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Free and glycosylated sterols are both structural components of the plasma membrane 
that regulate their biophysical properties and consequently different plasma membrane-
associated processes such as plant adaptation to stress or signaling. Several reports 
relate changes in glycosylated sterols levels with the plant response to abiotic stress, 
but the information about the role of these compounds in the response to biotic stress is 
scarce. In this work, we have studied the response to the necrotrophic fungus Botrytis 
cinerea in an Arabidopsis mutant that is severely impaired in steryl glycosides biosynthesis 
due to the inactivation of the two sterol glucosyltransferases (UGT80A2 and UGT80B1) 
reported in this plant. This mutant exhibits enhanced resistance against B. cinerea when 
compared to wild-type plants, which correlates with increased levels of jasmonic acid 
(JA) and up-regulation of two marker genes (PDF1.2 and PR4) of the ERF branch of the 
JA signaling pathway. Upon B. cinerea infection, the ugt80A2;B1 double mutant also 
accumulates higher levels of camalexin, the major Arabidopsis phytoalexin, than wild-
type plants. Camalexin accumulation correlates with enhanced transcript levels of several 
cytochrome P450 camalexin biosynthetic genes, as well as of their transcriptional regulators 
WRKY33, ANAC042, and MYB51, suggesting that the Botrytis-induced accumulation of 
camalexin is coordinately regulated at the transcriptional level. After fungus infection, the 
expression of genes involved in the indole glucosinolate biosynthesis is also up-regulated 
at a higher degree in the ugt80A2;B1 mutant than in wild-type plants. Altogether, the 
results of this study show that glycosylated sterols play an important role in the regulation 
of Arabidopsis response to B. cinerea infection and suggest that this occurs through 
signaling pathways involving the canonical stress-hormone JA  and the tryptophan-
derived secondary metabolites camalexin and possibly also indole glucosinolates.
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INTRODUCTION

Steryl glycosides (SGs) are conjugated forms of sterols resulting 
from the attachment through a glycosidic bond of a sugar 
residue, most commonly a single glucose monomer, to the free 
hydroxyl group at C3 position of the sterol backbone (Ferrer 
et al., 2017). This reaction is catalyzed by UDP-glucose:sterol 
glycosyltransferase (SGT; E.C. 2.4.1.173), an enzyme that has 
been cloned and functionally characterized from different 
organisms (Grille et al., 2010) including several plant species 
(Warnecke et al., 1997; DeBolt et al., 2009; Chaturvedi et al., 
2012; Li et al., 2014; Tiwari et al., 2014; Ramírez-Estrada et al., 
2017). The hydroxyl group at C6 position of the sugar moiety 
can in turn be esterified with a long-chain fatty acid to form acyl 
steryl glycosides (ASG), although the enzyme responsible for this 
transformation has not been identified yet (Ferrer et al., 2017). 
The content of glycosylated sterols (SG + ASG) differs among 
plant species and tissues, but in general, these compounds are 
relatively minor components ranging from 10% to 30% of the 
total sterol fraction, although there are some exceptions in the 
Solanaceae family, as for instance tomato and potato, in which 
glycosylated sterols are the predominant form of sterols (Moreau 
et al., 2002; Furt et al., 2010; Nyström et al., 2012).

The role of free sterols (FSs) as key structural components of 
the plasma membrane has been known for a long time. Free sterols 
help to modulate the plasma membrane biophysical properties 
and hence its biological function and the activity of membrane-
bound proteins (Carruthers and Melchior, 1986; Cooke and 
Burden, 1990; Grandmougin-Ferjani et al., 1997). Free sterols have 
also been recognized as important modulators of plant growth 
and development (Schrick et al., 2000; Schrick et al., 2002; He 
et al., 2003; Carland et al., 2010; Ovecka et al., 2010; Qian et al., 
2013; Nakamoto et al., 2015), and glycosylated sterols are also 
emerging as important players in determining plasma membrane 
organization and functionality (Moreau et al., 2002; Grosjean 
et al., 2015; Cassim et al., 2019). Like FSs, glycosylated sterols are 
unevenly distributed in the plasma membrane, and it is currently 
accepted that SG and ASG are also highly enriched alongside 
with sterols, sphingolipids and selected proteins in liquid-ordered 
phase domains referred to as membrane rafts or DRM (sterol-
enriched detergent-resistant membrane fraction). These dynamic 
assemblies of lipids and proteins appear to be involved in different 
plant cell processes including polarized cell growth, cell-to-cell 
communication, intracellular membrane trafficking, and signal 
transduction cascades enabling plants to respond to environmental 
changes (Mongrand et al., 2010; Zauber et al., 2014; Gronnier 
et al., 2018). However, the specific role of glycosylated sterols 
in regulating membrane properties and function still remains 
uncertain, although some experimental evidences support the 
view that a proper ratio of the glycosylated versus free forms of 
sterols in cell membranes is essential for normal plant cell function 
and overall plant performance. Thus, an Arabidopsis null mutant 
defective in the two SGTs present in this species, namely, UGT80A2 
and UGT80B1 (DeBolt et al., 2009), displays highly reduced levels 
of glycosylated sterols in different plant organs that lead to multiple 
morphological and biochemical seed phenotypes (DeBolt et al., 
2009), defects in the male gametophyte (Choi et al., 2014), and 

aberrant root epidermal cell patterning (Pook et al., 2017). Also, 
down-regulation of SGTs in agroinfiltrated Withania somnifera 
leaves leads to shortened plant height and leaf area compared to 
control plants (Singh et al., 2016).

