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Above-ground biomass (AGB) is a trait with much potential for exploitation within wheat 
breeding programs and is linked closely to canopy height (CH). However, collecting 
phenotypic data for AGB and CH within breeding programs is labor intensive, and in the 
case of AGB, destructive and prone to assessment error. As a result, measuring these 
traits is seldom a priority for breeders, especially at the early stages of a selection program. 
LiDAR has been demonstrated as a sensor capable of collecting three-dimensional data 
from wheat field trials, and potentially suitable for providing objective, non-destructive, 
high-throughput estimates of AGB and CH for use by wheat breeders. The current study 
investigates the deployment of a LiDAR system on a ground-based high-throughput 
phenotyping platform in eight wheat field trials across southern Australia, for the non-
destructive estimate of AGB and CH. LiDAR-derived measurements were compared to 
manual measurements of AGB and CH collected at each site and assessed for their 
suitability of application within a breeding program. Correlations between AGB and 
LiDAR Projected Volume (LPV) were generally strong (up to r = 0.86), as were correlations 
between CH and LiDAR Canopy Height (LCH) (up to r = 0.94). Heritability (H2) of LPV (H2 = 
0.32–0.90) was observed to be greater than, or similar to, the heritability of AGB (H2 = 
0.12–0.78) for the majority of measurements. A similar level of heritability was observed 
for LCH (H2 = 0.41–0.98) and CH (H2 = 0.49–0.98). Further to this, measurements of LPV 
and LCH were shown to be highly repeatable when collected from either the same or 
opposite direction of travel. LiDAR scans were collected at a rate of 2,400 plots per hour, 
with the potential to further increase throughput to 7,400 plots per hour. This research 
demonstrates the capability of LiDAR sensors to collect high-quality, non-destructive, 
repeatable measurements of AGB and CH suitable for use within both breeding and 
research programs.
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INTRODUCTION

In recent years there has been much discussion regarding the role of high-throughput phenotyping 
(HTP) technologies within field crop breeding programs, focused primarily on the potential of 
these technologies to reduce the current disparity between the amount of phenotype and genotype 
data available to breeders (Cobb et al., 2013; Araus and Cairns, 2014). There are three key aspects 
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of these technologies which interest field crop breeders: i) the 
ability to collect data faster than traditional methods; ii) the 
ability to collect higher-quality objective data than traditional 
methods; and (iii) the ability to collect data which cannot be 
collected through existing methods. With these three aspects 
in mind, the trait of above-ground biomass (AGB) is a prime 
candidate to benefit from the potential advantages offered by 
HTP technologies.

Above-ground biomass is traditionally measured through 
laborious and destructive methods, requiring crop cuts to be 
collected from field plots and dried in an oven before being 
weighed to assess the dry biomass of each sample. This multi-
step process is prone to error, from variability in the area 
within the plot sampled, to the potential loss of material while 
cutting, transporting, and handling samples. Furthermore, 
the destructive nature of crop cuts is undesirable within field 
crop breeding programs due to the loss of plot area and edge 
effects that influence plot yield. Despite the inconvenience of 
phenotyping AGB, it is an important trait of interest in many 
field crop breeding programs. For bread wheat (Triticum 
aestivum L.), AGB has been identified as a trait with much 
potential to exploit within breeding programs, particularly 
in relation to yield improvements through harvest index and 
radiation use efficiency (Reynolds et al., 2012), water use 
efficiency (Richards et al., 2002), drought tolerance (Fischer 
and Wood, 1979), as well as potential advantages in crop 
competitiveness (Zerner et al., 2016).

Of the sensors investigated to estimate AGB with HTP to date, 
one of the most promising is LiDAR, a laser-based sensor, from 
which raw data can be transformed into a three-dimensional 
(3D) point cloud. As AGB is a 3D trait in nature, point cloud 
data provides a logical advantage compared to two-dimensional 
sensors such as digital or multispectral cameras, to accurately 
account for and estimate AGB of field crops. Although there are 
other methods and technologies that can be used to generate 
point cloud data, such as digital images and photogrammetry 
techniques (Walter et al., 2018), LiDAR-based systems offer not 
only a high-throughput and high-density method of collecting 
such data, but also the possibility of penetrating and collecting 
measurements from within the crop canopy.

To date, few studies have investigated the use of LiDAR, or 
similar technologies, to estimate the AGB of field crops. Those 
that have, often used LiDAR-derived canopy height (CH) as a 

proxy of AGB (Long and McCallum, 2013; Pittman et al., 2015; 
Eitel et al., 2016). This approach may be suitable for large-scale 
biomass estimation, such as in commercial crops, but in cereal 
breeding programs there is often little variation in CH among 
breeding lines. Investigations into processing methods which 
utilize the 3D nature of LiDAR-derived point cloud data have 
been undertaken, with volume measurements of point clouds 
(Jimenez-Berni et al., 2018; Sun et al., 2018; Walter et al., 2018), 
and 3D indices (Jimenez-Berni et al., 2018) shown to correlate 
strongly to manually measured AGB. While the findings of 
these studies are promising, they have not fully investigated how 
these methods and data may be applied to field crop breeding 
programs. One particular shortcoming of these previous studies 
is that they were limited to a single environment and a relatively 
small number of plots, in contrast to commercial breeding 
programs, which operate across many environments and require 
many plots to be evaluated.

The current study investigates the deployment of a LiDAR-
based system for the non-destructive estimation of AGB and 
CH across multiple environments, with this system based on 
the High-throughput Imaging Boom (HIB) described by Walter 
et al. (2019). The logistics of integrating such a system within 
a breeding program are discussed, along with the relevance of 
the data to breeding programs, particularly focusing on trait 
heritability and genetic and residual correlations. Though the 
current study takes place within a wheat breeding program, we 
believe this discussion is relevant to a wide variety of field crop 
breeding and research programs.

METHODS

Site and Trial Design
To investigate the application of LiDAR sensors within a wheat 
breeding program, field trials were run across eight sites in 
southern Australia, encompassing a range of environments with 
differences in yield potential. The trial sites selected are used for 
the evaluation of germplasm by a commercial wheat breeding 
program and are representative of the environmental range over 
which wheat is grown in the region. Location and details of the 
eight sites are shown in Table 1.

Each trial consisted of eight bread wheat (Triticum aestivum 
L.) cultivars, grown in small plots and designed as a completely 

TABLE 1 | Location and details of the eight field trial sites present in the current study. Latitude and longitude are presented in the WGS84 datum.

