained by AA interaction effects was 0.127 and 0.032 for the A + 
AA and A + D + AA models, respectively (Table 3).

Using the Information of Population 
Structure as Fixed Effects to Improve the 
Predictive Ability of GS Models
The possibility of enhancing rMG through improved models 
was investigated using TRMs to construct PC matrix that 

was appointed as fixed effects and incorporated in models. 
When PH was used for cross-validation in the case where 
more than 10,000 TRMs were applied in GS, the rMG was 
slight improvement when PC matrix was included as a 
fixed effect in the BayesC and GBLUP models (Figure 3A). 
However, for GYP, which had low broad-sense heritability, 
including population structure information as a fixed effect 
in GS models enhanced their predictive ability at a moderate 
marker density. For instance, the rMG estimated by 100 TRMs 
was 0.248 for the general GBLUP model, 0.260 for the BC + 
PC model, and 0.262 for the G + PC model. Moreover, the 
maximum degree of improvement in rMG was 0.015 when 500 
TRMs were used to obtain the PCs for the corresponding 
design matrix included as a fixed effect in the BC + PC model. 
The predictive ability of the G + PC model was higher than that 
of the BC + PC model in some situations when the number of 
TRMs was <1,000 (Figure 3B). However, the superiority of 
the fixed models to the general GBLUP models with TRMs 
was small when the number of markers was >5,000.

DISCUSSION

GS, the theoretical and practical application of marker-assisted 
selection, has been widely implemented in animal and plant 
molecular breeding with the accumulation of genotypic and 
phenotypic data in commercial and experimental breeding 
programs (Nirea and Meuwissen, 2017; Raoul et al., 2017; 
Xu et al., 2018; Mastrodomenico et al., 2019; Rezende et al., 
2019; Sarinelli et al., 2019; Yuan et al., 2019). Several factors, 
such as population size, population structure, marker density, 
heritability, statistical models, and genetic relationships between 
training and breeding populations, affect prediction accuracy 
(Schopp et al., 2017; Zhang et al., 2017a; Cerrudo et al., 2018; 
Edwards et al., 2019; Zhang et al., 2019). Previous researches have 
been performed using TRMs to test the benefit of employing 
candidate loci with biological functions based on historical or 
experimental information (Arruda et al., 2016; Boeven et al., 
2016; Rice and Lipka, 2019; Yuan et al., 2019). However, TRMs 
are usually treated as fixed effects in statistical models. In this 
study, we aimed to evaluate and discuss the effect of TRMs in 

TABLE 2 | Pleiotropic QTL (pQTL) for each agronomic trait in the biparental populations.

pQTLa Chr.b Intervalc (Mb) Physical lengthd (Mb) No. of QTL Integrated QTL

pQTL1 1 213.1–251.7 38.6 4 qReh1-2, qRhkw1, qFph1-2, 
qFhkw1 

pQTL3 3 212.0–216.2 4.2 2 qFph3, qFeh3
pQTL4 4 33.7–130.7 97.0 2 qRel4, qFel4
pQTL8 8 165.2–168.7 3.5 2 qRph8, qReh8
pQTL9 9 17.5–93.3 57.8 6 qRed9, qRgyp9, qRhkw9, qFph9, 

qFgyp9, qFhkw9

aThe name of the pleiotropic QTL includes the information of the number of chromosomes.
b Chr.: the number of chromosomes.
c Interval: the confidence interval between two bin markers.
d Physical length: the physical distance between two bin markers based on the B73 genome.
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various situations using empirical data and proposed statistical 
models with the purpose of reducing the effect of population 
structure on prediction accuracy.