Forward- and reverse-genetic approaches have also shown that 
changes in SGT expression levels are associated to altered responses 
of different plant species to abiotic stress conditions. An increased 
sensitivity to heat and cold stress has been reported in Arabidopsis 
and W. somnifera plants with reduced levels of SGT (Mishra et al., 
2015; Singh et al., 2017), whereas enhanced tolerance to heat, cold, 
and salt stress has been associated to overexpression of SGT in 
Arabidopsis, tobacco, and W. somnifera, respectively (Mishra et al., 
2013; Pandey et al., 2014; Saema et al., 2016). These observations 
are consistent with the induction of SGT genes in response to 
abiotic stress reported in tomato (Ramírez-Estrada et al., 2017), 
W. somnifera (Chaturvedi et al., 2012), and cotton (Li et al., 
2014), and also with changes observed in the relative proportions 
of glycosylated sterols in the plasma membrane of oat, rye, and 
potato in association with cold acclimation and freezing tolerance 
(Palta et al., 1993; Takahashi et al., 2016), during tomato and 
apple fruit chilling and after tomato fruit rewarming (Whitaker, 
1991; Whitaker, 1994; Rudell et al., 2011), in wheat leaves under 
high day and night temperature (Narayanan et al., 2016), and 
in Arabidopsis under drought stress conditions (Tarazona et al., 
2015). On the contrary, the experimental evidence supporting a 
role for glycosylated sterols in mediating plant responses against 
biotic stress is far more limited. Arabidopsis and tobacco plants 
overexpressing W. somnifera SGT show increased resistance 
toward Alternaria brassicicola and Spodoptera litura, respectively 
(Pandey et al., 2014; Mishra et al., 2017), and basal immunity 
in W. somnifera plants is compromised after silencing of several 
members of the SGT gene family (Singh et al., 2016). However, it 
is still unclear whether these effects are due to the altered levels of 
glycosylated sterols or are actually triggered by the concomitant 
changes in the contents of other bioactive specialized plant 
defense compounds present in these species (Pandey et al., 2014; 
Singh et al., 2016; Mishra et al., 2017). The marked induction 
of specific members of the tomato and W. somnifera SGT gene 
families in response to methyl jasmonate (MeJA) further suggests 
a role for sterol glycosylation in plant response to biotic stress 
imposed by necrotrophic pathogens. However, the impact of this 
transcriptional response on the levels of steroidal glycoalkaloids 
in tomato and whitanolides in W. somnifera remains to be 
established. These defense compounds are not produced in the 
model plant Arabidopsis thaliana, which presents a rather scarce 
secondary metabolism. Consequently, the Arabidopsis double 
mutant ugt80A2;B1 impaired in the SGs biosynthesis (DeBolt 
et al., 2009) is a very suitable tool to study the role of this kind 
of conjugated sterols in the plant defense response to pathogen 
attack, which involves changes at the transcriptional, biochemical, 
and physiological levels (AbuQamar et al., 2017).

When a pathogen is detected by the plant, it activates different 
layers of defense depending of the pathogen invasion stage. A first 
layer is constituted by a repertoire of plasma membrane pattern 
recognition receptors that perceive signals produced by the 
pathogen, known as pathogen- or microbe-associated molecular 
patterns (MAMPs), or plant-derived damage-associated molecular 
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patterns (DAMPs) produced by the host upon pathogen infection 
(Bohm et al., 2014; Zipfel, 2014). This induces a basal disease 
resistance response called pattern-triggered immunity that protects 
the plant against most nonadapted pathogens (Couto and Zipfel, 
2016). Conversely, pathogens try to overcome plant defenses by 
releasing effectors that alternatively can also be recognized by 
cytoplasmic receptors (Cui et al., 2015; Couto and Zipfel, 2016). 
Following either PAMPs or effector recognition, plant immune 
responses involve a complex network of signaling pathways that 
can be modulated by phytohormones (Pieterse et al., 2012). 
Salicylic acid (SA) and jasmonic acid (JA) are recognized as the two 
major defense hormones, and their response pathways are usually 
considered effective against biotrophic and necrotrophic pathogens, 
respectively (Pieterse et al., 2012). Other phytohormones, mainly 
ethylene and abscisic acid (ABA), are also involved in the defense 
response interacting synergically or antagonistically (Shigenaga 
and Argueso, 2016; Berens et al., 2017). In the case of Arabidopsis, 
other key components of the innate immune system are 
tryptophan-derived secondary metabolites such as the phytoalexin 
camalexin and the indole glucosinolates (IGs) (Bednarek, 2012). 
The biosynthesis of these compounds is induced in response to 
different pathogens, including bacteria and fungi (Clay et al., 
2009; Ahuja et al., 2012), and their role in the immune response 
has been confirmed by analysis of different biosynthetic mutants 
(Tsuji et al., 1992; Glazebrook and Ausubel, 1994; Thomma et al., 
1999; Lipka et al., 2005; Bednarek et al., 2009; Clay et al., 2009). It 
is important to note that JA has been acknowledged as a regulator 
of the Trp derivatives biosynthesis (Guo et al., 2013). Simultaneous 
applications of glucose and JA have a dramatic impact on both 
aliphatic and indolic glucosinolates accumulation, although the 
latter ones seem to be more sensitive to the treatments.

As a first step to elucidate the role of glycosylated sterols in the 
plant response to biotic stress, we have assayed the response of the 
Arabidopsis double mutant ugt80A2;B1 against Botrytis cinerea 
infection, which is considered the second most important plant 
pathogen (Dean et al., 2012). This fungus produces several toxic 
compounds and cell wall degrading enzymes that can kill the host 
cells and decompose the plant tissue (Williamson et al., 2007). In 
Arabidopsis, global transcriptional analyses of B. cinerea–infected 
plants have identified thousands of transcripts whose expression 
is altered upon infection (AbuQamar et al., 2006; Birkenbihl and 
Somssich, 2011; Mulema and Denby, 2012; Windram et al., 2012). 
These data, together with genetic studies, have shown that several 
groups of transcription factor families, including ERFs (Huang 
et al., 2016; Zhang et al., 2016), WRKYs (Birkenbihl et al., 2012; 
Jiang and Yu, 2016), MYBs (Ramírez et al., 2011; Mengiste, 2012), 
and NACs (Wang et al., 2009; Nuruzzaman et al., 2013), have a 
major role in coordinating these changes, but only few target 
genes or upstream regulators have been identified (Windram et al., 
2012). An exception is WRKY33, which targets multiple signaling 
pathways simultaneous upon B. cinerea infection, acting as a dual 
transcription factor in a promoter-dependent manner (Liu et al., 
2015) because it binds directly to the promoter of genes involved 
in JA signaling (JAZ1 and JAZ5), ET-JA crosstalk (ORA59), and 
camalexin biosynthesis (PAD3 and CYP71A13) up-regulating 
their expression, but down-regulates the expression of other 
targets, as some ABA biosynthetic genes (NCED3 and NCED5) 

(Birkenbihl et  al., 2012; Liu et al., 2015). In addition, Pangesti 
et al. (2016) already suggested that the JA-responsive transcription 
factor ORA59 is related to the camalexin accumulation during ISR.

Here we report that the ugt80A2;B1 mutant shows increased 
resistance against B. cinerea infection, which is paralleled by an 
increase in the levels of JA and camalexin, and a concomitant 
up-regulation of several genes involved in the defense JA 
signaling pathway and the biosynthesis of camalexin, as well as 
of some of the transcription factors mentioned above, suggesting 
that the resistance phenotype observed in the mutant is the result 
of these transcriptional and metabolic changes.