Site Latitude (°) Longitude (°) Mean crop above-
ground biomass at 

ZGS 65 (t/ha)

Mean crop canopy 
height at ZGS 65 

(cm)

Angas Valley (AV) −34.758645 139.241074 6.7 76.5
Booleroo (BL) −32.801685 138.296129 5.5 63.5
Kaniva (KV) −36.436664 141.197603 14.6 87.7
Minnipa (MN) −32.841374 135.156289 1.4 39.6
Pinnaroo (PN) −35.350264 141.066939 7.9 81.4
Roseworthy (RS) −34.526346 138.665595 11.1 92.8
Rudall (RD) −33.656549 136.141373 5.0 49.4
Winulta (WT) −34.253630 137.884995 12.4 88.2
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randomized factorial design, with factors of genotype and 
sample time and three replicates (192 plots total). More 
sampling times were allocated during experimental design 
than were ultimately utilized in the current study. Trials 
were uniquely randomized at each site and were specifically 
designed to provide large amounts of phenotypic variation for 
plant height and above-ground biomass. Cultivars selected for 
this purpose were: Axe, Beckom, Halberd, Krichauff, Scepter, 
Shield, Wyalkatchem, and Yitpi. Trials were located within 
large-scale wheat breeding sites (approximately 6 ha and 8,000 
plots per site) and managed by Australian Grain Technologies 
(AGT). Plots were 3.2 × 1.32 m and consisted of five rows 
spaced at 25 cm.

Manual Measurements
Manual measurements were collected across all sites during the 
growing season. Sample times differed between sites (Table 2), 
though all sites were sampled at anthesis — Zadoks growth 
scale 65 [ZGS 65 (Zadoks et al., 1974)] — as a measurement of 
maximum leaf biomass. Developmental rate differs between the 
varieties used in the current study, with flowering time spread 
approximately across a two week window. As such ZGS values 
assigned are nominal, and sample dates were determined when 

50% of varieties were at, or had surpassed, the designated ZGS. 
This does not impact on the processing or analysis methods used 
for the purpose of comparing manual and digital measurements 
in the current study. At each sample time CH was measured in 
each plot, while AGB was measured in plots of the corresponding 
sample time. Canopy height was measured with a ruler at four 
randomly-selected points within each plot, with an average of 
these heights recorded to provide a representative CH. Above-
ground biomass was collected from individual plots as two linear 
meters of plant material (1m from two adjacent rows) cut at 
ground level. Cuts were taken from the inner seed rows to avoid 
edge effects. Cuts from each plot were bundled, dried at 45ºC for 
two weeks, then weighed to obtain AGB. Due to the small size of 
plots sown in the trial it was impractical to take multiple AGB 
samples from individual plots. To circumvent this, sampling time 
was allocated as a factor within the trial design, such that each 
sampling time was undertaken within unique plots.

LiDAR Measurements
The LiDAR sensors used in the current study were SICK 
LMS400-2000 (SICK AG, Waldkirch, Germany). These 2D 
sensors have a 70° field of view and are capable of scanning 
between 270–500 Hz at an angular resolution of 0.1°–1.0°, 
with a ± 4 mm systematic measurement error and a 3–10 mm 
statistical error, depending on remission distance. For the 
purpose of the current study, two sensors were mounted on a 
boom of adjustable height and attached to a tractor as shown in 
Figure 1. The sensors are mounted at a nadir angle, with scans 
occurring along the crop row. Measurements are collected 
across the crop rows as the tractor moves. Detailed information 
on the boom and its implementation within field plot trials is 
provided in Walter et al. (2019). For the current study all LiDAR 
measurements were collected from a single direction of travel, 
as opposed to the serpentine manner described in Walter et al. 
(2019). To investigate the repeatability of LiDAR measurements 
at Roseworthy, three scans were conducted at each timepoint. 
Two scans were collected from the same direction of travel, to 
observe the repeatability of duplicate scans, with the third scan 

TABLE 2 | Sample times and associated Zadoks growth scale for each of the 
sites in the current study. 

Site Sample time

ZGS 31 ZGS 49 ZGS 59 ZGS 65 ZGS 96

AV ✓ ✓
BL ✓
KV ✓
MN ✓
PN ✓
RS ✓ ✓ ✓ ✓ ✓
RD ✓
WT ✓ ✓ ✓

FIGURE 1 | The tractor mounted LiDAR system used in the current study showing the boom system and LiDAR sensor mounting positions, with major components 
annotated (A) and a closer view of one of the mounted LiDAR sensors (B).
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collected from the opposite direction of travel, to observe any 
effects of travel direction on scan data.

Scans were captured at a speed of 2 km/h with the LiDAR 
sensor capturing data in a 70° nadir field of view, at 300 Hz, 
with an angular resolution of 0.133° and a theoretical scanning 
resolution of 1.5 mm between consecutive scans. Sensors were 
configured to output data to laptop computers in the tractor cab. 
Data capture was triggered by a 1.5 V pulse, output from a Trimble 
FM1000 RTK GPS unit (Trimble Inc., Sunnyvale, California, 
USA). This allowed individual plots to be identified in-situ using 
shapefiles created using GIS software MiniGIS (geo-konzept 
GmbH, Adelschlag, Germany) loaded onto the Trimble FM1000. 
LiDAR sensors were mounted at a height of 230 cm above the 
ground throughout all scans, allowing for an approximate field 
of view of 2 m at 80 cm above-ground level (estimated average 
wheat canopy height). All data collection occurred on the same 
day, within each sample time, with manual measurements taken 
immediately after plots were scanned by the LiDAR system.

LiDAR Processing
Raw scan data was processed in the R software package (R-Core 
Team, 2017). Scan data was cleaned to remove false returns 
through a process of removing negative height values and 
filtering each scan line through a 98th percentile check to remove 
excessively high points. To better extract data from each plot, 
scanlines of two plot rows within each plot were processed, with 
ends of each scan trimmed to give a total plot length of 1 m (i.e. 
0.5 m either side of the sensor), equating to the area of plot to 
be manually sampled. Points with a height less than 5 cm were 
re-assigned a height of 0 cm to eliminate returns from raised 
soil along seeding furrows, rocks or other miscellaneous objects. 
Visualization of these point cloud processing steps are shown 

in Figure 2. Similar procedures, for the removal of ground-
level points, when dealing with fixed-height LiDAR data, have 
been demonstrated by Friedli et al. (2016); Sun et al. (2017) and 
Jimenez-Berni et al. (2018).

Canopy height was extracted through percentile algorithm 
in R (R-Core Team, 2017). Firstly, identifying the 98th percentile 
of maximum returned height in each scan line (Figure 3A), and 
secondly taking the 86th percentile of these values to provide 
an estimate of overall canopy height, henceforth referred to as 
LiDAR Canopy Height (LCH) (Figure 3B). The 86th percentile 
was selected through optimization of Pearson’s correlation 
coefficient and RMSE between LCH and CH for all sample times 
at Roseworthy (Supplementary Material).

As a surrogate to AGB, plot volume estimates were produced 
by calculating the distance between each point in a scan line, the 
distance between scan lines and the height of each point. Using 
these three variables, a rectangular prism was created for each 
point in the point cloud, and volume of this prism calculated. 
A two-dimensional representation of these prisms for a single 
scan line is presented in Figure 3C with the z axis distance for 
these prisms provided by the movement of the LiDAR sensor. 
The summation of all prism volumes from within the point 
cloud was used as an estimate of plot volume. This measure will 
henceforth be referred to as LiDAR Projected Volume (LPV), 
as it encompasses all space below the LiDAR returns, rather 
than purely the area occupied by plant material. In the current 
study this volume is calculated as m3/m2, as this can be directly 
compared to plant material per square meter of plot, as measured 
in kg/m2 for AGB. A single automated script was written in R to 
clean raw data and simultaneously calculate LCH and LPV, with 
processing taking approximately 13 s per plot.