Association and linkage mapping are efficient strategies for 
dissecting the genetic architecture of target traits, and trait-
relevant loci can then be used to accelerate the breeding process and 
assist in improving selection efficiency. According to the results 
of a GWAS of yield-related traits, two candidate genes related 
to GYP and HKW were identified by searching the MaizeGDB 
database, namely, GRMZM2G373928 and GRMZM2G044744, 

which are located on chromosome 8 (Supplementary Table 3). 
The candidate genes are ZCN14 and ZmSSIV, the first of which 
is expressed in the tassel, ear primordium, and endosperm and 
is involved in the early development of kernels (Danilevskaya 
et al., 2008). The highest expression of the second candidate 
was detected in the embryo, endosperm, and pericarp 15 days 
after pollination, and the specific function of this gene is the 
regulation of starch granule formation, which further affects 
crop yield and quality (Liu et al., 2015). In addition, the QTL 
identified by linkage mapping, including qReh1-2, qRhkw1, 

FIGURE 1 | Comparison of prediction accuracies between trait-relevant markers (TRMs) and randomly selected markers based on the results of association and 
linkage mapping using genotypic and phenotypic data of the training set within the experimental populations. (A) and (B) Plant height (PH) and grain yield per plant 
(GYP) in the natural population (N = 435); (C) and (D) PH and GYP in the RIL population (N = 212); (E) and (F) PH and GYP in the F2:3 population (N = 304). N is 
the number of individuals in each population. TRM: the prediction accuracy based on TRMs in the general genomic best linear unbiased prediction (GBLUP) model; 
RAN: the prediction accuracy based on randomly selected markers in the general GBLUP model. ALL: total of 38,299 single nucleotide polymorphisms (SNPs), 
2,450 and 2,826 bin markers were used to perform the scheme of cross-validation in natural, recombinant inbred line (RIL), and F2:3 populations, respectively. The 
fivefold cross-validation scheme was implemented in this case.
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FIGURE 2 | Prediction accuracy of models based on nonadditive effects and trait-relevant markers (TRMs). (A) and (B) Plant height (PH) and grain yield per plant 
(GYP) in the F2:3 population (N = 304). N is the number of individuals in each population. The capital letters A, D, and AA refer to additive, dominance, and additive-
by-additive interaction effects, respectively. The A model that contains only additive effects is equivalent to the general genomic best linear unbiased prediction 
(GBLUP) model using trait-relevant markers (TRMs) to perform cross-validation. ALL: total of 2,826 bin markers were used to perform the scheme of cross-
validation in F2:3 population. The fivefold cross-validation scheme was implemented in this case.

TABLE 3 | Proportions of variance components estimated by the models.

Parametersa PHb GYP

Ac A + AA A + D A + D + AA A A + AA A + D A + D + AA

σa
2

0.564
(0.023)

0.542
(0.023)

0.526
(0.025)

0.510
(0.024)

0.182
(0.014)

0.172
(0.017)

0.171
(0.016)

0.161
(0.017)

σd
2 0.043

(0.006)
0.036
(0.004)

0.205
(0.022)

0.173
(0.022)

σaa
2

0.032
(0.005)

0.019
(0.003)

0.127
(0.02)

0.032
(0.007)

σ ε
2 0.436

(0.023)
0.425
(0.024)

0.431
(0.024)

0.435
(0.025)

0.818
(0.014)

0.700
(0.028)

0.624
(0.028)

0.634
(0.026)

a σa
2 : additive genetic variance; σd

2 :dominance variance; σaa
2 :additive-by-additive interaction variance; σ ε

2 :estimated error variance.
b PH: plant height; GYP: grain yield per plant.
cThe model containing various effects; A, additive genetic effect; D, dominance effect; AA, additive-by-additive interaction effect. The BLUE values of individuals in F2:3 
population were used as phenotypic data. The extended GBLUP models were implemented for each trait in the F2:3 population using 2,000 TRMs. The numbers in the 
parentheses were standard deviation.