MATERIALS AND METHODS

Plant Material and Growth Conditions
All A. thaliana plants used in this study were of the Wassilewskija 
(Ws-0) ecotype. The generation of the ugt80A2;B1 double 
mutant by crossing two single mutants carrying homozygous 
T-DNA insertions in the UGT80A2 and UGT80B1 genes and the 
subsequent characterization of the single and double mutant lines 
have been previously reported by DeBolt et al. (2009). Seeds of the 
double mutant were kindly provided by Dr. DeBolt (University 
of Kentucky, USA). Mutants and wild-type (WT) seeds were 
stratified at 4°C for 3 days and sown in jiffy7 peat pellets (Clause-
Tezier Ibérica, http://www.clausetezier.com/). Plants were grown 
in a chamber with a light intensity of 150 to 200 μEm−2 s−1 at 23°C 
under 10-h light/14-h dark cycles and 60% humidity.

Botrytis cinerea Infection
For B. cinerea infections, six fully expanded leaves of 5-week-old 
plants were inoculated as described by Coego et al. (2005) with 6 
ml droplets of a fungal spore suspension containing 2.5 × 104 spores 
microliters in potato dextrose broth (PDA) (12 g L−1, Difco). Plants 
exposed to the same treatment but without fungal spores were 
used as control (mock). All the treated plants were covered with 
transparent plastic to maintain 100% relative humidity and returned 
to the growth chamber. Four biological replicates with 12 to 15 
WT or mutant plants were performed for each treatment (infected 
or mock). Disease symptoms were evaluated by determining 
the lesion diameter of at least 50 lesions 3 days after inoculation. 
Three more biological replicates (15–20 plants per treatment) were 
performed to analyze changes in gene expression and metabolite 
levels (hormones and camalexin) induced by fungal infection. For 
this, infected or mock-treated rosette leaves from WT and mutant 
plants were harvested before (0 h) and after infection (24 and 48 h), 
pooled (five to six plants per time point and treatment), frozen in 
liquid nitrogen, lyophilized, and stored until used.

High-Throughput Reverse Transcription–
Quantitative Polymerase Chain Reaction 
Analyses of Gene Expression
Lyophilized rosette leaf samples (10 mg) from Arabidopsis WT 
and mutant plants obtained as described above were used for 
total RNA extraction using a Maxwell 16 LEV Plant RNA kit 
(Promega) and a Maxwell® 16 Instrument (Promega) according 
to manufacturer’s instructions. The cDNA samples for reverse 
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transcription–quantitative polymerase chain reaction (RT-qPCR) 
gene expression analyses were prepared from 1 microgram of total 
RNA using SuperScript III Reverse Transcriptase (Invitrogen) and 
oligo(dT) primers according to the manufacturer’s instructions. 
The expression of the different genes analyzed in this work was 
quantified by real-time PCR using the Biomark™ instrument 
(Fluidigm Corporation, San Francisco, USA) and 2 × SsoFast™ 
EvaGreen® Supermix with low Rox (Bio-Rad, www.bio-rad.com) 
as previously reported (Manzano et al., 2016), using PP2AA3 
(At1g13320) (Hong et al., 2010) and UBC (At5g25760) (Czechowski 
et al., 2005) as housekeeping reference genes and specific primers 
for each analyzed gene (Supplemental Table 1). Data for each WT 
and ugt80A2;B1 mutant samples, infected or treated with mock, are 
expressed as normalized quantity values versus the housekeeping 
genes. Expression was calculated using Data Analysis Gene 
Expression software (http://www.dagexpression.com/dage.zip) 
(Ballester et al., 2013). Quantification of transcript levels was done 
in three independent biological replicates, and for each biological 
replicate, two technical replicates were performed.

Determination of Hormones and 
Camalexin Levels
Hormones and camalexin were extracted from the same samples 
used for gene expression analysis as described by Sánchez-Bel et al. 
(2017). Briefly, 30 mg of dry material was extracted with 1 ml of 
H2O:MeOH (90:10) with 0.01% of HCOOH with a mix of internal 
standards. After centrifugation and filtration of the supernatant 
with 0.22-µm filter of regenerated cellulose, 20 µl was injected into 
a Waters Acquity UPLC coupled with a triple quadrupole tandem 
mass spectrometer (Waters), and the separation of compounds was 
performed with a Kinetex C18 analytical column (Phenomenex), 5 
µm of particle size and 2.1 × 100 mm. Before the analysis, external 
calibration curves with pure chemical standards were obtained 
for each tested compound complemented with heavy isotopes of 
each hormone as internal standards. The MassLynx 4.1 software 
(Waters) was used to process the quantitative data from calibration 
standards and plant samples.

RESULTS

Impairment of SGs Biosynthesis Leads to 
Enhanced Resistance of Arabidopsis to B. 
cinerea Infection
The current knowledge about the specific contribution of 
glycosylated sterols to plant biotic stress response is scarce. To 
gain some insight about the role of these compounds in the 
plant response to this kind of stress, we checked the effect of 
B. cinerea infection, a common necrotrophic fungal pathogen, 
in Arabidopsis WT plants (Ws-0) and the previously generated 
double mutant ugt80A2;B1, which has inactivated the two genes 
reported to encode SGT in Arabidopsis (UGT80A2 and UGT80B1) 
and presents reduced levels of glycosylated sterols in different 
plant organs, including the rosette leaves (DeBolt et al., 2009). 
To this end, leaves of WT and mutant plants were inoculated 
with a B. cinerea spore suspension, and the size of the resulting 
lesions was measured 3 days after inoculation. The results from 

four independent experiments showed that the average diameter 
of the lesions in the ugt80A2;B1 mutant plants was significantly 
smaller (about one half) than in the WT plants (Figure 1). These 
results indicate that the simultaneous inactivation of Arabidopsis 
UGT80A2 and UGT80B1 genes results in increased resistance 
against B. cinerea infection. Interestingly, infection with this 
necrotrophic fungus did not affect the expression of UGT80A2 
and UGT80B1 genes in the WT plants because their transcript 
levels at 24 and 48 h postinoculation (hpi) remained unchanged 
compared to the noninfected plants (Figure 2).