In addition to the LPV calculations, point clouds for the 
Roseworthy data set were processed using the formulas described 

FIGURE 2 | Visualisation of a point cloud collected in the current study (at Zadoks growth scale 65), showing the three steps of data processing; raw point cloud, 
cleaned point cloud, and segmented area used for processing of measurements, from a side, top and perspective view.
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by Jimenez-Berni et al. (2018) to calculate their 3D profile index 
(3DPI) used to estimate AGB. This index is based around the 
fraction of points present throughout the point cloud, rather 
than a volume-based measurement. It requires splitting the 
point cloud into layers, applying a correction factor to each layer 
and finally taking a summation of the corrected point fractions 
present in each later. This process, and the required formula, are 
described in detail by Jimenez-Berni et al. (2018). The processing 
and AGB estimation methods of Jimenez-Berni et al. (2018) were 
followed, using the separate equations for pre- and post-anthesis 
measurements presented, and finally estimating AGB through 
transforming LiDAR data with the linear regression equation 
between AGB and 3DPI at each measurement time.

Statistical Analysis
All statistical analyses were conducted in the R software 
package (R-Core Team, 2017). Mixed linear models were used 
for multivariate analyses, comparing traits and trait collection 
methods, using ASREML (Gilmour et al., 2015). From 
multivariate analyses Pearson’s correlation coefficients were 
calculated between traits (raw correlations), along with genetic 
and residual correlations, accounting for the proportion of 
variance observed between the two traits based on genetic and 
residual components, respectively (Falconer, 1960). Outputs of 
multivariate analyses were also used for the calculation of broad-
sense heritability (Equation 1), which can be described as the 
proportion of observed trait variation attributable to genetics 
(Visscher et al., 2008), for the traits CH, LCH, and LPV. Outputs 
from a randomized complete block analysis with ASREML were 
used to calculate broad-sense heritability for AGB.

 
H2

2

2 2=
+

σ
σ σ

G

G E
 (Equation 1.)

where H2 is broad-sense heritability, σG
2  is the variance attributable 

to genetic effects and σ E
2  the variance attributable to environmental 

effects (residual variance).
Due to the small sample size and large spatial spread of AGB 

measurements collected within trials at each sample time, genetic 

and residual correlations were not calculated between AGB and 
other traits.

RESULTS

LiDAR Repeatability
Repeatability of multiple measurements taken at Roseworthy 
was generally high for both LCH and LPV measurements at both 
individual sample times (Table 3) and when pooling sample times 
(Figure 4). Scans taken in the same direction of travel show greater 
repeatability than scans taken in opposite directions of travel.

Repeatability of height measurements was seen to be 
extremely high at three of the five sample times, ZGS 49, 65, and 
96, when scanned in the same direction of travel, with high r2 
values, linear regression coefficients nearing one and intercepts 
nearing zero (Table 3). In contrast repeatability of samples 
taken at ZGS 31 and 59 showed much greater variation, with 
lower linear regression coefficients and intercepts further away 
from zero (Table 3, Figure 4A). Repeatability of measurements 
in opposite directions of travel was less accurate than the same 
direction of travel (Figure 4C). Generally, measurements of 
LCH from opposite directions had linear regression coefficients 
nearing one and intercepts nearing zero, though lower r2 values 
than scans from the same direction (Table 3), with differences 
between timepoints being less pronounced. A similar trend for 
repeatability of LPV measurements was also observed, though 
overall LPV showed greater reproducibility than LCH. High 
repeatability was observed between LPV measurements in the 
same direction of travel (Figure 4B) and good repeatability in 
opposite directions of travel (Figure 4D).

Canopy Height
A wide range in canopy height was observed between site 
locations and sample timepoints, with this being especially 
apparent between environments. Strong raw correlations were 
observed between LCH and manually measured height for 
all sites (r = 0.56–0.94), and at the majority of sample times 
(Table  4). However, individual sample times at some sites 
showed poorer correlation compared to the rest of the data set. 

FIGURE 3 | The height of all laser returns present in each scan line of a point cloud segmented for processing (A), a visualization of the LiDAR Canopy Height 
calculation process (B) showing the 98th percentile of processed points within each scan line and the over-all LiDAR Canopy Height value, represented with a 
dashed blue line, as calculated by the 86th percentile of these points, and a two-dimensional representation of LiDAR Projected Volume calculated for a single scan 
line of the point cloud (C); the width and height of each prism being represented by the x axis (scan line width) and the y axis (prism height) respectively. The depth 
of each prism is calculated from the distance between scan lines as the LiDAR sensor moves, producing the unplotted z axis (prism depth).
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TABLE 3 | Coefficient of determination (r2) and components (slope ± standard error, and intercept ± standard error) for linear regression models between repeated 
scans in the same and opposite directions, processed for the traits LiDAR Canopy Height (LCH) and LiDAR Projected Volume (LPV), at each sample time (ZGS) at 
Roseworthy. 

Trait Scan 1 vs Scan 2 (Same direction) Scan 1 vs Scan 3 (Opposite Direction)

ZGS r2 Slope ± s.e. Intercept ± s.e. ZGS r2 Slope ± s.e. Intercept ± s.e.

LCH 31 0.08 0.31 ± 0.08 31.98 ± 3.67 31 0.31 0.71 ± 0.08 17.73 ± 3.21
49 0.99 0.97 ± 0.01 1.32 ± 0.46 49 0.88 0.97 ± 0.03 1.76 ± 1.50
59 0.61 0.72 ± 0.04 20.02 ± 3.28 59 0.76 0.93 ± 0.04 5.58 ± 2.84
65 0.95 0.94 ± 0.02 5.15 ± 1.28 65 0.86 0.95 ± 0.03 2.45 ± 2.26
96 0.95 0.98 ± 0.02 1.38 ± 1.36 96 0.68 0.87 ± 0.04 11.14 ± 3.47

LPV 31 0.82 0.92 ± 0.03 0.01 ± 0.00 31 0.75 0.93 ± 0.01 0.01 ± 0.01
49 0.99 0.99 ± 0.01 0.00 ± 0.00 49 0.79 0.82 ± 0.04 0.04 ± 0.01
59 0.99 0.99 ± 0.01 0.00 ± 0.00 59 0.91 0.88 ± 0.04 0.04 ± 0.01
65 0.96 0.94 ± 0.01 0.02 ± 0.00 65 0.89 0.82 ± 0.05 0.05 ± 0.01
96 0.95 0.95 ± 0.02 0.01 ± 0.00 96 0.84 0.81 ± 0.05 0.05 ± 0.00

All models are significant at the level of p < 0.001.