FIGURE 3 | Comparison of prediction accuracy between models based on trait-relevant markers (TRMs). (A) and (B) Plant height (PH) and grain yield per plant 
(GYP) in the natural population (N = 435). N is the number of individuals in each population; trait-relevant marker (TRM): the prediction accuracy based on TRMs in 
the general genomic best linear unbiased prediction (GBLUP) model; BC + PC: the prediction accuracy based on the BayesC model with PCs as fixed effects using 
TRMs; G + PC: the prediction accuracy based on the GBLUP model with PCs as fixed effects using TRMs. ALL: total of 38,299 SNPs were used to perform the 
scheme of cross-validation in natural population. The fivefold cross-validation scheme was implemented in this case.
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qFgyp5, qFhkw3-2, andqFhkw7, are likely important for yield-
related traits; the IDs of the corresponding candidate genes are 
GRMZM2G103773, GRMZM2G018627, GRMZM2G121468, 
GRMZM5G803935, and AC207722.2_FG009, respectively 
(Supplementary Table 3). In previous studies, these candidate 
genes were described as having the functions of internode length 
regulation and photosystem and floral development. The BRD1 
gene associated with EH is essential for internode elongation, 
and its mutants in maize exhibit severe dwarfism (Makarevitch 
et al., 2012; Peiffer et al., 2014). The genes Lhcb2 and Lhcb9 can 
encode an apoprotein of light-harvesting chlorophyll-binding 
protein, which captures light energy for photosystem II (Viret 
et al., 1993; Boldt and Scandalios, 1995). The VP15 gene is 
related to abscisic acid biosynthesis and formation of viviparous 
seed, and is expressed in both the endosperm and embryo 
during seed maturation (Suzuki et al., 2006). The gene TS4 
encodes a mir172 miRNA, which indirectly regulates spikelet 
meristem determinacy (Xu et al., 2017b). In addition, four QTL 
with overlapping intervals were detected in the RIL and F2:3 
populations, namely, qReh1-2, qRhkw1, qFph1-2, and qFhkw1, 
which were linked to QTL affecting PH and yield (Table 2). This 
important region encompasses at least two genes based on the 
MaizeGDB database, specifically, BRD1 and Lhcb9, implying that 
pleiotropy or close linkage to other QTL related to various traits 
exists in this region and further indicating that the genes can be 
simultaneously inherited by various generations of segregating 
populations that were constructed by common parents. Moreover, 
the region might be a hotspot that consists of important QTL 
with the biological function of controlling PH and kernel weight; 
understanding the genetic basis of these traits will enable plant 
breeders to achieve the full yield potential of maize.

GS is the process of using phenotypic and genotypic data 
from training populations to estimate the GEBVs of individuals 
in breeding populations based on their genotypic values (Jonas 
and de Koning, 2013; Desta and Ortiz, 2014; Crossa et al., 
2017). Genomic relationships, population structure, and genetic 
distance can be revealed by genotypic data in combination with 
statistical and genetic approaches, which will have a crucial 
impact on the prediction accuracy in GS (Guo et al., 2014; Isidro 
et al., 2015; Rio et al., 2019). Hence, the number and genetic 
effects of molecular markers are of great importance in achieving 
a better rMG (Su et al., 2014; Zhang et al., 2014; Ober et al., 2015; 
Zhang et al., 2015; Arruda et al., 2016; Boeven et al., 2016; Yuan 
et al., 2019). As for TRM-based GS in this study, the association 
and linkage mapping were first performed using phenotypic 
and genotypic data of individuals within the training set; TRMs 
derived from the training set were used to estimate rMG. The 
results in this study illustrate that TRMs can enhance rMG in most 
situations, especially when the marker density within natural 
and biparental populations is low, as shown by the use of 20–500 
functional markers to perform cross-validation and achieve better 
prediction performance. In this respect, our results are similar to 
those of several reports that verified the advantage of applying 
TRMs in GS (Spindel et al., 2016; Yuan et al., 2019). In addition, 
for biparental populations with comparatively simple population 
structure and a lower genetic distance between the training and 
testing sets, the increase in rMG is extremely large when a small 