Resistance of the Arabidopsis ugt80A2;B1 
Mutant to B. cinerea Involves JA Signaling
The JA-mediated defense pathway is assumed to have a central 
role in plant resistance against necrotrophic pathogens (Rowe 
et  al., 2010). In order to determine if the resistance to the B. 
cinerea observed in the ugt80A2;B1 mutant was associated to this 
pathway, we analyzed the expression of some JA-responsive marker 
genes of the two major branches recognized in the Arabidopsis 
JA signaling pathway, the ERF and the MYC branches (Pieterse 
et al., 2012), in plants infected or not with the pathogenic fungus 
at different time points. The expression of PDF1.2, a JA-responsive 
gene representative of the ERF branch, was significantly induced 
after infection with B. cinerea both in the WT and the mutant 
plants, but at 48 hpi, the induction in the ugt80A2;B1 mutant 
was about twice that in the WT plants (Figure 3A). A similar 
expression pattern was observed for PR4, another JA-responsive 
gene of the ERF branch, but in this case, the transcript levels 
were more than twofold higher in the mutant than in the WT 
(Figure 3B). On the contrary, the expression of the MYC-branch 
representative gene VSP2 was not significantly affected by the 
infection neither in the WT plants nor in the mutant (Figure 3C). 
This was not unexpected because activation of the MYC branch 
has been related with defense against chewing insects, while 
defense against necrotrophic pathogens is mediated by the ERF 

FIGURE 1 | The ugt80A2;B1 mutant impaired in steryl glycosides biosynthesis 
shows enhanced resistance to B. cinerea infection. (A) Symptoms of infection 
in leaves of wild-type (WT) and ugt80A2;B1 mutant plants 3 days after 
inoculation with B. cinerea. Red arrows point to B. cinerea inoculation sites 
(B) diameter of the resulting lesions. Data represent the average ± SEM of at 
least 50 lesions in one experiment. The experiment was repeated three more 
times with similar results. Asterisks indicate significant differences between 
WT and mutant plants according to Student t test (***P < 0.001).

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org
www.bio-rad.com
http://www.dagexpression.com/dage.zip


Steryl Glycosides in Arabidopsis ResistanceCastillo et al.

5 September 2019 | Volume 10 | Article 1162Frontiers in Plant Science | www.frontiersin.org

one (Pieterse et al., 2012). In addition to genetic responses, plants 
usually experience important hormonal changes after pathogen 
attack. Thus, we measured the levels of JA in the same tissue 
samples used for the gene expression analysis. As shown in Figure 
3D, JA levels increased after infection with the fungal pathogen 
in both WT and ugt80A2;B1 mutant plants. However, JA levels 
were markedly higher in the mutant than in the WT, with values 
that were approximately twofold and threefold higher at 24 and 
48 hpi, respectively (Figure 3D). It is worth to mention that 48 h 
after B. cinerea infection the expression of ACS6, a gene involved 
in ethylene biosynthesis (Li et al., 2012), increased more than 
twofold in the WT plants and about fourfold in the ugt80A2;B1 
mutant compared with the mock treatment at the same time 
point (Figure S1). This hormone interacts synergistically with JA 
in the ERF branch (Pieterse et al., 2012). However, the expression 

of NCED3 and RAB18, two genes involved, respectively, in the 
biosynthesis and response to ABA, a hormone that interacts with 
JA in the MYC branch (Anderson et al., 2004), was not affected 
by B. cinerea treatment neither in the WT nor in the mutant 
plants (Figure S2).These results indicate that the resistance of the 
ugt80A2;B1 mutant to B. cinerea is mediated by the ERF branch of 
the JA pathway, mainly as a result of an increased accumulation of 
this hormone in the infected mutant.

A crosstalk between hormone signaling pathways, particularly 
those mediated by SA and JA, has been found to contribute to 
plant resistance to different types of pathogens (Pieterse et al., 
2012). Therefore, SA levels were determined in the same samples 
used for JA quantification. The levels of SA were similar in 
WT and ugt80A2;B1 mutant plants, and no significant changes 
were detected upon infection (Figure S3A). Furthermore, 
significant differences were neither observed between the WT 
and the mutant plants when the expression levels of NPR1, the 
gene encoding the main regulatory protein of the SA signaling 
pathway, were determined in plants infected or not with the 
pathogen (Figure S3B). The expression of PR1, a marker gene of 
the SA signaling pathway, increased about 10-fold upon fungus 
infection (48 hpi) either in the WT or in the ugt80A;2B1 mutant 
plants (Figure S3C). These results suggest that the SA-mediated 
defense pathway is not involved in the response of the ugt80A2;B1 
mutant to B. cinerea infection.

The Synthesis of Camalexin and Indole 
Glucosinolates Is Induced in the 
ugt80A2;B1 Mutant Upon B. cinerea 
Infection
In response to pathogen attack, plants induce the biosynthesis 
of phytoalexins and other defense secondary metabolites, 
such as glucosinolates (Figure 4). Because camalexin is the 
main phytoalexin accumulated in Arabidopsis after infection 
by fungi or bacteria, and its biosynthesis has been reported 
to be elicited by JA (De Geyter et al., 2012), we investigated 
if it could be involved in the resistance response observed in 
the Arabidopsis ugt80A2;B1 mutant infected with B. cinerea. 
To this end, the levels of camalexin were analyzed in the 
WT and mutant plant samples used for JA quantification. A 
marked accumulation of this compound was detected in WT 
and ugt80A2;B1 plants after 48 hpi with B. cinerea, but the 
levels in the mutant were significantly higher (about twofold) 
than in the WT (Figure 5A). The accumulation of camalexin 
in response to fungal infection was paralleled by an increase 
in the expression of several genes related to its biosynthesis 
(Figures 5B–D). The expression of the CYP79B2, CYP71A13, 
and CYP71B15 biosynthetic genes was strongly induced by 
fungal infection, particularly at 48 hpi, both in the WT and 
the ugt80A2;B1 mutant plants, but the transcript levels of these 
three genes were higher in the mutant than in the WT plants, 
specifically about threefold in the case of CYP79B2 (Figure 
5B) and approximately 1.5-fold in CYP71A13 and CYP71B15 
(Figures 5C, D).

Camalexin biosynthesis involves the conversion of tryptophan 
to indole-3-acetaldoxime (IAOx), which is also the precursor of the 