FIGURE 4 | The repeatability of LiDAR-based measurements collected at Roseworthy throughout the season, comparing scans collected from the same direction 
(A, B) and the opposite direction (C, D) for the measurement of LiDAR canopy height (A, C) and LiDAR projected volume (B, D). Dashed lines indicate the line 
of best fit, coloured shapes indicate measurements collected at Zadoks growth scales (ZGS) as follows, red circles at ZGS 31, yellow triangles at ZGS 49, green 
triangles at ZGS 59, blue diamonds at ZGS 65 and pink squares at ZGS 90.
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TABLE 4 | Correlations between traits, plus or minus standard error, at each site and sample time (ZGS), measured in the current study. 

Site ZGS Correlation

Raw Raw Genetic Residual Raw Genetic Residual

AGB AGB AGB LPV LPV LPV LPV LPV LPV CH CH CH

LPV CH LCH CH LCH CH LCH CH LCH LCH LCH LCH

AV 49 0.86 ± 0.11
***

0.64 ± 0.16
***

0.68 ± 0.16
***

0.52 ± 0.06
***

0.87 ± 0.04
***

0.68 ± 0.24
***

0.92 ± 0.08
***

0.48 ± 0.06
***

0.87 ± 0.02
***

0.58 ± 0.06
***

0.88 ± 0.10
***

0.48 ± 0.06
***

65 0.64 ± 0.16
***

0.16 ± 0.21 0.28 ± 0.20 0.67 ± 0.06
***

0.76 ± 0.05
***

0.89 ± 0.09
***

0.92 ± 0.06
***

0.44 ± 0.07
***

0.73 ± 0.04
***

0.90 ± 0.03
***

0.98 ± 0.01
***

0.67 ± 0.04
***

BL 65 0.69 ± 0.16
***

-0.15 ± 
0.21

0.21 ± 0.21 0.30 ± 0.07
***

0.62 ± 0.06
***

0.84 ± 0.13
***

0.81 ± 0.14
***

0.17 ± 0.07
***

0.63 ± 0.05
***

0.76 ± 0.05
***

1.00 ± 0.01
***

0.42 ± 0.06
***

KV 65 0.45 ± 0.19
*

0.25 ± 0.20 0.22 ± 0.21 0.67 ± 0.05
***

0.80 ± 0.04
***

0.88 ± 0.09
***

0.89 ± 0.08
***

0.33 ± 0.07
***

0.67 ± 0.04
***

0.91 ± 0.03
***

1.00 ± < 0.01
***

0.51 ± 0.06
***

MN 65 0.70 ± 0.15
***

0.71 ± 0.15
***

0.69 ± 0.15
***

0.29 ± 0.07
***

0.80 ± 0.04
***

0.64 ± 0.25
***

0.88 ± 0.10
***

0.04 ± 0.08 0.74 ± 0.03
***

0.56 ± 0.06
***

0.91 ± 0.08
***

0.08 ± 0.08

PN 65 0.66 ± 0.16
***

0.39 ± 0.20 0.42 ± 0.20
*

0.77 ± 0.05
***

0.86 ± 0.04
***

0.90 ± 0.07
***

0.92 ± 0.06
***

0.55 ± 0.05
***

0.88 ± 0.02
***

0.94 ± 0.03
***

1.00 ± < 0.01
***

0.58 ± 0.05
***

RD 65 0.66 ± 0.16
***

0.58 ± 0.17
**

0.72 ± 0.15
***

0.58 ± 0.06
***

0.82 ± 0.04
***

0.74 ± 0.18
***

0.80 ± 0.14
***

0.26 ± 0.07
***

0.72 ± 0.04
***

0.77 ± 0.05
***

0.99 ± 0.01
***

0.45 ± 0.06
***

RS 31 0.86 ± 0.11
***

0.58 ± 0.17
**

0.71 ± 0.15
***

0.70 ± 0.05
***

0.83 ± 0.04
***

0.45 ± 0.34
***

0.62 ± 0.26
***

0.53 ± 0.06
***

0.86 ± 0.02
***

0.83 ± 0.04
***

0.97 ± 0.04
***

0.62 ± 0.05
***

49 0.73 ± 0.15
***

0.70 ± 0.15
***

0.70 ± 0.15
***

0.76 ± 0.05
***

0.90 ± 0.03
***

0.93 ± 0.06
***

0.97 ± 0.03
***

0.50 ± 0.06
***

0.87 ± 0.02
***

0.90 ± 0.03
***

1.00 ± < 0.01
***

0.64 ± 0.05
***

59 −0.05 ± 0.21 0.21 ± 0.21 0.04 ± 0.21 0.60 ± 0.07
***

0.72 ± 0.06
***

0.64 ± 0.23
***

0.83 ± 0.12
***

0.20 ± 0.08
***

0.64 ± 0.05
***

0.77 ± 0.05
***

0.95 ± 0.04
***

0.28 ± 0.07
***

65 0.62 ± 0.17
**

0.35 ± 0.2 0.51 ± 0.18
*

0.65 ± 0.07
***

0.73 ± 0.06
***

0.82 ± 0.13
***

0.77 ± 0.16
***

0.25 ± 0.09
***

0.71 ± 0.05
***

0.94 ± 0.02
***

1.00 ± < 0.01
***

0.29 ± 0.07
***

96 0.47 ± 0.19
*

−0.01 ± 
0.21

0.06 ± 0.21 0.22 ± 0.10
*

0.31 ± 0.10
**

0.18 ± 0.37
*

0.19 ± 0.37
**

0.25 ± 0.11
***

0.28 ± 0.11
***

0.90 ± 0.03
***

1.00 ± < 0.01
***

0.27 ± 0.07
***

31 0.75 ± 0.14
***

0.44 ± 0.19
*

0.27 ± 0.21 0.63 ± 0.06
***

0.56 ± 0.06
***

0.82 ± 0.13
***

0.84 ± 0.11
***

0.31 ± 0.07
***

0.70 ± 0.04
***

0.58 ± 0.06
***

0.96 ± 0.03
***

0.24 ± 0.07
***

WT 49 0.55 ± 0.18
**

0.70 ± 0.15
***

0.66 ± 0.16
***

0.74 ± 0.05
***

0.86 ± 0.04
***

0.84 ± 0.11
***

0.91 ± 0.07
***

0.29 ± 0.08
***

0.81 ± 0.03
***

0.91 ± 0.03
***

0.99 ± 0.01
***

0.41 ± 0.07
***

65 0.47 ± 0.19
*

0.22 ± 0.21 0.37 ± 0.20 0.65 ± 0.06
***

0.74 ± 0.06
***

0.82 ± 0.13
***

0.81 ± 0.13
***

0.44 ± 0.07
***

0.71± 0.04
***

0.93 ± 0.03
***

1.00 ± < 0.01
***

0.56 ± 0.05
***

Raw correlations shown for Above-ground Biomass (AGB), LiDAR Projected Volume (LPV), Canopy Height (CH) and LiDAR Canopy Height (LCH); raw, genetic and residual correlations between LiDAR Projected Volume, Canopy 
Height and LiDAR Canopy Height; and raw genetic and residual correlations between Canopy Height and LiDAR Canopy Height. Significance of each correlation is indicated as *p < 0.05, **p <0.01 and ***p < 0.001.
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FIGURE 5 | The relationship between LiDAR Canopy Height and Canopy Height, presented individually for each site and sample time (ZGS). Dashed lines indicate 
the line of best fit, coloured shapes indicate measurements collected at Zadoks growth scales (ZGS) as follows, red circles at ZGS 31, yellow triangles at ZGS 49, 
green triangles at ZGS 59, blue diamonds at ZGS 65 and pink squares at ZGS 90.
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Strong linear relationships were observed between CH and LCH 
at the majority of sites (Figure 5), though weaker relationships 
were observed for some early growth stages (Roseworthy at ZGS 
31 and Angas Valley at ZGS 49), or when CH was low (Minnipa 
ZGS 65). Pooling measurements throughout the season showed 
strong continuity of data and strong linear relationships between 
CH and LCH, such as presented in Figure 6 for Roseworthy.

Raw (r = 0.56 to 0.94) and genetic (rg = 0.91 to 1.00) correlations 
between CH and LCH were strong across all sample times, while 
residual correlations ranged from 0.08 to 0.67 (Table  4). For 
repeated measures there were no apparent trends for raw, genetic 
or residual correlations over time. Both CH and LCH had high 

heritability at all times of measurement, excluding Winulta at 