number of TRMs are used in cross-validation, especially when 
rMG is based on 50 TRMs, in which case, it is approximately equal 
to the maximum obtained when all randomly selected markers 
are used to predict the GEBVs of individuals in the testing 
set. This method can greatly reduce the costs of genotyping in 
GS-assisted breeding. Regarding the natural population with 
complex population structure and a greater genetic distance 
between subgroups, the degree of rMG improvement was 
extremely small when using a few TRMs compared to that 
obtained with biparental populations. Thus, population structure 
and genetic relationships may have negative effects on rMG, and 
this explanation is supported by previous empirical studies (Guo 
et al., 2014; Spindel et al., 2015; Rio et al., 2019), which will be 
further discussed below. On the other hand, it may require extra 
expenditure when the criteria centered on multiple breeding 
targets or agronomic traits were used for selection in a breeding 
program, which the TRMs may vary from one agronomic trait 
to another. The utilization of overlapped TRMs may be more 
important and significant in the GS-assisted breeding schemes. 
In this study, a better prediction performance for different traits 
were obtained when total of 500–1,000 overlapped TRMs based 
on the results that all individuals of each population were used 
to perform association and linkage mapping were applied to 
implement GS (Supplementary Figure 9). Despite that, the 
application of overlapped TRMs can be limited because the 
TRMs were different between traits within various experimental 
populations and agronomic traits had disparate genetic basis and 
complexity. Hence, the profound study of molecular mechanism 
of target traits should be required with the purpose of improving 
the availability and practicability of TRMs in GS breeding 
programs. In brief, TRMs can be conducive to improving the 
predictive ability of models and reducing breeding costs for 
further enhancing genetic gain.

Nonadditive variance, which includes dominance and epistatic 
effects that generally consist of various interaction effects, 
such as AA, additive-by-dominance (AD), and dominance-by-
dominance (DD) interaction effects, has long been recognized 
as essential component for dissecting the genetic architecture of 
target traits and understanding the genetic basis of quantitative 
traits (Su et al., 2012; Da et al., 2014; Muñoz et al., 2014; Azevedo 
et al., 2015; Jiang and Reif, 2015; Zhao et al., 2015; Bouvet et al., 
2016; Dias et al., 2018; Liu and Chen, 2018; Varona et al., 2018). 
Several studies were performed using TRMs to test the effect of 
various combinations of nonadditive effects in extended GBLUP 
models. For the traits with high heritability, the proportion of 
nonadditive variance in the phenotypic variance was so small 
that the degree of rMG improvement when the linear mixed 
model included dominance and epistatic effects had almost no 
change compared with that obtained with the general GBLUP 
model considering only additive effects (Wang et al., 2017; Dias 
et al., 2018; Liu et al., 2018; Alves et al., 2019). For example, PH 
in the F2:3 population has low proportion of nonadditive variance 
estimated by extended GBLUP models in this study, and then, 
there was no significant difference between models accounting 
for various effects, which validates the argument made above. In 
other words, additive genetic effects can explain the vast majority 
of genetic variancewhen genomic prediction is implemented for 
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traits with high heritability, which is in agreement with the results 
of several other studies (Melchinger et al., 2003; Fischer et  al., 
2008; Hallauer et al., 2010). However, for the traits with high 
proportion of nonadditive variance, such as GYP in this study, a 
great improvement in rMG was achieved when nonadditive effects 
were included in statistical models. Furthermore, compared to 
the additive-effects model, the extent of rMG improvement in 
the A + D model was greater than that in the A + AA model, 
regardless of how many TRMs were used in cross-validation. 
This phenomenon may have occurred because considering 
dominance effects in the predictive model can account for a 
higher proportion of the genetic variance than including AA 
interaction effects in the model. Hence, a GS model including 
additive and dominance effects for a F2:3 population with 
genotypes displaying a high ratio of heterozygous alleles can have 
important effects on rMG, and the influence of dominance effects 
on the enhancement of rMG under such conditions can sometimes 
be superior to that when epistatic effects are considered in GS 
models. These results were similar to the results of some previous 
studies (Su et al., 2012; Da et al., 2014; Bouvet et al., 2016; Alves 
et al., 2019). The largest rMG was obtained when the A + D + AA 
model was implemented in cross-validation, illustrating that 
fully considering nonadditive effects in extended GS models 
can further improve predictive performance. However, models 
including more epistatic effects, such as AA, AD, and DD 
interaction effects, exhibited a poorer rMG than the A + D + AA 
model and even than the A + D model (results not shown). This 
phenomenon may result because considering more effects in 
models can increase their complexity and affect the goodness of 
fit (Alves et al., 2019). On the other hand, it may be attributed to 
epistatic effects redundantly involving other effects when various 
matrixes of genomic relationships are constructed to dissect 
genetic variance (Hallauer et al., 2010). For instance, additive 
and dominance effects may be repeatedly considered in other 
interaction effects, thereby potentially having an undesirable 
impact on the accuracy of marker effect estimates (Plieschke 
et al., 2015); however, further study is required to fully reveal the 
reasons for this finding. In general, to achieve better prediction 
performance in a heterozygous population, nonadditive effects 
should be taken into account to enhance predictive ability and 
accelerate the breeding process.