FIGURE 2 | Expression of the UGT80A2 and UGT80B1 genes remains 
unchanged upon B. cinerea infection. The transcript levels of UGT80A2 
(A) and UGT80B1 (B) were measured by reverse transcription–quantitative 
polymerase chain reaction using RNA extracted from rosette leaves of 
Arabidopsis WT plants inoculated (infected) or not (mock) with B. cinerea 
at time points 0, 24, and 48 h. Data for each WT sample, infected or 
treated with mock, are expressed as normalized quantity values using two 
independent housekeeping genes (UBC and PP2A). Values are means ± 
SEM of three independent biological experiments.
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phytohormone indole-3-acetic acid (IAA) and the plant defense 
secondary metabolites IGs (Figure 4). Thus, we investigated if 
the inactivation of the two Arabidopsis SGTs also affected these 
biosynthetic pathways. While no relevant changes were observed 
in the IAA levels between WT and mutant plants (Figure S4), the 
transcript levels of several genes encoding specific enzymes of 
the indole glucosinolate pathway, such as CYP83B1, UGT74B1, 
and CYP81F2 (Sønderby et al., 2010), were higher in the mutant 
than in the WT plants at 48 hpi (Figure 6). The expression 
of CYP83B1 and UGT74B1 remained essentially unaltered in 
noninoculated leaves but was significantly up-regulated 48 h after 
Botrytis inoculation only in the ugt80A2;B1 mutant (Figures 6A, 
B). The transcript levels of CYP81F2, a gene specifically involved 
in the synthesis of 4-hydroxy-3-indolyl-methyl glucosinolates, 

increased significantly in the WT and mutant plants at 48 hpi, 
but this increase was significantly higher in the mutant than in 
control plants (Figure 6C). Altogether these data indicate that a 
transcriptional activation of the pathways involved in the synthesis 
of the Trp-derived defense compounds camalexin and indole 
glucosinolates is induced in the Arabidopsis ugt80A;2B1 mutant 
upon infection with B. cinerea. In agreement with the above results, 
the expression of some genes encoding transcriptional regulators 
of the camalexin and indole glucosinolates biosynthetic genes in 
the infected mutant was higher than in the infected WT plants. As 
shown in Figure 7A, the expression of the MYB51 transcription 
factor, a positive regulator of the biosynthetic steps required for 
the production of IAOx (Frerigmann et al., 2015), was significantly 
more expressed at 48 hpi in the ugt80A2;B1 mutant than in the 

FIGURE 3 | Increased transcript levels of JA-responsive marker genes and JA levels in ugt80A2;B1 mutant plants compared to WT upon infection with B. 
cinerea. The transcript levels of PDF1.2 (A), PR4 (B), and VSP2 (C) were determined by reverse transcription–quantitative polymerase chain reaction using 
RNA extracted from rosette leaves of Arabidopsis WT and ugt80A2;B1 mutant plants infected or not (mock) with B. cinerea at time points 0, 24, and 48 h. Data 
for each WT and ugt80A2;B1 mutant samples, infected or treated with mock, are expressed as normalized quantity values calculated using two independent 
housekeeping genes (UBC and PP2A). JA was quantified in leaf extracts by ultraperformance liquid chromatography–mass spectrometer and expressed as 
µg/g of dry weight (D). Values are means ± SEM of three independent biological experiments. Asterisks represent significant differences determined by one-way 
analysis of variance (**P < 0.005, ***P < 0.001).
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WT plants, while the expression of ANAC042, a regulator of 
camalexin biosynthesis that acts downstream IAOx (Saga et al., 
2012), increased in both WT and ugt80A2;B1 mutant plants upon 
infection, but at 48 hpi, this increase was significantly higher in the 
mutant (Figure 7B). A similar induction profile was observed for 
the transcript levels of WRKY33 (Figure 7C), a transcription factor 
activated by the mitogen-activated protein kinase cascade that has 
been well characterized as a camalexin biosynthesis inductor (Saga 
et al., 2012). All these results suggest that camalexin and, probably, 
also indole glucosinolates are actively involved in the enhanced 
resistance of the ugt80A2;B1 mutant to B. cinerea infection.

The Synthesis of Alkylglucosinolates in 
the Arabidopsis ugt80A2;B1 Mutant Is Not 
Affected by B. cinerea Infection
Alkylglucosinolates (AGs) are also a class of plant defense 
secondary metabolites whose biosynthetic pathway is related 
to that of indole glucosinolates (Figure 4), and it has been 
reported that both biosynthetic pathways may affect each 
other (Liu et al., 2016). This prompted us to investigate if the 
biosynthesis of this kind of glucosinolates could also be altered 
in the ugt80A2;B1 Arabidopsis mutant. To check this possibility, 
we analyzed the expression of several genes encoding enzymes 

involved in their biosynthetic pathway. The transcript levels of 
BCAT4 and CYP79F1 were similar in the WT and ugt80A2;B1 
mutant plants infected or not with B. cinerea (Figures S5A, B). 
These genes are involved in the first stages of AGs biosynthesis, 
which involves the side-chain elongation of the precursor amino 
acid methionine and its subsequent oxidation to aldoxime 
(Sønderby et al., 2010) (Figure 4). No significant changes were 
observed between WT and mutant plants in the transcript levels 
of CYP83A1 (Figure S5C) and UGT74C1 (Figure S5D), two 
genes involved, respectively, in the metabolism of the aldoxime 
to the corresponding alkylthiohydroximate and the subsequent 
conversion of this intermediate to AGs (Figure 4). These results 
indicate that, unlike indole glucosinolates, the synthesis of AGs 
is not transcriptionally activated either in the ugt80A2;B1 mutant 
or in the WT upon infection with B. cinerea. This observation 
is further supported by the lack of induction of MYB28 and 
MYB29, two genes coding for transcription factors that positively 
regulate the expression of many alkyl glucosinolate biosynthetic 
genes (Yatusevich et al., 2010) whose transcript levels are similar 
in the WT and the mutant plants infected or not with the 
pathogen (Figures S5E, F). These results suggest that AGs are not 
involved in the defense response of Arabidopsis against infection 
by B. cinerea whether plants have normal or depleted levels of 
glycosylated sterols.

FIGURE 4 | Schematic representation of camalexin and glucosinolate biosynthesis pathways. The biosynthesis of the tryptophan (camalexin, indole glucosinolates, 
and IAA) and methionine (alkylglucosinolates) derived compounds is indicated in a simplified form showing the biosynthetic steps mediated by genes whose 
expression levels have been quantified in this work. Genes whose expression increase in the ugt80A2;B1 mutant compared to WT upon B. cinerea infection are 
indicated in red, whereas those whose expression does not change are shown in blue. Solid arrows indicate single enzymatic steps, whereas dashed ones represent 
several enzymatic steps. Figure is based on previous representations of these pathways (Kliebenstein et al., 2005; Yatusevich et al., 2010; Frerigmann et al., 2016).
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DISCUSSION