ZGS 31. Heritability tended to increase over time at sites where 
repeated measurements were taken (Table 5).

Above-Ground Biomass
Above-ground biomass samples collected showed large amounts 
of variation between sites, with LPV showing similar amounts 
of variation. Raw correlations between AGB and LPV were 
predominantly strong and positive, though some weaker 
correlations were observed, with one weak negative correlation 
(Table 4). Figure 7 shows the linear nature of the relationship 
between AGB and LPV within each sample. The relationships 
between measurements of AGB and LPV collected over the 
growing season at Angas Valley, Roseworthy and Winulta are 
displayed in Figure 8. Both Angas Valley and Winulta showed 
an increase of AGB and LPV over time. This was also observed at 
Roseworthy for most sample times. However, samples collected 
at ZGS 65 and 96 showed increased AGB (compared to previous 
samples) but did not show any increase in LPV, with slight 
decreases in LPV being observed.

Above-ground biomass correlated most strongly to LPV for 
much of the raw data, though a number sites showed stronger, or 
similar, correlations to CH and LCH (Table 4). LiDAR projected 
volume correlated strongly to LCH for most measurements. 
Similar but generally weaker correlations were observed between 
LPV and CH.

The heritability of AGB measurements was generally lower 
than that of LPV measurements, although this was reversed in 
some instances. Heritability of AGB appears to show no trend 
across repeated measures, though heritability of LPV appears to 
generally increase over time, with the exception of Roseworthy 
at ZGS 96.

To assess the effectiveness of the LPV measurements 
calculated in the current study as an AGB estimator, LPV was 
compared to 3DPI, as described by Jimenez-Berni et al. (2018), 
for the Roseworthy data set. Except for ZGS 31, LPV was strongly 
correlated with 3DPI and, in general, showed slightly greater 
correlations to AGB (Table 6). A strong relationship between 
AGB and 3DPI-predicted AGB was observed throughout the 
season (Figure 9), excluding the ZGS 49 measurement which 
did not fit this trend. A similar relationship was observed by 
Jimenez-Berni et al. (2018).

FIGURE 6 | The relationship between LiDAR Canopy Height and Canopy 
Height for all sample times measured at Roseworthy. Dashed lines indicate 
the line of best fit, coloured shapes indicate measurements collected at 
Zadoks growth scales (ZGS) as follows, red circles at ZGS 31, yellow 
triangles at ZGS 49, green triangles at ZGS 59, blue diamonds at ZGS 65 
and pink squares at ZGS 90.

TABLE 5 | Broad-sense heritability of each trait, at each site and sample time (ZGS), measured in the current study.

Trait Site and sample time

AV BL KV MN PN RD RS WT

49 65 65 65 65 65 65 31 49 59 65 96 31 49 65

Above-ground 
biomass

0.47 0.22 0.46 0.32 0.67 0.26 0.48 0.52 0.12 0.42 0.78 0.59 0.63 0.33 0.45

LiDAR projected 
volume

0.32 0.79 0.48 0.76 0.61 0.78 0.75 0.58 0.80 0.89 0.90 0.83 0.33 0.57 0.76

Canopy height 0.76 0.90 0.76 0.97 0.82 0.94 0.76 0.89 0.91 0.97 0.98 0.98 0.49 0.86 0.95
LiDAR canopy height 0.67 0.86 0.78 0.93 0.84 0.95 0.82 0.87 0.95 0.97 0.98 0.96 0.41 0.84 0.94

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org


LiDAR for Field Crop BreedingWalter et al.

10 September 2019 | Volume 10 | Article 1145Frontiers in Plant Science | www.frontiersin.org

FIGURE 7 | The relationship between LiDAR Projected Volume and Above-ground Biomass, presented individually for each site and sample time measured in the 
current study. Dashed lines indicate the line of best fit, coloured shapes indicate measurements collected at Zadoks growth scales (ZGS) as follows, red circles at 
ZGS 31, yellow triangles at ZGS 49, green triangles at ZGS 59, blue diamonds at ZGS 65 and pink squares at ZGS 90.
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DISCUSSION

The adoption of LiDAR and terrestrial laser scanners (TLS) as field-
based sensors for the non-destructive phenotyping of AGB and 
canopy height has been discussed and demonstrated numerous 
times in the literature (Deery et al., 2014; Tilly et al., 2014; Eitel 
et al., 2016; Friedli et al., 2016; Kronenberg et al., 2017; Sun et al., 
2017; Virlet et al., 2017; Jimenez-Berni et al., 2018; Sun et al., 2018), 
ultimately contributing towards a solution to the phenotyping 
bottleneck present in large-scale research and plant breeding 
programs (Cobb et al., 2013; Araus and Cairns, 2014). Despite the 
different approaches to the deployment of these sensors, there are 
still many questions left unanswered, particularly with regard to the 
robustness and reliability of the data collected and its application 
and value within research or field crop breeding programs.

In the current study, adaption of the imaging boom described in 
Walter et al. (2019) to accommodate a dual LiDAR system allowed 
for LiDAR sensors to be efficiently deployed across eight large-scale 
wheat breeding trial sites in a range of environments, and for large 
amounts of point cloud data to be collected at multiple growth stages.

Data Repeatability
Objective and repeatable data collection is of key importance 
within breeding and research programs but can be difficult to 
obtain through traditional in-field measurements. Thus, the 

FIGURE 8 | The relationship between LiDAR Projected Volume and Above-ground Biomass for each sample time collected at Angas Valley (A), Roseworthy (B) and 
Winulta (C). Coloured shapes indicate measurements collected at Zadoks growth scales (ZGS) as follows, red circles at ZGS 31, yellow triangles at ZGS 49, green 
triangles at ZGS 59, blue diamonds at ZGS 65 and pink squares at ZGS 90.