The formation of population structure and genetic relationships 
can impact the accuracy of estimates of marker effects in stratified 
populations and further affect the prediction performance in 
GS (Technow et al., 2013; Guo et al., 2014; Spindel et al., 2015; 
Duangjit et al., 2016; Habyarimana, 2016; Rio et al., 2019). 
There are at least two approaches for reducing the influence of 
population structure on rMG. The first is constructing the training 
population to be closely related to the breeding population before 
implementing GS (Toosi et al., 2010; Esfandyari et al., 2015; 
Zhang et al., 2017a). The second is considering the information 
of population structure as a fixed effect in the model (Guo et al., 
2014; Rio et al., 2019). In the case of the former, we investigated 
the effects of genetic relationships between training and testing 
sets in a previous publication (Liu et al., 2018). In this study, 
the effects of population structure on rMG were examined using 
various numbers of TRMs in the models and then discussed.  

Previous research has explicitly taken genetic structure into account 
using all markers to fit the modified models without considering 
TRMs, and rMG was not significantly improved compared to that 
obtained by a general GBLUP model (Rio et al., 2019). The results 
from this study were similar to those of the abovementioned research 
when the number of TRMs was >5000 for GYP. In addition, there 
was a slight improvement in rMG when more than 10,000 TRMs 
were used to perform GS. Therefore, using information of genetic 
structure estimated with TRMs as a fixed effect can enhance the rMG 
to some extent and may improve the proportion of genetic variance 
explained by the mixed model. The impact of population structure 
is attributed to the difference in allele frequencies between groups, 
which likely affects the estimation of marker effects and cannot 
be captured by the general parameters of models (Liu et al., 2018; 
Rio et al., 2019). Hence, developing advanced models that take 
such information into account will be required to achieve better 
prediction performance in the future.

CONCLUSIONS

GS has developed with high-throughput genotyping technology 
and is a landmark for theoretical exploration, from targeting 
individual loci to considering the whole genome, in the field of 
animal and plant molecular breeding. Empirical genotypic and 
phenotypic data from three experimental populations were used 
to investigate the effects of including TRMs and nonadditive 
effects in GS models. We found that the rMG based on TRMs was 
better than that obtained by stochastically selected markers, and 
a few TRMs resulted in a higher rMG in biparental populations 
with simple population structure. In addition, considering 
nonadditive effects, including dominance, epistatic, and fixed 
effects, in the statistical models further improved the predictive 
ability for accelerating the breeding process in cooperation with 
TRMs. On the other hand, the utilization of TRMs in GS can 
ensure a sufficient rMG for selecting candidate lines and optimize 
the cost of the breeding cycle, with the strong potential to increase 
benefits. However, the development of appropriate GS models 
in the future should take nonadditive effects and information 
of population structure into account, which can fully capture 
dominance and epistatic effects on the evaluation of potential 
hybrids and reduce the effects of population structure, enabling 
adequate predictive performance when the training and breeding 
populations are very genetically distant.
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