Changes in the profile of glycosylated sterols have been widely 
related with the plant response to different abiotic stresses 
(Palta et al., 1993; Mishra et al., 2013; Pandey et al., 2014; Mishra 
et  al., 2015; Saema et al., 2016; Takahashi et al., 2016; Singh 
et al., 2017). However, there are less experimental evidence 
supporting their involvement in biotic stress responses 
(Pandey et al., 2014; Singh et al., 2016; Mishra et al., 2017). 
Furthermore, most of the published data related with this issue 
were obtained using Solanaceae species with simultaneously 
altered levels of glycosylated sterols and glycosylated defense 
compounds, such as whithanolides in W. somnifera (Singh 
et al., 2016) and rutin in tobacco (Pandey et al., 2014), which 
could be ultimately responsible for the observed responses. 
Because A. thaliana lacks this kind of specialized secondary 
metabolites, it represents a suitable model to assess the role 

of conjugated sterols in plant defense against biotic agents. 
In this regard, Kopischke et al. (2013) reported a role for 
conjugated sterols in the plant response to Phytophthora 
infestans using the Arabidopsis psat1 mutant impaired in steryl 
ester (SE) biosynthesis. However, the observed response could 
not be correlated with changes in a specific sterol fraction 
because the levels of SE and ASG are reduced in the leaves 
of this mutant, whereas those of SGs are increased, and FSs 
remain unaltered. Because Phytophthora is a sterol-auxotroph 
pathogen, the altered profile of sterols in the mutant, together 
with the described capacity of pathogenesis-related 1 (PR-
1) to inhibit pathogen growth by sequestering its sterols 
(Gamir et al., 2017), might explain the resistance phenotype 
of the psat1 mutant. Our results suggest that reduced levels 
of glycosylated sterols in the Arabidopsis ugt80A2;B1 mutant 
(DeBolt et al., 2009) confer resistance to the necrotrophic 
fungus B. cinerea (Figure 1). The leaves of this mutant contain 

FIGURE 5 | The ugt80A2;B1 mutant displays camalexin accumulation and increased transcript levels of camalexin biosynthetic genes in comparison to WT upon 
infection with B. cinerea. Camalexin was quantified in leaf extracts of Arabidopsis WT and ugt80A2;B1 mutant plants infected or not (mock) with B. cinerea at 
time points 0, 24, and 48 h using ultraperformance liquid chromatography–mass spectrometer and is expressed as µg/g of dry weight (A). The transcript levels of 
CYP79B2 (A), CYP71A13 (B) and CYP71B15 (PAD3) (C) were determined by reverse transcription–quantitative polymerase chain reaction using RNA extracted 
from the same leaf samples used for camalexin quantification. Data for each WT and ugt80A2;B1 mutant samples, infected or treated with mock, are expressed 
as normalized quantity values calculated using two independent housekeeping genes (UBC and PP2A). Values are means ± SEM of three independent biological 
replicates. Asterisks represent significant differences determined by one-way analysis of variance (*P < 0.05, **P < 0.005, ***P < 0.001).
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FIGURE 6 | Increased transcript levels of indole glucosinolate biosynthetic 
genes in the ugt80A2;B1 mutant compared to WT upon infection with B. 
cinerea. The transcript levels of CYP83B1 (A), UGT74B1 (B), and CYP81F2 
(C) were determined by reverse transcription–quantitative polymerase chain 
reaction using RNA extracted from rosette leaves of Arabidopsis WT and 
ugt80A2;B1 mutant infected or not (mock) with B. cinerea at different time 
points (0, 24, and 48 h). Data for each WT and ugt80A2;B1 mutant samples, 
infected or treated with mock, are expressed as normalized quantity values 
calculated using two independent housekeeping genes (UBC and PP2A). 
Values are means ± SEM of three independent biological replicates. Asterisks 
represent significant differences determined by one-way analysis of variance 
(*P < 0.05, **P < 0.005, ***P < 0.001).

FIGURE 7 | The ugt80A2;B1 mutant shows increased transcript levels of genes 
coding for transcription factors regulating camalexin and indole glucosinolate 
biosynthesis compared to WT upon infection with B. cinerea. The transcript 
levels of MYB51 (A), ANAC042 (B) and WRKY33 (C) were determined by 
reverse transcription–quantitative polymerase chain reaction using RNA extracted 
from rosette leaves of Arabidopsis WT and ugt80A2;B1 mutant infected or not 
(mock) with B. cinerea at different time points (0, 24, and 48 h). Data for each WT 
and ugt80A2;B1 mutant samples, infected or treated with mock, are expressed 
as normalized quantity values calculated using two independent housekeeping 
genes (UBC and PP2A). Values are means ± SEM of three independent 
biological replicates. Asterisks represent significant differences determined by 
one-way analysis of variance (*P < 0.05, **P < 0.005, ***P < 0.001).
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normal levels of nonglycosylated sterols (FSs + SE), whereas 
those of glycosylated sterols (SG + ASG) are markedly reduced, 
albeit not completely abolished (DeBolt et al., 2009). Thus, our 
results establish for the first time a direct link between reduced 
levels of glycosylated sterols and resistance against pathogen 
attack. We also show that expression of the two genes encoding 
the SGTs that synthesize the bulk of SGs in Arabidopsis 
remains unaltered upon infection with B. cinerea (Figure 2). 
This observation supports the notion that SG biosynthesis is 
not induced in response to B. cinerea infection, although the 
possibility that a gene coding for an as yet unreported SGT 
potentially involved in the residual production of SGs and/
or the synthesis of a specialized SG could be up-regulated 
cannot be entirely excluded. It is reported that although both 
enzymes display sterol glucosyltransferase activity, substrate 
specificity is apparent in that UGT80A2 is responsible for the 
accumulation of major SGs, while UGT80B1 is involved in 
accumulation of minor SGs and ASGs (Stucky et al., 2015).

In order to understand the molecular mechanism acting 
behind the resistance phenotype observed in the ugt80A2;B1 
mutant plants, we first measured the levels of JA and SA in mutant 
and WT plants infected or not with B. cinerea because it is well 
known that these phytohormones act as primary signals in the 
regulation of plant responses to biotic stress (Santino et al., 2013). 
After infection with B. cinerea, JA content increased in both WT 
and mutant plants (Figure 3D), which is not surprising because 
an increase in the levels of this hormone has long been described 
in response to necrotrophic pathogen infection (Penninckx et al., 
1996) and herbivore damage (Reymond et al., 2000). However, 
after 24 and 48 hpi, the JA levels were significantly higher in the 
mutant than in the WT (Figure 3D), and this differential increase 
correlated with a stronger up-regulation of some defense genes 
such as plant defensin 1.2 (PDF1.2) and the pathogenesis related 
protein 4 (PR4) in the infected ugt80A;2B mutant compared 
to WT (Figures 3A, B). These two genes are markers of the 
ERF branch of the JA signaling pathway that is activated upon 
necrotrophic pathogen attack (Santino et al., 2013), suggesting 
that this branch of the downstream JA signaling is activated in 
the ugt80A;2B mutant after Botrytis infection. Interestingly, 
the expression of ACS6 increased about twofold and fourfold, 
respectively, in WT and ugt80A2;B1 mutant plants 48 h after 
fungus infection (Figure S1), which agrees with its previously 
reported induction by B. cinerea infection (Han et al., 2010; Li 
et al., 2012). ACS6 is one of the nine members of the Arabidopsis 
gene family encoding 1-amino-cyclopropane-1-carboxylic acid 
synthase, the rate-limiting enzyme in ethylene biosynthesis 
(Wang et al., 2002), a hormone that acts synergistically with JA 
on the expression of the ERF branch signaling pathway upon 
infection by necrotrophic pathogens (Pieterse et al., 2012). On 
the contrary, the JA signaling branch regulated by the MYC2 
transcription factor, which has been reported to have a specific 
role in response to insect attack (Santino et al., 2013), was not 
activated after Botrytis infection neither in the WT nor in the 
mutant plants because no significant changes were observed 
in the expression of the MYC-branch marker gene vegetative 
storage protein 2 (VSP2) (Figure 3C). This is in accordance with 
the absence of changes observed after fungus infection in the 