TABLE 6 | Pearson’s correlation coefficients (r), between LiDAR Projected Volume (LPV), 3DPI and Above-ground Biomass (AGB), for each sample time (ZGS) at 
Roseworthy. 

ZGS LPV: AGB 3DPI: AGB LPV: 3DPI

31 0.75 ± 0.14 *** 0.17 ± 0.21 0.05 ± 0.07
49 0.55 ± 0.18 ** 0.42 ± 0.19 * 0.82 ± 0.04 ***
59 −0.05 ± 0.21 −0.07 ± 0.75 0.88 ± 0.03 ***
65 0.62 ± 0.17 ** 0.44 ± 0.19 * 0.90 ± 0.03 ***
96 0.47 ± 0.19 * 0.48 ± 0.19 * 0.95 ± 0.02 ***

Values are shown as ± standard error. Significance of each correlation is indicated as *p < 0.05, **p <0.01 and ***p < 0.001.

FIGURE 9 | The relationship between 3DPI Biomass and manually measured 
Above-ground Biomass, for each sample time at Roseworthy. Coloured 
shapes indicate measurements collected at Zadoks growth scales (ZGS) as 
follows, red circles at ZGS 31, yellow triangles at ZGS 49, green triangles at 
ZGS 59, blue diamonds at ZGS 65 and pink squares at ZGS 90.
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overall high repeatability and objective nature of point cloud data 
collected with LiDAR sensors in the current study shows great 
potential for integration within field-based research programs.

Repeated LiDAR scans from the same direction of travel were 
capable of producing near identical LCH measurements for 
three of the five physiological growth stages measured (ZGS 49, 
65, and 96). The remaining two growth stages (ZGS 31 and 59) 
still showed sound repeatability of LCH measurements, though 
not to the extent seen at other growth stages. Interestingly, the 
repeatability of LPV across all physiological growth stages 
showed a strong relationship, with few outlying points, similar to 
that observed for LCH at ZGS 49, 65, and 96. There is no apparent 
cause of the variation observed between LCH measurements at 
ZGS 31 and 59 and we can only speculate that this is an artefact 
of the LCH calculation process, as the variation between LPV 
measurements for these samples is much lower than for LCH and 
is similar to that observed for other LPV measurements.

Measurements of both LCH and LPV were less repeatable when 
measured with opposite directions of travel, however repeatability 
was still strong. The discrepancies observed between measurements 
collected in opposite directions likely arise for two reasons; firstly, 
despite endeavors to mount LiDAR sensors identically on each 
side of the boom, there are likely to be small differences between 
the two, altering the laser emission and return pattern of each unit. 
Secondly, triggering of the LiDAR sensors relative to shapefiles on 
the RTK GPS unit requires calibration, which if not precise may 
result in small variations to the area of plot measured. Towards 
addressing these issues, LiDAR sensor and direction of travel 
could be fitted as random terms within spatial analyses, which may 
help to account for variation between measurements.

To the authors’ best knowledge, repeatability of data derived 
from LiDAR plot scans has yet to be described in the literature, 
however Busemeyer et al. (2013) have reported very high 
repeatability of canopy height measurements collected with a 
light-curtain (r2 = 0.99, Mean Relative Error = 0.01). Given the 
similarities between the type of data obtained from these two 
sensors, the high repeatability of LiDAR data observed in the 
current study is a positive, but not unexpected, result.

Canopy Height
Point cloud data collected through the LiDAR system was able to 
accurately and repeatedly estimate canopy height of wheat grown 
in field plots across multiple growth stages and environments. 
Strong raw correlations were observed at the majority of 
locations and growth stages measured, ranging from r = 0.56 
at the weakest, to r = 0.94 at the strongest. Similar results have 
been previously reported for wheat and other field crops, with 
r2-values of 0.99 (Jimenez-Berni et al., 2018), 0.99 (Kronenberg 
et al., 2017), 0.99 (Virlet et al., 2017), 0.97 (Sun et al., 2018), 0.91 
(Tilly et al., 2014), 0.87 (Eitel et al., 2016), 0.84 (Walter et al., 
2018) and 0.73 to 0.93 (Friedli et al., 2016). The current study 
and those of Jimenez-Berni et al. (2018) and Sun et al. (2018) 
collected data with mobile LiDAR systems deployed in field; 
Virlet et al. (2017) used a dual 3D laser scanner system mounted 
on the Field Scanalyzer gantry; Kronenberg et al. (2017) used 
a cable suspended laser scanner mounted on the ETH field 

phenotyping platform; Tilly et al. (2014); Eitel et al. (2016) and 
Friedli et al. (2016) used TLS systems; and Walter et al. (2018) 
used digital cameras and photogrammetry. Though each of these 
systems differ, comparable results have been achieved from each, 
reinforcing the concept that 3D data collected in the form of 
point clouds is highly suitable for the derivation of canopy height.

While the correlations presented in the current study do 
not appear to be as strong as some previously reported in the 
literature, it is important to consider the way in which the 
data has been collated for presentation. Data from the current 
study has been collected from eight wheat varieties across eight 
locations and in some circumstances at multiple time points. This 
contrasts with the data presented by Jimenez-Berni et al. (2018), 
where three replicates of 18 genotypes were measured at a single 
location and time point, with the mean values of each genotype 
being presented and used for correlation. The results presented 
by Jimenez-Berni et al. (2018) are more similar to those from 
Table 4, of genetic correlations between CH and LCH at each 
site, which showed improved correlations compared to raw data.

The weakest correlation between CH and LCH in the current 
study occurred at Minnipa, where severe drought conditions 
occurred during most of the 2017 growing season. Very little 
variation was observed between canopy heights, with varieties 
ranging from 32.5 to 47.5 cm, much less than the variation 
observed at other sites. A similar explanation is likely for the weaker 
correlations present at Roseworthy at ZGS 31 and Angas Valley 
at ZGS 49, where plants measured early in the growing season 
had short canopies and little variation in CH. These correlations, 
as well as all correlations in the current study, could likely be 
improved through optimisation of the percentile algorithm used 
to process the data. A similar process has been described by Friedli 
et al. (2016), with data in Supplementary Material reinforcing 
this work, and showing the variability in selecting an algorithm 
based on maximizing the correlation and reducing the RMSE. The 
authors believe the use of a single algorithm is suitable in large-
scale breeding or research programs as it is generally not feasible 
to collect ground truth data for each site and timepoint to optimize 
this process. Moreover, the implications of taking physical 
measurements are counterintuitive to the aims of deploying these 
sensor systems for rapid collection of large amounts of data.