expression of NCED3, one of the major genes encoding 9-cis-
epoxycarotenoid dioxygenase, a key enzyme in the biosynthesis 
of ABA (Leng et al., 2014), and RAB18, an ABA-responsive gene, 
either in the WT or the ugt80A2;B1 mutant plants (Figure S2), 
because ABA has been reported to act synergistically with JA on 
the expression of the MYC branch upon wounding or herbivory 
attack (Anderson et al., 2004). Similarly, the levels of SA, a 
hormone that usually interacts antagonistically with JA (Pieterse 
et al., 2012), and the expression of the NPR1 gene coding for 
a key transcriptional activator of the SA-dependent immune 
response (Pieterse et al., 2012) remained unaltered in infected 
and noninfected WT and mutant plants (Figures S3A, B). The 
expression of PR1, a marker gene of SA response (Pieterse et al., 
2012), increased about 10-fold either in WT or mutant plants 
upon Botrytis infection (Figure S3C). This agrees with the results 
of Govrin and Levine (2002) indicating that PR1 induction by B. 
cinerea can be independent of SA. These results indicate that the 
SA signaling pathway is not involved in the response to B. cinerea 
either in the WT or in the mutant plants. All these observations 
indicate that depletion of glycosylated sterols content in the 
Arabidopsis ugt80A2;B1 mutant leads to an enhancement 
of Botrytis-induced JA levels that specifically activate the JA 
signaling pathway regulated by the ERF family of transcription 
factors. This finding further reinforces the hypothesis that 
changes in the relative proportions of sterols are perceived by 
plants as a stress signal that activates different hormone-related 
defensive responses in a sterol profile-dependent manner (Wang 
et al., 2012; Singh et al., 2015; Manzano et al., 2016).

The intricate immune response network evolved by plants 
to protect themselves against pathogens includes also the 
biosynthesis of different types of secondary metabolites 
that serve as defense compounds, such as phytoalexins and 
glucosinolates. Camalexin, a tryptophan-derived compound 
(Figure 4), is the major phytoalexin of A. thaliana (Glawischnig, 
2007). Interestingly, camalexin content was enhanced by B. 
cinerea infection in both WT and ugt80A2;B1 mutant plants 
(Figure 5A), but their levels were significantly higher in the 
mutant than in the WT plants (Figure 5A), suggesting a role 
of this phytoalexin in the resistance to the fungus observed 
in the mutant. A positive role of camalexin in plant resistance 
against pathogens, including several necrotrophic fungi, has 
previously been demonstrated by genetic approaches (Lemarié 
et al., 2015). Mutants with reduced camalexin levels show 
increased susceptibility to B. cinerea, while its accumulation 
has been correlated with resistance to the fungus (Ferrari et al., 
2003; Kliebenstein et al., 2005; Ferrari et al., 2007; Van Baarlen 
et al., 2007). Because the secondary metabolites are derived 
from primary metabolic pathways, their biosynthesis should be 
temporally and spatially coordinated to maintain normal growth 
and plant development. Thus, the accumulation of camalexin in 
the proximity of the lesions induced by Botrytis is associated to 
a strong induction of tryptophan and camalexin biosynthetic 
genes in the same tissues (Schuhegger et al., 2006; Schuhegger 
et al., 2007). According to these observations, the increase in 
camalexin levels observed at 48 hpi (Figure 5A) correlates with 
significantly higher transcript levels of a set of cytochrome P450 
genes encoding key enzymes of the camalexin biosynthetic 
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pathway, such as CYP79B2, CYP71A13, and CYP71B15 (PAD3) 
(Figures 5B–D), and the WRKY33 and ANAC042 genes coding 
for transcriptional activators of camalexin biosynthesis (Figures 
7B, C), being all these responses significantly more intense in the 
ugt80A;2B1 mutant than in WT plants (Figures 5 and 7). It has 
been reported that WRKY33 binds to the promoters of CYP71B15 
and CYP71A13 to induce camalexin biosynthesis (Petersen et al., 
2008) during the early stages of pathogen infection (Birkenbihl 
et al., 2012), while upon induction of camalexin biosynthesis by 
treatment with AgNO3, the time course of ANAC042 expression 
parallels that of the biosynthetic genes CYP79B2, CYP71A12, and 
CYP71B15 (Saga et al., 2012). These observations indicate that 
camalexin biosynthesis induction in Arabidopsis leaves infected 
with B. cinerea is coordinately controlled at the transcriptional 
level similarly to what has been described in Arabidopsis roots 
treated with Flg22, where induction of camalexin biosynthesis 
was associated with the transcriptional induction of the PAD3, 
CYP71A12, and CYP71A13 biosynthetic genes (Millet et al., 2010). 
Moreover, these results support the hypothesis that the enhanced 
camalexin accumulation in the ugt80A2;B1 mutant infected with 
B. cinerea is due to a higher transcriptional up-regulation of its 
biosynthetic pathway compared to WT plants. Interestingly, 
ANAC042, CYP79B2, CYP71A12, and CYP71B15 genes have 
been previously included in a coexpression module closely 
related with another module comprising, among others, MYB51 
(Saga et al., 2012), a gene reported to encode a positive regulator 
of both camalexin and IG biosynthesis whose expression is 
induced by B. cinerea infection (Frerigmann et  al., 2015). Our 
results support these observations because the expression profile 
of MYB51 (Figure 7A) was similar to that of ANAC042 (Figure 
7B), which, as mentioned above, correlated with that of some 
camalexin biosynthetic genes (Figure 5).

Indole glucosinolates are small secondary metabolites involved 
in plant immunity (Bednarek et al., 2009; Clay et al., 2009) 
that share with camalexin the initial step of their biosynthetic 
pathways, the conversion of tryptophan to IAOx catalyzed 
by CYP79B2 (Figure 4). MYB51, together with MYB122 and 
MYB34, regulates the IG biosynthesis in A. thaliana (Celenza 
et al., 2005; Gigolashvili et al., 2007), although the contribution 
of each MYB factor to IG production is different in shoots and 
roots, being MYB51 the main regulator in shoots (Frerigmann 
and Gigolashvili, 2014). In Arabidopsis WT and ugt80A2;B1 
mutant plants, the expression of MYB51 increased after Botrytis 
infection, and its transcript levels were significantly higher in the 
mutant (Figure 7A). A similar expression pattern was observed 
for the genes involved in IG (CYP83B1, UGT74B1, and CYP81F2) 
(Figure 6) and camalexin biosynthesis (CYP79B2, CYP71A13, 
and CYP71B15) (Figures 5B–D), which supports a role of 
MYB51 as a transcriptional regulator of the pathways leading to 
the synthesis of these kinds of defense compounds. In the case 
of camalexin biosynthesis, MYB51 would act in concert with 
WRKY33 and ANAC042 to activate the entire pathway because 
it is known that MYB51 induces the expression of CYP79B2 but 
not that of the downstream biosynthetic genes (Frerigmann et al., 
2015), which as stated above would be activated by WRKY33 
and ANAC042. Our results indicate that B. cinerea infection 
activates the expression of different Arabidopsis transcription 

factors (MYB51, WRKY33, and ANAC042) to enable camalexin 
biosynthesis. The higher expression of the genes coding for these 
transcriptional activators and the resulting higher accumulation 
of camalexin in the ugt80A2;B1 mutant compared to WT plants 
could be the reason of its resistance phenotype. Because the 
expression of the genes involved in the IG biosynthesis is also 
up-regulated in the infected mutant, it is reasonable to speculate 
that these compounds play also a role in this defense response. 
It is worth to mention that MYB51 is inducible by the ERF1 
branch of the JA signaling pathway (Millet et al., 2010) whereas 
glucosinolate levels are reduced when the JA signaling is blocked 
(Mikkelsen et al., 2003; Mewis et al., 2005; Li et al., 2006). This, 
together with the fact that WRKY33 and ANAC042, can be 
regulated by JA (De Geyter et al., 2012) suggests that the different 
signaling pathways leading to the resistance phenotype against 
B. cinerea observed in the ugt80A2;B1 mutant might be activated 
by the increased JA levels detected in the mutant after infection 
with the fungus, compared to the WT (Figure 3D).

Alkylglucosinolates are a class of glucosinolates synthesized 
from methionine that are biosynthetically related with IGs because 
they share the common metabolic intermediate thiohydroxymate 
(Figure 4). In fact, a crosstalk between both pathways has been 
reported. For instance, a cyp83a1 mutant produces lower levels of 
AG, but accumulates higher levels of IG than the corresponding 
WT (Hemm et al., 2003; Naur et al., 2003; Sønderby et al., 
2010). However, in our experimental conditions, this kind 
of interaction does not seem to occur since, in contrast to the 
changes observed in the expression of the genes coding for the 
IG biosynthetic enzymes and the corresponding transcriptional 
activators (Figures 6 and 7), no changes were detected between 
ugt80A2;B1 mutant and WT plants infected or not with B. cinerea 
either in the expression of the BCAT4, CYP79F1, CYP83A1, and 
UGT74C1 genes involved in AG biosynthesis (Figures S5A–D) 
or in the transcript levels of the genes coding for the transcription 
factors MYB28 and MYB29 reportedly involved in controlling 
the AG biosynthetic pathway in response to biotic and abiotic 
stress (Hirai et al., 2007; Sønderby et al., 2010) (Figures S5E, F). 
These results are in agreement with those obtained by Ferrari 
et al. (2007) in a full-genome expression analysis of Arabidopsis 
plants treated with B. cinerea, where the genes encoding enzymes 
involved in the biosynthesis of Trp and indole compounds were 
up-regulated, whereas most genes encoding enzymes involved 
in the biosynthesis of AG, like CYP79F1, REF2, and UGT74C1 
(Hansen et al., 2001; Hemm et al., 2003; Gachon et al., 2005), 
were repressed or not significantly affected.

In conclusion, the results of this work show that an Arabidopsis 
ugt80A2;B1 mutant is more resistant to the infection by the 
necrotrophic fungus B. cinerea than the corresponding WT plants. 
This effective response against B. cinerea seems to be mediated by 
the enhanced levels of some defense secondary metabolites, such 
as camalexin and probably also IG, in the ugt80A2;B1 mutant 
compared to the WT. The biosynthesis of these compounds is 
regulated by a set of transcription factors that can be activated 
by the high levels of JA present in the mutant, which in turn 
would induce the expression of some defense genes, like PDF1.2 
and PR4. However, the upstream mechanisms that trigger this 
response, including the membrane localized signal transduction 
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steps, remain elusive. Steryl glycosides are enriched in the plasma 
membrane lipid rafts or DRM, which control dynamic protein 
interactions in a specific sterol-lipid environment (Zauber et al., 
2014). The biological function of these microdomains has been 
linked to signaling and transport, since proteomic analysis have 
identified several proteins involved in these processes in the DRM 
(Shahollari and Berghöfer, 2004; Kierszniowska et al., 2009). Thus, 
it might be hypothesized that an altered composition of glycosylated 
sterols in the membrane rafts might affect their structure and 
function, resulting in an indirect differential modulation of some 
signaling pathways, such as those described in this work. The 
identification of some immunity-related proteins whose levels are 
increased in the DRM of the ugt80A2;B1 mutant (Zauber et al., 
2014) would support this hypothesis. These proteins include 
PERK1, a membrane receptor-like kinase involved in the general 
perception and response to wounding and/or pathogen stimulus 
(Silva and Goring, 2002); PLC2 (phospholipase C2), a protein that 
plays a role in MAMP-triggered immunity by modulating ROS 
production (D’Ambrosio et al., 2017); and AtRBOHD, a protein 
required for ROS production induced by DAMPs and pathogen 
attack (Liu and He, 2016). An alternative possibility is that the 
resistance phenotype observed in the ugt80A2;B1 mutant could 
be due to a defect in a signaling role mediated directly by SGs, as 
described for the pleiotropic developmental phenotypes observed 
in different sterol biosynthesis mutants (Schrick et al., 2000; 
Schrick et al., 2002; He et al., 2003). The dissection of the activated 
transduction pathways and the identification of their different 
components will provide further insights about the mechanism 
of action by which glycosylated sterols may modulate the plant 
defense response against pathogen attack.
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