The similarity in the heritabilities calculated for CH and LCH 
gives great confidence in LiDAR-derived canopy height, showing 
that in terms of accuracy/repeatability within a breeding program it 
is as good as, or in some cases superior to, manual measurements. 
In addition to the high heritability of LCH demonstrated in the 
current study, a  similarly high heritability of LiDAR-derived CH 
has previously been reported by Kronenberg et al. (2017) for a 
diverse set of European bread wheat cultivars (H2 = 0.96), though 
this was not compared to the heritability of manual measurements. 
While in the current study, and in that of Kronenberg et al. (2017), 
heritabilities were calculated for material containing greater variation 
in CH than often present within breeding populations, it is expected 
these results are still directly applicable as CH is known to be a highly 
heritable trait. The strong genetic correlations observed between 
CH and LCH in the current study further support that LCH will be 
suitable for estimating CH within breeding populations, as similar 
genetic components are measured by both methods. The moderately 
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strong residual correlations between CH and LCH would seem to 
indicate the ability of LCH to capture differences in CH resulting 
from environmental variance across the experimental area. This 
makes sense from a physiological perspective, as plant height can be 
influenced by a number of biotic and abiotic factors, which may result 
in uneven growth throughout the trial. While the variation observed 
in CH within the current study was typically greater than would be 
observed within modern breeding populations, the results of current 
study suggest that LiDAR sensors would be suitable for measuring 
relative CH, or for measuring absolute CH if required. The slopes of 
lines of best fit for Figures 5 and 6 show that as CH increased LCH 
underestimated CH, generally by around 10 cm. This is likely due to 
the data cleaning process and LCH algorithm function, and though it 
is not an issue if relative CH is desired, if an absolute measurement of 
CH is required this discrepancy will need to be accounted for.

Above-Ground Biomass
The LPV measurement in the current study has been shown 
capable of estimating a wide range of AGB, across different 
varieties, phenological stages and environments. To date, very few 
studies have investigated the use of point cloud data for the type 
of bio-volume measurements presented here. The few that have 
presented data for different plant species, such as cotton (Sun et al., 
2018), arctic shrubs (Greaves et al., 2015) and trees (Rosell Polo 
et al., 2009), or for wheat which was grown in a single environment 
(Jimenez-Berni et al., 2018; Walter et al., 2018), except for one study 
by Eitel et al. (2014), where two adjacent fields of wheat plots with 
differing micro-climates were investigated. The collection of the 
point cloud data across eight different environments in the current 
study is an important addition to the current understanding of 
AGB estimation from point cloud bio-volume measurements.

The multi-location measurements presented in the current study 
provide a unique set of results, where large ranges in AGB were 
observed across a single phenological growth stage. At each location 
there was a moderately strong correlation between AGB and LPV, 
with each of these relationships (excluding Roseworthy at ZGS 59) 
being suitably explained by a linear regression model (Figure 7).

Combining repeated measurements from within sites at 
Angas Valley, Roseworthy and Winulta showed heteroscedastic 
relationships, which appear to be curvilinear. This is most apparent 
at Roseworthy, where AGB increases with time, however LPV 
plateaus and declines following ear emergence (ZGS 59). This 
trend also appears to be occurring at Angas Valley and Winulta, 
where AGB seems to be increasing more than LPV, though the final 
sample occurring at ZGS 65 for these sites prevents confirmation 
of this. This can likely be explained by the senescence of the crop. 
As the crop senesces, leafy volume is lost through leaves drying 
out and contracting, however, overall AGB continues to increase 
due to grain fill. Though this curvilinear relationship can be 
explained, it does highlight the limitation of using volume as an 
estimator for AGB at later growth stages. A further limitation of 
using LPV for AGB estimation may be present in dense canopies, 
where laser penetration within the canopy is poor. In such cases an 
over-estimation of volume will occur, as only points collected from 
the top of the canopy will be used to compute LPV. While this did 
not appear to be a limitation in the current study, with the laser 
sufficiently penetrating the canopy at maximum leafy biomass, it 

should be noted as a potential limitation of LiDAR-based volume 
measurements in high AGB environments. Furthermore, different 
relationships are observed over time at Angas Valley, Roseworthy 
and Winulta, suggesting that unique curvilinear relationships 
may be required for each environment. Considering geographical 
differences as a predictor of seasonal differences, it is likely these 
relationships will also alter from year to year as a result of the 
differing abiotic and biotic factors which occur between seasons 
and environments. This in turn may affect numerous aspects of crop 
morphology, which may alter the relationship between volume-
based measurements and AGB. This introduces the question of how 
breeders will use such data. Will it be used to measure AGB over 
time within trials, comparing relative AGB at a single time point 
between trials, or for comparing relative AGB at individual time 
points? To better understand the interactions occurring between 
volume-based measurements and AGB, and how these interactions 
may influence a breeder’s use of these measurements, a series of 
multi-year, multi-environment trials would be beneficial.

The moderately strong correlations observed between AGB and 
LPV within individual measurement points, align with the results 
of Walter et al. (2018) and Jimenez-Berni et al. (2018), where linear 
regressions provided a suitable explanation for the relationship 
between AGB and point cloud bio-volume estimates. The work of 
Jimenez-Berni et al. (2018) is the most comparable to the current 
study, and their results indicate a strong linear relationship between 
AGB of wheat and their 3D Indices of processed LiDAR data for 
numerous physiological growth stages. However, optimization of 
equations was conducted for the processing of these 3D Indices, 
based on developmental stage, which were further transformed 
using separate equations for pre and post-anthesis measurements 
for comparison to measured AGB. These processes of optimisation 
require ground-truth data, which as discussed previously, are not 
likely to be collected within a breeding program. It is also worth 
noting that in the current study, and that of Jimenez-Berni et al. 
(2018), as AGB increases, digital measurements obtained with 
LiDAR sensors correlate less strongly to manual measurements, with 
the pooling of measurements showing a heteroscedastic relationship. 
This is likely a limitation imposed by the LiDAR sensors used in 
these studies, which return only a single discrete point, compared 
with units capable of returning multiple discrete points or a full wave 
form. Capturing multiple discrete returns or the full wave form, may 
overcome this issue and allow for deeper penetration within the crop 
canopy. However, such systems are currently prohibitively expensive 
for their deployment within plant breeding programs, both from an 
upfront cost and from a data processing perspective.

Processing LiDAR data from Roseworthy using 3DPI as 
described by Jimenez-Berni et al. (2018), yielded a positive linear 
relationship across all sample times (Figure 9). The results presented 
here align with those of Jimenez-Berni et al. (2018), and show the 
robustness of their 3DPI when applied to an alternate data set, even 
in the absence of optimisation. The sample at ZGS 49 did fall outside 
of the linear relationship observed for 3DPI, however, similar results 
were observed for ZGS 49 in the processing methods of the current 
study, where samples at ZGS 49 did not increase in projected volume 
but did increase in AGB. Values of 3DPI at individual sample times 
correlated strongly with LPV, with the exception of the ZGS 31 
sample, which showed a weak correlation (Table 6). 3DPI also 
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showed similar, but slightly weaker, correlations to AGB compared 
to LPV (Table 6). It is likely these correlations could be improved 
through the optimization of the k value within the 3DPI equation. 
However, as described for canopy height, continued optimization 
of such equations runs contrary to the benefits of implementing 
such phenotyping systems within field crop breeding programs. For 
this reason, we believe the performance of the LPV measurement 
used within the current study is applicable to field crop breeding 
programs, providing sound estimates of AGB and requiring no 
optimization for deployment within breeding programs. Similar 
volume based measurements to those used in the current study were 
successfully utilized to estimate cotton AGB by Sun et al. (2018), 
who observed manually-measured biomass to correlate strongly to 
volume measurements across a small number of plots.

Above-ground biomass of cereal crops is highly variable 
(Sharma, 1993); which was confirmed in the current study where 
H2 ranged from 0.12 to 0.78. Despite this broad range, only at two 
measurement times (Roseworthy at ZGS 31 and Angas Valley at 
ZGS 49) did AGB have a substantially greater heritability than 
LPV, while for all other measurements LPV showed similar, or 
substantially greater heritability than AGB. This generally high 
heritability of LPV, combined with the moderate correlations 
to AGB, indicates that it could be used as an effective tool for 
making genetic gain if selecting for AGB.

Application of Data
Past studies investigating the use of LiDAR sensors as a phenotyping 
tool have shown strong correlations to manually-collected data for 
multiple traits and have suggested potential applications of such 
data. Despite these often strong relationships, practical applications 
have yet to be published. For this point cloud generated phenotype 
data to be used effectively within wheat breeding programs, data 
collection and processing needs to be quick and largely automated, 
reducing the manual labor and time required. While the travel 
speed of the LiDAR system was relatively slow in the current study 
(2 km/h) this can be easily increased with alterations to the system 
hardware, specifically the path from GPS signal to LiDAR sensor 
trigger. Despite this, throughput of the system allows two unique 
plots to be scanned every 3 s, allowing for 2,400 plots to be scanned 
per hour. To the author’s knowledge the throughput of similar 
ground-based LiDAR systems has not previously been reported in 
the literature, with the exception of Sun et al. (2018) who reported an 
approximate throughput of 600 plots per hour for cotton field plots 
of similar size to the plots measured in the current study. While the 
current reported throughput of 2,400 plots per hour is high, there is 
still potential to improve upon this by increasing the travel speed of 
the system in conjunction with alterations to the system hardware. 
It is expected this could increase throughput to approximately 7,400 
plots per hour, as reported for the HIB described by Walter et al. 
(2019). However, it should be noted that were travel speed to be 
increased, longitudinal resolution of collected point clouds would 
decrease. As such, further validation for correlations between 
LiDAR-based and manual measurements would be required at 
greater speeds of travel. Processing of the data takes approximately 
13 s per plot (though this could potentially be optimized for greater 
speed) resulting in a total time of approximately 15 s to collect and 
convert raw data into LCH and LPV measurements for a single plot. 

This is an immense increase in throughput compared to manual 
methods, with CH measurements taking approximately 10 s per 
plot and AGB cuts several minutes per plot, not including time 
required for handling, drying and weighing samples post collection. 
Further to this, all measurements taken with the system are non-
destructive, allowing for repeated measurements in season and for 
AGB to be estimated without impacting upon plot grain yield. This 
now provides the opportunity for breeders to collect large-scale 
data sets for AGB, which were previously impossible to collect due 
to the destructive nature of manual measurements.

Even though in the current study, the LiDAR system was 
effectively able to provide large increases in throughput and 
decreases in manual labor for the collection of CH and AGB 
measurements, it is likely that within a large-scale breeding 
program, collection of this data would only occur at one or two 
key physiological time points throughout the season. Examples 
of this could be; once the greater part of a site has reached first 
node (ZGS 31) for estimating early AGB, or at anthesis (ZGS 65) 
for estimating maximum AGB, though these timepoints would 
be driven by the specific trait of interest. For routine integration 
within a wheat breeding program, these measurements would 
ideally be combined with another field operation, such as herbicide 
or fungicide spraying. Combining data collection with routine field 
maintenance practices would allow for repeated measurements 
during the season, while also reducing the logistical burden of 
transporting equipment between field sites. Alternatively, a more 
focused set of measurements could be conducted at a single site, 
allowing many repeated measures throughout the season. However, 
this would fail to assess the genotype-by-environment interaction 
effects which need to be considered by breeders. Ultimately the field 
campaign undertaken will depend on the breeding objectives of the 
program and consequently the specific data desired by the breeder. 
The data presented on LiDAR data repeatability in the current study 
suggests that LiDAR sensors could be used to measure absolute 
values of CH and to a lesser extent AGB. However, it seems the 
most apparent fit for such data within breeding programs is for the 
relative measurement of these traits, which could be used to select 
within populations to achieve the desired breeding objective.

The LiDAR-based data generated in the current study shows 
great promise for application within breeding programs, particularly 
as the heritability of LCH and LPV assessments were generally 
comparable to, or greater than, manual measurements, indicating 
that genetic gain can be made through selection of each trait. There 
are many examples as to how the type of data collected within the 
current study could be applied within wheat breeding programs: 
one example is the selection of breeding lines based on early AGB 
accumulation at first node (ZGS 31). Some programs may wish to 
select for this trait, or against it, depending on the desired purpose 
of the material, e.g. for dual-purpose wheats (i.e. those producing 
large amounts of grazeable biomass prior to ZGS 31) or for weed 
competitiveness. A second example is for breeders wishing to select 
for increased AGB independently of CH. Currently to achieve this, 
breeders must manually collect measurements of CH and AGB. 
However, this process can be greatly simplified as LCH and LPV 
are calculated from the same data, and a combination of the two 
measurements could be used for the selection of increased AGB 
while maintaining lower CH. Broadening the scope of potential 
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application, there are many other field crop breeding programs 
which could take advantage of the type of data presented in the 
current study, prime examples being biomass heavy crops, such 
as those used for hay or silage, as well as horticultural breeding 
programs where leafy biomass or volume may be key traits.

CONCLUSION

Through the deployment of a mobile ground-based LiDAR 
system across multiple environments within a large-scale 
commercial wheat breeding program, it has been shown that 
the collection and processing of 3D point cloud data is highly 
repeatable, strongly correlated to manual measurements of CH 
and AGB, and highly heritable. This combination makes LiDAR 
sensors a promising and valuable tool for wheat or other field 
crop breeders who wish to non-destructively measure CH and or 
AGB within their breeding programs.

Discussion on the application of LiDAR sensors to breeding 
programs in the current study has been based around the direct 
or indirect selection of specific traits within breeding programs, 
however there are also the exciting possibilities of fitting LiDAR 
data in multivariate analyses of yield trials, or within crop 
physiological models, in both cases to improve upon current 
techniques of data analysis and variety performance prediction. 
The authors suggest that the possibilities listed above are the 
logical progression for future work investigating LiDAR sensors, 
either for use in breeding or research programs.
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